"Integrability in Gauge and String Theory, 22 – 26 August 2016, Humboldt-Universität zu Berlin" **3pt functions and form factors**

Z. Bajnok

Holographic QFT Group, Wigner Research Centre for Physics, Budapest

1

"Integrability in Gauge and String Theory, 22 – 26 August 2016, Humboldt-Universität zu Berlin" **3pt functions and form factors Z. Bajnok**

Holographic QFT Group, Wigner Research Centre for Physics, Budapest

IIB strings on $AdS_5 \times S^5$	Integrability	N = 4 SYM
SFT vertex	Form factors	3pt functions

Same light-cone gauge fixing: integrable 2D QFT with particle like excitation. Amplitude \equiv string vertex \leftrightarrow 3pt functions and 1/N corrections in dual gauge theory.

arXiv:1404.4556,1501.04533,1512.01471,1607.02830: work done in collaboration with Romuald Janik and Andrzej Wereszczynski

Motivation:

Spectral problem: 2pt functions

The simplest interacting QFT in 1+1 D:
$$\mathcal{L}=rac{1}{2}(\partial_t arphi)^2-rac{1}{2}(\partial_x arphi)^2-rac{m^2}{b^2}$$
 (cosh $barphi-1)$

interesting observables: finite size spectrum,

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$

The simplest interacting QFT in 1+1 D:
$$\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}$$
 (cosh $b\varphi - 1$)

interesting observables: finite size spectrum,

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$

Too difficult, instead Infinite volume \rightarrow LSZ reduction formula

The simplest interacting QFT in 1+1 D:
$$\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}$$
 (cosh $b\varphi - 1$)

interesting observables: finite size spectrum,

$$\begin{array}{c|c} p_{1} & p_{2} & \dots & p_{n} \\ \hline & 0 & 0 & 0 \end{array}$$

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$

Too difficult, instead Infinite volume \rightarrow LSZ reduction formula

 $\langle p'_1, p'_2 | \mathcal{O} | p_1, p_2 \rangle = \bar{\mathcal{D}}'_1 \bar{\mathcal{D}}'_2 \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle$ where $\mathcal{D}_j = i \int d^2 x_j e^{ip_j x - i\omega_j t} \left\{ \partial_t^2 - \partial_x^2 + m^2 \right\}$ amputates a leg and puts it onshell

The simplest interacting QFT in 1+1 D:
$$\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}(\cosh b\varphi - 1)$$

interesting observables: finite size spectrum,

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_nt}$

Too difficult, instead Infinite volume \rightarrow LSZ reduction formula

 $\langle p'_1, p'_2 | \mathcal{O} | p_1, p_2 \rangle = \bar{\mathcal{D}}'_1 \bar{\mathcal{D}}'_2 \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle$ where $\mathcal{D}_j = i \int d^2 x_j e^{ip_j x - i\omega_j t} \left\{ \partial_t^2 - \partial_x^2 + m^2 \right\}$ amputates a leg and puts it onshell

Consequence: perturbative definition, calculational tool:

$$S(\theta) = 1 - \frac{1}{4}ib^2\operatorname{csch}\theta - \frac{b^4(\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i))}{32\pi} + \frac{ib^6\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i)^2}{256\pi^2} + O\left(b^8\right)$$

Mandelstam variable $s = 4m^2 \cosh^2 \frac{\theta}{2}$ where $\theta = \theta_1 - \theta_2$ rapidity: $p_i = m \sinh \theta_i$

The simplest interacting QFT in 1+1 D:
$$\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}(\cosh \frac{b\varphi - 1}{b\varphi})$$

interesting observables: finite size spectrum,

(0,it)

(0.0)

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$

Too difficult, instead Infinite volume \rightarrow LSZ reduction formula

Consequence: perturbative definition, calculational tool:

$$S(\theta) = 1 - \frac{1}{4}ib^2\operatorname{csch}\theta - \frac{b^4(\operatorname{csch}\theta(\operatorname{\pi csch}\theta - i))}{32\pi} + \frac{ib^6\operatorname{csch}\theta(\operatorname{\pi csch}\theta - i)^2}{256\pi^2} + O\left(b^8\right)$$

Mandelstam variable $s = 4m^2\operatorname{cosh}^2\frac{\theta}{2}$ where $\theta = \theta_1 - \theta_2$ rapidity: $p_i = m\operatorname{sinh}\theta_i$

control over analytical properties: unitarity, crossing $S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$

S-matrix bootstrap: fundamental object is the two particle S-matrix [Zamolodchikov² '79,Dorey]

S-matrix bootstrap: fundamental object is the two particle S-matrix [Zamolodchikov² '79,Dorey]

Infinite volume \rightarrow crossing symmetry, $\theta \rightarrow i\pi - \theta$ in rapidity $(E(\theta), p(\theta)) = m(\cosh \theta, \sinh \theta)$

 $S(\theta_1 - \theta_2) = S(\theta) = S(i\pi - \theta) = S(-\theta)^{-1}:$

S-matrix bootstrap: fundamental object is the two particle S-matrix [Zamolodchikov² '79,Dorey]

Infinite volume \rightarrow crossing symmetry, $\theta \rightarrow i\pi - \theta$ in rapidity $(E(\theta), p(\theta)) = m(\cosh \theta, \sinh \theta)$

Simple solution: $\begin{array}{ll} \text{sinh-Gordon} \\ S(\theta) = \frac{\sinh \theta - ia}{\sinh \theta + ia} \end{array} \quad a = \frac{\pi b^2}{8\pi + b^2} \end{array}$

 $S(\theta_1 - \theta_2) = S(\theta) = S(i\pi - \theta) = S(-\theta)^{-1}$:

S-matrix bootstrap: fundamental object is the two particle S-matrix [Zamolodchikov² '79,Dorey]

Infinite volume \rightarrow crossing symmetry, $\theta \rightarrow i\pi - \theta$ in rapidity $(E(\theta), p(\theta)) = m(\cosh \theta, \sinh \theta)$

Simple solution: $\begin{array}{l} \text{sinh-Gordon} \\ S(\theta) = \frac{\sinh \theta - ia}{\sinh \theta + ia} \end{array} \quad a = \frac{\pi b^2}{8\pi + b^2} \end{array}$

 $S(\theta_1 - \theta_2) = S(\theta) = S(i\pi - \theta) = S(-\theta)^{-1}$: Finite volume spectrum [Bethe-Yang] upto $O(e^{-mL})$ i.e. polynomial in L^{-1} : $\theta_1 \quad \theta_2$ θn $e^{i\Phi_1} = e^{ip_1L}S(\theta_1 - \theta_2) \dots S(\theta_1 - \theta_n) = 1$ $E_n(L) = \sum_i m \cosh \theta_i$

String interaction, 3pt functions

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \dots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n\rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \dots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n\rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Form factor bootstrap:

 $\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle = \langle 0|\mathcal{O}|\theta_2,\ldots,\theta_n,\theta_1-2i\pi\rangle = S(\theta_i-\theta_{i+1})\langle 0|\mathcal{O}|\ldots,\theta_{i+1},\theta_i,\ldots\rangle$

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \dots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n\rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Form factor bootstrap:

 $\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle = \langle 0|\mathcal{O}|\theta_2,\ldots,\theta_n,\theta_1-2i\pi\rangle = S(\theta_i-\theta_{i+1})\langle 0|\mathcal{O}|\ldots,\theta_{i+1},\theta_i,\ldots\rangle$

 $-i\operatorname{Res}_{\theta'=\theta}\langle 0|\mathcal{O}|\theta'+i\pi,\theta,\theta_1\ldots,\theta_n\rangle=(1-\prod_i S(\theta-\theta_i))\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle$

(0,it)

 θ_n Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n = 1} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \dots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n \rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$ (0,0)Form factor bootstrap: $\theta_1 - 2i\pi$ $\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle = \langle 0|\mathcal{O}|\theta_2,\ldots,\theta_n,\theta_1-2i\pi\rangle = S(\theta_i-\theta_{i+1})\langle 0|\mathcal{O}|\ldots,\theta_{i+1},\theta_i,\ldots\rangle$ Singularity stucture $-i \operatorname{Res}_{\theta'=\theta}$ $-i\operatorname{Res}_{\theta'=\theta}\langle 0|\mathcal{O}|\theta'+i\pi,\theta,\theta_1\ldots,\theta_n\rangle = (1-\prod_i S(\theta-\theta_i))\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle$ Solution for sinh-Gordon: $\langle 0|\mathcal{O}|\theta_1,\theta_2\rangle = e^{(D+D^{-1})^{-1}\log S}$; $Df(\theta) = f(\theta + i\pi)$ Finite volume form factors: polynomial in L^{-1} : $\langle 0|\mathcal{O}|\theta_1, \dots, \theta_n \rangle_L = \frac{\langle 0|\mathcal{O}|\theta_1, \dots, \theta_n \rangle}{\sqrt{\det[\frac{\partial \Phi_i}{\partial \theta_i}]}}$

Outline

Motivation: the S-matrix and the FF bootstrap

Cutting the stringvertex: decompactifying 2 & 3: Form factor axioms

Decompactifying 1 & 3: the bootstrap program

Cutting one more: hexagon axioms

PP wave limit of AdS/CFT: Solving the FF axioms

Summing up the octagon

Decompactify string 2 & 3:

Decompactify string 2 & 3:

 $N_L(\theta_1,\ldots,\theta_n) = e^{-ip_1L} N_L(\theta_2,\ldots,\theta_n,\theta_1-2i\pi) = S(\theta_i-\theta_{i+1}) N_L(\ldots,\theta_{i+1},\theta_i,\ldots)$

The full large volume amplitude $O(e^{-mL})$

 $e^{ip_1L}S(\theta_1 - \theta_2)\dots S(\theta_1 - \theta_n) = 1$

The full large volume amplitude $O(e^{-mL})$

$$e^{ip_1L}S(\theta_1 - \theta_2) \dots S(\theta_1 - \theta_n) = 1$$

Decompactify string 2 & 3: $N_{L_1}(\theta_1, \dots, \theta_n)$

The full large volume amplitude $O(e^{-mL})$

$$e^{ip_1L}S(\theta_1-\theta_2)\dots S(\theta_1-\theta_n)=1$$

 $N_{L_1}(\theta_1,\ldots,\theta_n)$

Decompactify

string 2 & 3:

Decompactify string 1 & 3: $N_{L_2}(\theta_1, \dots, \theta_n)$

The full large volume amplitude $O(e^{-mL})$ $e^{ip_1L}S(\theta_1 - \theta_2) \dots S(\theta_1 - \theta_n) = 1$ $\theta_1 \quad \theta_2 \quad \dots \quad \theta_n$ Decompactify Decompactify L_1 (1)string 1 & 3: string 2 & 3: $N_{L_2}(\theta_1,\ldots,\theta_n)$ $N_{L_1}(\theta_1,\ldots,\theta_n)$ 1/3 3

Finite (large volume) and infinite volume amplitudes are the same (upto normalization). Find the relevant solutions by matching the two in the large L_1, L_2 limit:

$$N_{L_1}(\theta_1,\ldots,\theta_n) \propto N_{L_1,L_2}(\theta_1,\ldots,\theta_n) \propto N_{L_2}(\theta_1,\ldots,\theta_n)$$

Octagon axioms:

 $O(\theta_i,\ldots,\theta_n) = S(\theta_i,\theta_{i+1})O(\ldots,\theta_{i+1},\theta_i,\ldots) = O(\theta_2,\ldots,\theta_n,\theta_1-4i\pi)$

Decompactify all volumes

Octagon axioms:

 $O(\theta_i,\ldots,\theta_n) = S(\theta_i,\theta_{i+1})O(\ldots,\theta_{i+1},\theta_i,\ldots) = O(\theta_2,\ldots,\theta_n,\theta_1-4i\pi)$

Kinematical singularity $-i \operatorname{Res}_{\theta'=\theta} O(\theta' + i\pi, \theta, \theta_1, \dots, \theta_n) = O(\theta_1, \dots, \theta_n)$

Decompactify all volumes

Decompactify all volumes

 $h(\theta_i,\ldots,\theta_n) = S(\theta_i,\theta_{i+1})h(\ldots,\theta_{i+1},\theta_i,\ldots) = h(\theta_2,\ldots,\theta_n,\theta_1 - 3i\pi)$

Kinematical singularity $-i \operatorname{Res}_{\theta'=\theta} h(\theta' + i\pi, \theta, \theta_1, \dots, \theta_n) = h(\theta_1, \dots, \theta_n)$

 $h(\theta_i,\ldots,\theta_n) = S(\theta_i,\theta_{i+1})h(\ldots,\theta_{i+1},\theta_i,\ldots) = h(\theta_2,\ldots,\theta_n,\theta_1 - 3i\pi)$

Kinematical singularity $-i \operatorname{Res}_{\theta'=\theta} h(\theta' + i\pi, \theta, \theta_1, \dots, \theta_n) = h(\theta_1, \dots, \theta_n)$

Complete solution: $h(\theta_1, \theta_2) \propto \sigma(\theta_1, \theta_2) S_{\text{Beisert}}(\theta_1, \theta_2)$

Ultimate goal:

 $O(\theta_1, \theta_2, \theta_3) = h(\theta_1, \theta_2)h(\theta_3) + \dots + \int \frac{du}{2\pi}\mu(u)h(\theta_1, \theta_2, u - i\frac{\pi}{2})h(u + i\frac{\pi}{2}, \theta_3)e^{-E(u)l} +$

Perturbative checks: [Eden & Sfondrini] [Basso et. al]

HHH: [Jiang, Komatsu, Kostov, Serban]

2 particles in string 3: $N_L(\theta_1, \theta_2) = N_L(\theta_2, \theta_1) = e^{-ip_1L}N_L(\theta_2, \theta_1 - 2i\pi)$ $-i\operatorname{Res}_{\epsilon}N_{L}(\theta + i\pi + \epsilon, \theta) = (1 - e^{ipL})$

kinematical singularity:

2 particles in string 3: kinematical singularity:

$$N_L(\theta_1, \theta_2) = N_L(\theta_2, \theta_1) = e^{-ip_1 L} N_L(\theta_2, \theta_1 - 2i\pi)$$
$$-i \operatorname{Res}_{\epsilon} N_L(\theta + i\pi + \epsilon, \theta) = (1 - e^{ipL})$$

Solve the first two by:

$$N_L(\theta_1, \theta_2) = \frac{e^{-\theta_1 \frac{p_1}{2\pi}L} e^{-\theta_2 \frac{p_2}{2\pi}L}}{\cosh \frac{\theta_1 + \theta_2}{2}} n(\theta_1) n(\theta_2)$$

Γ

2 particles in string 3: kinematical singularity:

$$N_L(\theta_1, \theta_2) = N_L(\theta_2, \theta_1) = e^{-ip_1L} N_L(\theta_2, \theta_1 - 2i\pi)$$
$$-i \operatorname{Res}_{\epsilon} N_L(\theta + i\pi + \epsilon, \theta) = (1 - e^{ipL})$$

Solve the first two by:

$$N_L(\theta_1, \theta_2) = \frac{e^{-\theta_1 \frac{p_1}{2\pi}L} e^{-\theta_2 \frac{p_2}{2\pi}L}}{\cosh \frac{\theta_1 + \theta_2}{2}} n(\theta_1) n(\theta_2)$$

kin. singularity: $n(\theta)n(\theta+i\pi) = \sinh\theta\sin\frac{pL}{2}$ zeros at $\theta = \frac{2\pi n}{L}$ and $\theta = \frac{2\pi n}{L} + i\pi$

1 cut: nonlocal form factors

2 particles in string 3: $N_L(\theta_1, \theta_2) = N_L(\theta_2, \theta_1) = e^{-ip_1L}N_L(\theta_2, \theta_1 - 2i\pi)$ kinematical singularity: $-i\operatorname{Res}_{\epsilon}N_L(\theta + i\pi + \epsilon, \theta) = (1 - e^{ipL})$

Solve the first two by:
$$N_L(\theta_1, \theta_2) = \frac{e^{-\theta_1 \frac{p_1}{2\pi}L} e^{-\theta_2 \frac{p_2}{2\pi}L}}{\cosh \frac{\theta_1 + \theta_2}{2}} n(\theta_1) n(\theta_2)$$

kin. singularity: $n(\theta)n(\theta+i\pi) = \sinh\theta\sin\frac{pL}{2}$ zeros at $\theta = \frac{2\pi n}{L}$ and $\theta = \frac{2\pi n}{L} + i\pi$

 $n(\theta) = \sinh \frac{\theta}{2} \sin \frac{pL}{2} \Gamma_{\frac{mL}{2\pi}}(m \sinh \theta) \text{ where } \Gamma_{\mu} \text{ removes zeros at } \theta = \frac{2\pi n}{L} + i\pi$ $\Gamma_{\mu}(z) = z^{-1} e^{-\omega_{z}(\gamma + \log \frac{\mu}{2e})} \prod \frac{n}{\omega_{n} + \omega_{z}} e^{-\frac{\omega_{n}}{z}} \text{ and } \omega_{z} = \sqrt{\mu^{2} + z^{2}}$

[Spradlin et al '02,Lucietti et al '03]

2 particles: $O(\theta_1, \theta_2) = O(\theta_2, \theta_1) = O(\theta_2, \theta_1 - 4i\pi)$ kinematical singularity: $-i \operatorname{Res}_{\epsilon} O(\theta + i\pi + \epsilon, \theta) = 1$

2 particles: $O(\theta_1, \theta_2) = O(\theta_2, \theta_1) = O(\theta_2, \theta_1 - 4i\pi)$ kinematical singularity: $-i\operatorname{Res}_{\epsilon}O(\theta + i\pi + \epsilon, \theta) = 1$ $\rightarrow O(\theta_1, \theta_2) = \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}}$

Multiparticle solution: O(1, 2, 3, 4) = O(1, 2)O(3, 4) + O(1, 3)O(2, 4) + O(1, 4)O(2, 3)(Wick theorem)

2 particles: $O(\theta_1, \theta_2) = O(\theta_2, \theta_1) = O(\theta_2, \theta_1 - 4i\pi) \rightarrow O(\theta_1, \theta_2) = \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}}$ kinematical singularity: $-i \operatorname{Res}_{\epsilon} O(\theta + i\pi + \epsilon, \theta) = 1$

Multiparticle solution: O(1, 2, 3, 4) = O(1, 2)O(3, 4) + O(1, 3)O(2, 4) + O(1, 4)O(2, 3)(Wick theorem)

Summing up virtual corrections

 $N_L(\theta_1, \theta_2) = O(\theta_1, \theta_2) + \int \frac{du}{2\pi} O(\theta_1, \theta_2, u - 3i\frac{\pi}{2}, u + 3i\frac{\pi}{2})_c e^{-m\cosh uL} + \dots$

Agrees with the expansion of $N_L(\theta_1, \theta_2)$!

Ultimate goal:

2 cuts octagon

hexagon

2

1

2

3

3'

L

 $O(\theta_1, \theta_2, \theta_3) = h(\theta_1, \theta_2)h(\theta_3) + \dots + \int \frac{du}{2\pi}\mu(u)h(\theta_1, \theta_2, u - i\frac{\pi}{2})h(u + i\frac{\pi}{2}, \theta_3)e^{-E(u)l} +$

Decompactify string 2 & 3 but $L_1 = 0$:

Decompactify string 2 & 3 and $L_1 = 0$:

Decompactify string 2 & 3 and $L_1 = 0$:

Local operator form factor equations:

 $N_{0}(\theta_{1},\ldots,\theta_{n}) = N_{0}(\theta_{2},\ldots,\theta_{n},\theta_{1}-2i\pi) = S(\theta_{i}-\theta_{i+1})N_{0}(\ldots,\theta_{i+1},\theta_{i},\ldots)$ $-i\operatorname{Res}_{\theta'=\theta}N_{0}(\theta'+i\pi,\theta,\theta_{1}\ldots,\theta_{n}) = (1-\prod_{i}S(\theta-\theta_{i}))N_{0}(\theta_{1},\ldots,\theta_{n})$

Decompactify string 2 & 3 and $L_1 = 0$:

Local operator form factor equations:

$$N_{0}(\theta_{1},\ldots,\theta_{n}) = N_{0}(\theta_{2},\ldots,\theta_{n},\theta_{1}-2i\pi) = S(\theta_{i}-\theta_{i+1})N_{0}(\ldots,\theta_{i+1},\theta_{i},\ldots)$$
$$-i\operatorname{Res}_{\theta'=\theta}N_{0}(\theta'+i\pi,\theta,\theta_{1}\ldots,\theta_{n}) = (1-\prod_{i}S(\theta-\theta_{i}))N_{0}(\theta_{1},\ldots,\theta_{n})$$

HeavyHeavyLight 3pt function strong coupling prescription

[Costa et al., Zarembo]: $C_{HHL} = \int_{\text{world sheet}} \mathcal{V}(X[\text{heavy solution}(\sigma, \tau)]) d^2\sigma$

Decompactify string 2 & 3 and $L_1 = 0$:

Local operator form factor equations:

$$N_{0}(\theta_{1},\ldots,\theta_{n}) = N_{0}(\theta_{2},\ldots,\theta_{n},\theta_{1}-2i\pi) = S(\theta_{i}-\theta_{i+1})N_{0}(\ldots,\theta_{i+1},\theta_{i},\ldots)$$
$$-i\operatorname{Res}_{\theta'=\theta}N_{0}(\theta'+i\pi,\theta,\theta_{1}\ldots,\theta_{n}) = (1-\prod_{i}S(\theta-\theta_{i}))N_{0}(\theta_{1},\ldots,\theta_{n})$$

HeavyHeavyLight 3pt function strong coupling prescription

[Costa et al., Zarembo]: $C_{HHL} = \int_{\text{world sheet}} \mathcal{V}(X[\text{heavy solution}(\sigma, \tau)]) d^2 \sigma$ for multiparticle state: $C_{HHL} = \int_{\text{moduli space}} \{y_i\} \mathcal{V}(X[\text{heavy solution}(y_i)]) d^n y$

Decompactify string 2 & 3 and $L_1 = 0$:

Local operator form factor equations:

$$N_{0}(\theta_{1},\ldots,\theta_{n}) = N_{0}(\theta_{2},\ldots,\theta_{n},\theta_{1}-2i\pi) = S(\theta_{i}-\theta_{i+1})N_{0}(\ldots,\theta_{i+1},\theta_{i},\ldots)$$
$$-i\operatorname{Res}_{\theta'=\theta}N_{0}(\theta'+i\pi,\theta,\theta_{1}\ldots,\theta_{n}) = (1-\prod_{i}S(\theta-\theta_{i}))N_{0}(\theta_{1},\ldots,\theta_{n})$$

HeavyHeavyLight 3pt function strong coupling prescription

[Costa et al., Zarembo]: $C_{HHL} = \int_{\text{world sheet}} \mathcal{V}(X[\text{heavy solution}(\sigma, \tau)]) d^2\sigma$ for multiparticle state: $C_{HHL} = \int_{\text{moduli space}} \{y_i\} \mathcal{V}(X[\text{heavy solution}(y_i)]) d^n y$

(classical) diagonal form factors: $_{L}\langle\theta_{2},\theta_{1}|\mathcal{V}|\theta_{1},\theta_{2}\rangle_{L} = \frac{F_{2}^{s}(\theta_{1},\theta_{2}) + \rho_{1}(\theta_{1})F_{1}^{s}(\theta_{2}) + \rho_{1}(\theta_{2})F_{1}^{s}(\theta_{1})}{\rho_{2}(\theta_{1},\theta_{2})}$ $e^{i\Phi_{k}} = 1$; $\Phi_{k} = p_{k}L - i\sum_{j:j\neq k}\log S(\theta_{k},\theta_{j})$; $\rho_{n}(\theta_{1},...,\theta_{n}) = \det \left[\frac{\partial\Phi_{j}}{\partial\theta_{i}}\right]$ diagonal form factor $F_{2}^{s}(\theta_{1},\theta_{2}) = \lim_{\epsilon \to 0} N_{0}(\overline{\theta}_{2},\overline{\theta}_{1},\theta_{1} + \epsilon,\theta_{2} + \epsilon)$ Explicitly checked at weak coupling [Hollo, Jiang, Petrovskii], AdS Form factors [McLoughlin, Klose]

