Finite-size Technology in Low Dimensional Quantum Field Theory, Korea, Yong Pyong, December 2003

Boundary quantum field theories in the Lagrangian framework

Z. Bajnok

Institute for Theoretical Physics, Eötvös University, Budapest

work done in collaboration with: G. Böhm, C. Dunning, L. Palla, G. Takács and G. Zs. Tóth

Plan

- Free theory, Asymptotic states, R-matrix, Unitarity
- The analytic structure of the R-matrix, reduction formula, perturbation theory,
- Landau equations, Coleman-Norton interpretation, Cutkosky rules

• Integrable theories: factorization, boundary Yang Baxter equation,

- Bootstrap program
- (Supersymmetric) sine-Gordon model bootstrap program completed
- Checks by finite volume analyzis

Lagrangian descripton of BQFT-s

Lagrangian:

Equation of motion, boundary condition

$$\left(\partial_t^2 - \partial_x^2 + m^2 \right) \Phi(x, t) = -\frac{\partial V(\Phi)}{\partial \Phi} = 0$$

$$\partial_x \Phi(x, t)|_{x=0} = -\frac{\partial U(\Phi(0, t))}{\partial \Phi(0, t)} = 0$$

Quantization of the free theory

Canonical quantization:

oscillators with frequency $\omega(k) = \sqrt{m^2 + k^2}$

Hilbert space

$$a(k)|0\rangle = 0$$
; $\forall k$
 $k_1, k_2, \dots, k_n\rangle = a^+(k_1)a^+(k_2)\dots a^+(k_n)|0\rangle$

Hamiltonian

$$H = \int_0^\infty dk\omega(k)a^+(k,t)a(k,t)$$

Free propagator

$$\langle T(\Phi(x,t)\Phi(x',t'))\rangle = \int \frac{d^2k}{(2\pi)^2} \frac{ie^{-ik_0(t-t')}}{k^2 - m^2 + i\epsilon} (e^{ik(x-x')} + e^{ik(x+x')})$$

Adiabatical hypothesis: $\mathcal{H}_{in} \equiv \mathcal{H}|_{-\infty} \equiv \mathcal{H} \equiv \mathcal{H}|_{\infty} \equiv H_{out} = H_{free}$

$$|final\rangle_{out} = R|initial\rangle_{in}$$

Simplest physical process

$$|initial\rangle_{in} = \int_{-\infty}^{\infty} d\tilde{k} f(k) |k\rangle_{in}$$

x-dependence: $\tilde{f}(x,t) = \int_{-\infty}^{\infty} d\tilde{k} f(k) \cos(kx) e^{-i\omega t}$

Before reflection

After free reflection

Transition amplitude

Flux

$$i\int dx \tilde{f}^*(x,t)\partial_t \tilde{f}(x,t) = \int d\tilde{k}|f(k)|^2$$

Transition probability into $|final\rangle_{out}$

$$W_{f\leftarrow i} = |\langle final|_{in} R|initial\rangle_{in}|^2$$

Computing the interaction part only

$$R = 1 + iT$$

$$\langle final|T|k\rangle = 2\pi\delta(E(final) - \omega(k))\langle final|T|k\rangle$$

The connection between a measurable quantity and the matrix element

$$W_{f\leftarrow i} = |f(k(E(final)))|^2 |\langle final | \mathcal{T} | k \rangle|^2$$

In the simplest case

$$\langle k'|R|k\rangle = 2\pi(\delta(k-k')+\delta(k+k'))\omega(k)\mathcal{R}(k)$$

Unitarity of the R-matrix

Unitarity equation

$$1 = RR^{+} = (1 + iT)(1 - iT^{+}) = 1 + i(T - T^{+}) + TT^{+}$$

Between one particle states

$$_{in}\langle k'|1|k\rangle_{in} =_{in} \langle k'|RR^+|k\rangle_{in}$$

Supposing boundary states

$$=_{in} \langle k'|R|B\rangle_{in\ in} \langle B|R^+|k\rangle_{in} + \int d\tilde{q}_{in} \langle k'|R|q\rangle_{in\ in} \langle q|R^+|k\rangle_{in} + \dots$$

Below the two particle threshold

$$\mathcal{R}(k)\mathcal{R}^*(k) = 1 \quad \rightarrow \quad \mathcal{R}(k)\mathcal{R}(k^*) = 1$$

Discontinuity, normal thresholds: same equations for T

Analitic structure of the R-matrix

Other singularities ?

- Anomalous thresholds
- Boundary crossing unitarity

Reduction formula

Z. B, G. Bohm, G. Takacs: J. Phys.A, hep-th/0207079

$$out < k'|k >_{in} = out < k'|a_{in}^{+}(k)|0 >_{in} =$$

Using free fields $a_{in}^{+}(k) = -i2 \int_{-\infty}^{0} dx \cos(kx) e^{-i\omega(k)t} \partial_t \Phi_{in}(x,t)$

and that

$$\begin{aligned} \lim_{t \to -\infty} \Phi(x,t) &= Z^{1/2} \Phi_{in}(x,t) \\ &=_{out} < k' |a_{out}^+(k)|_0 >_{in} + \\ &i Z^{-1/2} 2 \int_{-\infty}^0 dx \int_{-\infty}^\infty dt \partial_0 \{\cos(kx)e^{-i\omega(k)t}\partial_{0out} < k' |\Phi(x,t)|_0 >_{in} \} \end{aligned}$$

The connected part after partial integration

$$2iZ^{-1/2}\int d^2x e^{-i\omega(k)t}\cos(kx)\{\partial_t^2 - \partial_x^2 + m^2 + \delta(x)\partial_x\} < k'|\Phi(x,t)|0>$$

For the one particle R-matrix

$$_{out}\langle k'|k \rangle_{in} = 2\pi(\delta(k-k') + \delta(k+k'))\mathcal{R}(k) = -4Z^{-1}\int d^2x \int d^2x' \int_{-\infty}^{\infty} dt' e^{i(\omega(k')t'-\omega(k)t)}\cos(kx)\cos(k'x') \\ \left\{\partial_t^2 - \partial_x^2 + m^2 + \delta(x)\partial_x\right\} \left\{\partial_{t'}^2 - \partial_{x'}^2 + m^2 + \delta(x')\partial_{x'}\right\} \langle 0|T(\Phi(x,t)\Phi(x',t')) \rangle$$

Perturbation theory

Compute the Green function

$$G(x, x', t - t') = \langle 0 | T(\Phi(x, t) \Phi(x', t')) | 0 \rangle$$

Define

$$U(t) = T \exp\left\{-i \int_{-\infty}^{t} dt' H_{int}(t')\right\}$$

Then

$$R = U(\infty) = T \exp\left\{-i \int_{-\infty}^{\infty} dt' H_{int}(t')\right\}$$

and

$$\Phi(x,t) = U^{-1}(t)\Phi_{in}(x,t)U(t)$$

that is

$$G(x, x', t-t') = \frac{\langle 0|T(\Phi_{in}(x, t)\Phi_{in}(x', t')\exp\left\{i\int d^2x\mathcal{L}_{int}\right\})|0\rangle}{\langle 0|T(\exp\left\{i\int d^2x\mathcal{L}_{int}\right\})|0\rangle} =$$

Perturbative expansion

$$=\sum_{n=0}^{\infty}\frac{i^{n}}{n!}\langle 0|T(\Phi_{in}(x,t)\Phi_{in}(x',t')\int d^{2}x_{1}\mathcal{L}_{int}..\int d^{2}x_{n}\mathcal{L}_{int})|0\rangle_{Conn}.$$

Feynman rules in coordinate space

For any field associate a dot with coordinate (x, t)

For a term $\alpha \Phi^N$ in $V(\Phi)$ associate an N leg vertex with (y,s) and

$$ilpha\int_{-\infty}^{0}dy\int_{-\infty}^{\infty}ds$$

For a term $\beta \Phi^M$ in $U(\Phi)$ associate an M leg vertex with (0,s) and

$$i\beta\int_{-\infty}^{\infty}ds$$

Between any to dots draw a direct

$$\int \frac{d^2k}{(2\pi)^2} \frac{ie^{-ik_0(t-t')}}{k^2 - m^2 + i\epsilon} (e^{ik(x-x')})$$

or a reflected line

$$\int \frac{d^2k}{(2\pi)^2} \frac{ie^{-ik_0(t-t')}}{k^2 - m^2 + i\epsilon} (e^{ik(x+x')})$$

Feynman rules in momentum space

Momentum space propagator

$$G(x, x', t - t') = \int \frac{dp}{2\pi} \int \frac{dp'}{2\pi} \int \frac{d\omega}{2\pi} e^{-i\omega(t - t')} e^{ipx} e^{ip'x'} G(p, p', \omega)$$

- direct and reflected inner lines: $\int \frac{dk^2}{(2\pi)^2} \frac{i}{k^2 m^2 + i\epsilon}$
- $\beta \Phi^M$ term from $U(\Phi)$:

boundary vertex with M legs $i\beta 2\pi\delta(\sum k_0)$

• $\alpha \Phi^N$ term from $V(\Phi)$:

bulk vertex with N legs $i\alpha 2\pi\delta(\sum k_0)\pi\delta(\sum' k_1)$

Landau equations

Z. B., G. Bohm, G. Takacs, Nucl. Phys.B, hep-th/0309119

Generic Feynman graph

$$\int \prod_{i=1}^{L} \frac{d\omega_i}{2\pi} \prod_{j=1}^{K} \frac{dk_j}{2\pi} \prod_{r=1}^{I} (\omega_r^2 - k_r^2 - m^2 + i\epsilon)^{-1}$$

In Feynman parametrization:

$$\int \prod_{i=1}^{L} \frac{d\omega_i}{(2\pi)} \prod_{j=1}^{K} \frac{dk_j}{2\pi} \prod_{r=1}^{I} \int_0^1 d\alpha_i \delta\left(\sum \alpha_i - 1\right) \left(\sum_{r=1}^{I} \alpha_r (\omega_r^2 - k_r^2 - m^2 + i\epsilon)\right)^{-I}$$

Singularities \equiv Landau equations

$$\alpha_r = 0$$
 or $\omega_r^2 - k_r^2 - m^2 = 0$, $r = 1, \dots, I$

$$\frac{\partial}{\partial \omega_i} \left(\sum_{r=1}^{I} \alpha_r (\omega_r^2 - k_r^2 - m^2 + i\epsilon) \right) = 0 \leftrightarrow \sum_{\text{each loop}} \alpha_i \omega_i = 0$$

 $\frac{\partial}{\partial k_j} \left(\sum_{r=1}^{I} \alpha_r (\omega_r^2 - k_r^2 - m^2 + i\epsilon) \right) = 0 \leftrightarrow \sum_{\text{each bloop}} \mu_j \alpha_j k_j = 0$

Coleman-Norton interpretation, Cutkosky rules

Singularity \leftrightarrow Landau equation \leftrightarrow existence of a spacetime diagram with particles all on mass shell all moving forward in time such as draw for

direct propagator \leftrightarrow vector $\alpha_i(\omega_i, k_i)$ of length $\alpha_i m_i$

reflected propagator \leftrightarrow reflected vector $\alpha_i(\omega_i, \pm k_i)$ of length $\alpha_i m_i$

bulk vertex \leftrightarrow bulk interaction point with energy-momentum conservation

boundary vertex \leftrightarrow boundary interaction point with energy conservation

Discontinuity at the singularity \leftrightarrow Cutkosky rules

Make the change in the original Feynmal integral

 $(\omega_r^2 - k_r^2 - m^2 + i\epsilon)^{-1} \rightarrow -2\pi i\delta^+(\omega_r^2 - k_r^2 - m^2)$

Coleman-Thun mechanism

Reduced diagrams: $\alpha = 0$ lines are deleted

Summing up the contributions of the diagrams whose reduced diagrams are the same \leftrightarrow Coleman-Thun rules: The actual three level couplings has to be replaced by the exact vertex functions

The total contribution: poles in the R-matrix

Example for the Coleman-Thun mechanism

Expressing in terms of the physical quantities

$$\operatorname{res} R_M(iu) = -\frac{1}{2} R_m(2iu)) \operatorname{res} S(2iu)$$

Integrable models

Infinitely many conserved charges $\leftrightarrow No$ particle production

Introduce $\omega = m \cosh \theta$

Unitarity:

$$R(\theta)R(-\theta) = 1$$

Boundary crossing unitarity S. Ghoshal, A. Zamolodchikov: IJMPA9 (1994) 3841, 4801.

$$R(\frac{i\pi}{2} - \theta) = S(2\theta)R(\frac{i\pi}{2} + \theta)$$

Boundary Yang Baxter Equation

Higher spin conserved charges \leftrightarrow Trajectories can be shifted \leftrightarrow Factorization

Boundary Yang-Baxter (matrix) equation I. Cherednik, Theor. Math. Phys. 61,35,997 (1984)

 $R(\theta_1)S(\theta_1+\theta_2)R(\theta_2)S(\theta_1-\theta_2) = S(\theta_1-\theta_2)R(\theta_2)S(\theta_1+\theta_2)R(\theta_1)$

Reflection factors on excited states: boundary bootstrap

Boundary bootstrap, A. Fring, R. Koberle: Nucl.Phys.B421:159-172,1994

 $R_{boundstate}(\theta) = R_{groundstate}(\theta)S(\theta + iu)S(\theta - iu)$

- 1. Take a solved bulk model with nontrivial BYBE and solve the BYBE
- 2. Find Coleman-Thun explanation of poles for $0 < \Im m(\theta) < \pi$
- 3. For poles without CT associate boundary excited states
- 4. Compute the reflection matrix on the excited boundary states
- 5. Analyze the pole structure of the excited R-matrix
- 6. The program is completed if at the end only CT poles remain

Boundary sine-Gordon model

Short boundary history:

Integrability, ground state reflection factors: S. Ghoshal, A. Zamolodchikov: IJMPA9 (1994) 3841, 4801.

Partial Dirichlet $(M_0 \rightarrow \infty)$ spectrum (no Coleman-Thun): S. Skorik, H. Saleur: JPA28 (1995) 6605.

UV-IR relation: Al. B. Zamolodchikov (unpublished).

General Dirichlet $(M_0 \rightarrow \infty)$ spectrum (with Coleman-Thun): P. Mattsson, P. Dorey: JPA33 (2000) 9065.

Neumann spectrum: Z.B., L. Palla, G. Takács: NPB614 (2001) 405.

General spectrum, TCSA, TBA verification: Z.B., L. Palla, G. Takács, G.Zs.Tóth: NPB622 (2002) 548, 565.

Semi-classical issues: L. Palla, M. Kormos: J. Phys. A35 (2002) 5471-5488.

TBA in reflectionless points: T. Lee, Ch. Rim: Nucl.Phys. B672 (2003) 487, J.-S. Caux, H. Saleur, F. Siano:Nucl.Phys. B672 (2003) 411.

Bulk data

particle spectrum: soliton and antisoliton with S-matrix

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{-\sin\lambda\pi}{\sin\lambda(\pi+i\theta)} & \frac{\sin i\lambda\theta}{\sin\lambda(\pi+i\theta)} & 0 \\ 0 & \frac{\sin i\lambda\theta}{\sin\lambda(\pi+i\theta)} & \frac{-\sin\lambda\pi}{\sin\lambda(\pi+i\theta)} & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \prod_{l=1}^{\infty} \left[\frac{\Gamma(2(l-1)\lambda + \frac{\lambda i\theta}{\pi})\Gamma(2l\lambda + 1 + \frac{\lambda i\theta}{\pi})}{\Gamma((2l-1)\lambda + 1 + \frac{\lambda i\theta}{\pi})} / (\theta \to -\theta) \right]$$

Bound states: breathers

$$m_{B^n} = 2M\sinrac{n\pi}{2\lambda}$$

Scattering on the solitons

$$S^n = \{n - 1 + \lambda\}\{n - 3 + \lambda\}\dots$$

Scattering amoung themselves

$$S^{n,m} = \{n+m-1\}\{n+m-3\}\dots\{n-m+3\}\{n-m+1\}$$

$$\{y\} = \frac{\left(\frac{y+1}{2\lambda}\right)\left(\frac{y-1}{2\lambda}\right)}{\left(\frac{y+1}{2\lambda}-1\right)\left(\frac{y-1}{2\lambda}+1\right)} \quad (x) = -\frac{\sin(x\pi/2 - i\theta/2)}{\sin(x\pi/2 + i\theta/2)}$$

UV-IR relation

$$\lambda = rac{8\pi}{eta^2} - 1$$
 ; $M = m_0^{rac{8\pi}{8\pi-eta^2}}\kappa(eta)$

1. Solution of the BYBE

Integrability \rightarrow no particle production and the R-matrix factorizes into the product of two particle S-matrices and one particle R-matrices

Constraints: boundary Yang-Baxter equation, unitarity, boundary crossing symmetry. The most general solution

$$R(\lambda,\eta,\Theta) = \begin{pmatrix} P^+ & Q \\ Q & P^- \end{pmatrix} R_0(\theta) \frac{\sigma(\eta,\theta)}{\cos \eta} \frac{\sigma(i\Theta,\theta)}{\cosh \Theta}$$

 $P^{\pm} = \cos(i\lambda\theta) \cos\eta \cosh\Theta \pm (\cos \leftrightarrow \sin) \quad ; \quad Q = \cos i\lambda\theta \sin i\lambda\theta$

2. Coleman-Thun poles

Boundary independent CT poles in $R_0(\theta)$

3-4. Boundary excited states, reflection factors

Boundary dependent poles in $\sigma(\eta, \theta)$

poles at
$$\theta = i\nu_n = \left(\frac{\eta}{\lambda} - \frac{(2n+1)}{2\lambda}\right)$$

5. Pole analysis, excited wall

poles at

 $\theta = iw_m = i\nu_m(\bar{\eta}) \qquad \qquad \theta = i\nu_{n-k}$

exists only for $w_m < \nu_n$ for $w_m > \nu_n$ new boundary boundstate $|n, m\rangle$: $m_{|n,m\rangle} = M(\cos(\nu_n) + \cos(w_m))$ if $w_m < \frac{\pi}{2}$ Boundary spectrum

 $|\rangle \quad R(\lambda,\eta,\Theta)$

$$|0\rangle \bar{R}(\lambda, \bar{\eta}, \Theta) \qquad \dots \qquad |n\rangle \bar{R}(\lambda, \bar{\eta}, \Theta) a_n(\eta, \theta) \\ M \cos(\nu_0) \qquad \dots \qquad M \cos(\nu_n)$$

 $\begin{array}{c} |n,m\rangle R(\lambda,\eta,\Theta)a_n(\eta,\theta)a_m(\bar{\eta},\theta) \\ M\cos(\nu_n) + M\cos(w_m) \end{array}$

 $|n_1, m_1, \dots, n_k\rangle \,\bar{R}(\lambda, \bar{\eta}, \Theta) a_{n_1}(\eta, \theta) a_{m_1}(\bar{\eta}, \theta) \dots a_{n_k}(\eta, \theta)$ $M \cos(\nu_{n_1}) + M \cos(w_{m_1}) + \dots + M \cos(\nu_{n_k})$

 $|n_1, m_1, \dots, m_k\rangle R(\lambda, \eta, \Theta) a_{n_1}(\eta, \theta) a_{m_1}(\bar{\eta}, \theta) \dots a_{m_k}(\bar{\eta}, \theta)$ $M \cos(\nu_{n_1}) + M \cos(w_{m_1}) + \dots + M \cos(w_{m_k})$

Finite volume analysis, fix points

IR limitBulk spectrum
$$s, \bar{s}, B^1 \dots B^n$$
 $S(\lambda) \dots$ Boundary spectrum $|n_1, m_1, \dots, m_k\rangle$ $R(\lambda, \eta, \Theta) \dots$

UV fix point	IR fix point
L=0	L=infinite

Finite volume analysis, near the fix points

Near UV: TCSA Scaling fields $V_n(x,t) =: e^{i\frac{n}{r}\Phi(x,t)}:$ $\Psi_n(0,t) =: e^{i\frac{n}{r}\Phi(0,t)}:$ $H_{bulk}^{pert.} \rightarrow \frac{1}{2}(V_2 + V_{-2})$ $H_{bd.}^{pert.} \rightarrow \frac{1}{2}(e^{-\frac{i}{r}\varphi_0}\Psi_1 + e^{\frac{i}{r}\varphi_0}\Psi_{-1})$ Diagonalize $H^{pert}(m_0, M_0)$

Numerical test

Exact calculations

 $\mathsf{VEV} \text{ of } V_n \ (m_0, M_0, \beta, \varphi_0) \rightarrow \quad E_{bound.} \quad \leftarrow \mathsf{TBA} \text{ equation } (M, \lambda, \eta, \Theta)$

Semi-classical issues

Semi-classical corrections: linearized fluctuations

Discrete spectrum:

$$\begin{array}{ll} \text{nothing} & \omega_0^2 > 0 \\ \\ \text{Energy differences} \rightarrow \text{semi-classical UV-IR relation} \\ \\ \Delta E_{classical} + \Delta E_{semi-classical} & \leftrightarrow & M \cos(\nu_0) \\ & \omega_0 & \leftrightarrow & M \cos(\nu_1) - M \cos(\nu_0) \end{array}$$

resonance pole in $\sigma(i\Theta,\theta)$ at $\theta = -\nu_0 = -\frac{\Theta}{\lambda} - i\frac{\pi}{2\lambda}$

with the same energy and width in the classical limit.

Reflection factors, unstable boundstate are confirmed in time delay analysis as well

History:

Boundary

Lagrangian: T. Inami, S. Odake, Y-Z. Zhang, Phys.Lett.B359:118-124,1995.

Boundary reflection matrices: Ch. Ahn , W. M. Koo: J.Phys.A29:5845-5854,1996.

Perturbative checks for sinh-Gordon: M. Ablikim, E. Corrigan: Int.J.Mod.Phys. A16 (2001) 625

Lagrangean with two parameters: R. I. Nepomechie: Phys.Lett. B509:183-188,2001.

Bootstrap closed: Z. B, L. Palla, G. Takacs: NLIE : C. Dunning: Nucl.Phys. B644 (2002) 509-532.

Bulk in finite volume

NLIE : C. Dunning: J. Phys. A36:5463-5476,2003

CPT,NLIE,TCSA : Z. B., C. Dunning, L. Palla, G. Takacs, F. Wagner: Nucl. Phys. B. hep-th/0309120.