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Abstract

The Lagrangian scenario is applied both to Einstein’s first and Hilbert’s second order Lagrangians
when the field variable is the metric and when it is a rigid basis of 1-forms. The canonical
spin pseudotensors, as the gravitational counterparts of the canonical spin tensor of the matter
fields, are introduced and it is shown that they play the role of superpotentials for the canonical
energy-momentum pseudotensors. The canonical spin pseudotensors distinguishes von Freud’s and
Goldberg’s superpotentials for Einstein’s, and Mgller’s superpotential for Hilbert’s Lagrangian.
(For Hilbert’s Lagrangian there is no difference between the metric and rigid basis descriptions.)
Mgller’s energy-momentum pseudotensor is therefore recovered as the canonical energy-momentum
pseudotensor for Hilbert’s Lagrangian. The contravariant form of the canonical pseudotensors
are shown to satisfy Belinfante-Rosenfeld type equations, furthermore their Belinfante—Rosenfeld
combination is always the Einstein tensor. It is shown that, for first order Lagrangian and rigid
basis description, the canonical energy-momentum, the canonical spin and the Noether current
are tensorial quantities, and the canonical energy-momentum and spin tensors satisfy the tensorial
Belinfante—Rosenfeld equations. These tensorial quantities, however, depend on the basis of 1-
forms we use.

The second part of the paper is the differential geometric unification and reformulation of the
previous different pseudotensorial approaches. First it is shown that, along coordinate sections,
the pull backs of the contravariant and dual forms of Sparling’s form, defined on the bundle of
linear frames L(M) over the m dimensional spacetime, are the Bergmann and the Landau-Lifshitz
pseudotensors, respectively. Although the pull backs of Sparling’s form along rigid sections are
not exactly the energy-momentum tensors, they are always tensorial and the pull backs of the
full Sparling equation are always the equations expressing the canonical (pseudo) tensors by the
corresponding superpotentials. A gl(m,R) valued (m — 1) form, called the spin form, is defined
on L(M), and it is shown that its pull backs are the various canonical spin (pseudo) tensors. An
exterior differential equation for the contravariant form of the spin form is derived, whose pull
backs are just the Belinfante—Rosenfeld equations for the canonical (pseudo) tensors. In terms
of the spin form a necessary and sufficient condition is found for the metric connections being
torsion free and to satisfy Einstein’s equations. Finally, for any vector field on the spacetime an
(m — 1) form, called the Noether form, is defined on L(M) whose pull backs to the spacetime are
the corresponding Noether (pseudo) currents.



1. Introduction

In special relativistic classical Lagrangian field theories one can associate ten conserved quanti-
ties, namely divergence free vector fields, to the ten independent Killing vectors of Minkowski’s
spacetime [1]. As a consequence of the semi-direct sum structure of the Lie algebra of the Killing
vectors it is natural to interpret the conserved quantities as the linear and angular momenta of
the matter fields. If the spacetime is curved but it is of constant curvature then the Lie alge-
bra of the Killing vectors is so(1,4) or so(2,3). Thus although one has ten conserved quantities
again, their interpretation as linear and angular momenta is not obvious, because both so(1,4)
and so(2,3) are semisimple and do not admit canonical "4 + 6” decomposition. If the spacetime is
not of constant curvature then the number of independent Killing vectors, and hence the number
of conserved kinematical quantities, is less than ten, e.g. zero; and, apart from exceptional cases,
their interpretation is far from being obvious.

In a pure geometric interpretation of gravity [2] the result is not surprising in the light of the
first Noether theorem: if the spacetime does not admit symmetries then one cannot expect to have
conserved kinematical quantities. In the field theoretical interpretation of gravity [3] one can say
that the matter fields together is not a closed system, they are interacting with the gravitational
field and hence the kinematical quantities of the matter fields are not constant. One can have
conserved kinematical quantities for the matter fields only if the ”gravitational interaction” has
symmetries, i.e. Killing vectors. Since, however, the matter and gravitational fields together can
be considered as a semi - closed system (i.e. a closed system allowing in- and out going radiation),
one may expect to be able to associate kinematical quantities to the gravitational field such that
they, together with those of the matter fields, be conserved [4-8]. In fact, this philosophy works for
non - gravitational matter fields on Minkowski’s spacetime, where one has ten independent Killing
symmetries as symmetries of the whole material action too, and hence, using the first Noether
theorem, one can construct the conserved currents to the Killing symmetries [4-8]. Although these
conserved quantities are unique only up to a curl, there is a canonical choice to build up these
currents from the canonical energy - momentum and spin tensors of the matter fields and the
Killing vectors. These are the canonical Noether currents. However, in the case of gravitation
one does not have (ten) Killing vectors and hence one cannot use the first Noether theorem to
construct the (ten) gravitational kinematical quantities. One has too few symmetries. On the
other hand any smooth vector field generates a 1 parameter group of coordinate transformations
leaving the field equations invariant and forming a subgroup of the group of general coordinate
transformations. As a consequence of the two Noether theorems one has a weak and a strong
conservation law [4-10]. Unfortunately, the conserved quantity is not determined uniquely, one can
add to it a curl, and it does not seem to have a canonical choice for the ”currents”. Because of
the arbitrariness of the vector field, the interpretation of the conserved quantity is far from being
obvious. Now one has too many ”symmetries”. The most serious difficulty is, however, the non
tensorial character of both these conserved quantities and the conservation equations. One of the
most important achievements of general relativity is probably the perception that Nature must be
described in terms of absolute elements; i.e. geometric objects (”principle of general covariance”).
Thus the usage of these non tensorial quantities seems to contradict to the principle of general
covariance, and, as is written in [29], this ”difficulty has led most physicists to the conclusion that
the problem is ill-defined and the field irrelevant, density of gravitational energy is like density
of beauty of a panting”. Nevertheless, in certain situations, e.g. in studying the gravitational
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radiation, gravitational energy - momentum and angular - momentum like quantities would be
useful.

The present paper, which is intended to be the first part of a series, is devoted to the problem
of linear and angular momenta in general relativity. First we consider the ”orthodox” pseudoten-
sorial description [4-10]. To choose from the mathematically possible infinitely many different
pseudotensors we follow the scenario of the Lagrangian formalism of fields, where we have not
only the canonical energy - momentum, but the canonical spin tensor as well [10-15]. The most
important characteristic feature of these canonical tensors is the pair of Belinfante - Rosenfeld
relations for them. In paragraph 2.1. this formalism is reviewed for tensorial matter fields and
second order Lagrangian. The Belinfante - Rosenfeld combination of the canonical tensors, the
Noether currents and the invariance properties of these objects are also considered.

In paragraph 2.2. the canonical energy - momentum and spin pseudotensors are defined for
second order Lagrangians and tensorial gravitational field variables. The notion of spin pseudoten-
sor introduced here is believed to be new. In paragraph 2.3. and 2.4. the general scenario is applied
for Einstein’s first order Lagrangian first if the gravitational field variable is the metric and then
if it is a rigid basis of 1 forms. The canonical pseudotensors for Hilbert’s second order Lagrangian
are considered in paragraph 2.5., and finally, in paragraph 2.6., the Landau - Lifshitz - Goldberg
type (non canonical) pseudotensors, appearing naturally as Belinfante - Rosenfeld combinations,
are considered.

The appearing contradiction between these canonical gravitational quantities and the principle
of general covariance has not been resolved. To do this one should try to find geometric objects
describing the energy - momentum and spin content of gravity. In the second part of the present
paper we deal with certain differential forms defined on the bundle of linear frames, the Sparling
form [28,29] and a so-called spin form, that we can interpret as the geometric objects we search
for. In paragraph 3.1. the differential geometric formulae we need are reviewed. Paragraph 3.2.
is devoted to the study of Sparling’s form. The pull back of this form along a coordinate section
is known to be Einstein’s canonical energy - momentum pseudotensor [32,33]. Here the relation
between Sparling’s form and other energy - momentum pseudotensors is clarified. In paragraph
3.3. the spin form is introduced, Belinfante - Rosenfeld type equation for the spin and energy -
momentum forms are derived and the relation between the spin form and the spin pseudotensors
is clarified. Then the Noether form is introduced on the bundle of linear frames and its pull backs
along various sections of the bundle are shown to be the various Noether pseudocurrents built
up from the canonical pseudotensors. Finally, in the last section of this paper we summarize and
discuss the results. In our following paper we will deal with the quasi local integrals of the pull
back of the Noether form, their interpretation and properties [34].

Since the aim of the present paper is not only to derive new formulae for new (and old) pseu-
dotensorial quantities, but also to study the structure of these equations to be able to reformulate
them in the differential geometric language, some formulae will be known from the pseudotensor
literature. (Thus the first part of this paper may also be considered as a review of the canonical
pseudotensors from a specific point of view, but it is definitely more than a pure review.) But this
literature is so extensive [4-10,18-23,25,26] that it is almost impossible to cite always the original
papers where they were published. Thus we frequently refer only to widely accepted and well

known review articles [4-6].



2. Canonical pseudotensors of Einstein’s theory

2.1. Canonical energy-momentum and spin tensors of matter fields

Let M be an m dimensional manifold, g a metric on M of signature p — ¢, p+ ¢ = m, let V,,
be the unique torsion-free covariant derivation determined by g and e the natural volume m-form
associated to g; i.e. if (z!,...,2™) is a local coordinate system then € = \/|gl€q; ..a,, AT A...Adz*™
= m!\/Hdozl Ao Ndz™. (€qy...a, 18 the totally skew Levi-Civita symbol, €1, = 1, Greek indexes
are coordinate indexes and for the exterior product the convention compatible with 2dz! A dz? =
drt ® dz? — dz? ® dzt is used. Abstract indexes will not be used in this paper.)

By matter fields we mean a finite N number of tensor fields q)"gl BT’ n=1,...,N, and the
type (r,s) of the nth field may depend on n. The Lagrangian for these fields is assumed not
to depend on higher than the second covariant derivatives of the fields: L = L,,(gag, <I>"O‘1 B ,
V@G5, ViV <I>"O‘1 ) If no confusion can arise we will frequently omit the spacetlme
mdexes of the matter ﬁelds For an open domain D C M having compact closure and a field
configuration ®"(x) the action functional is defined as Iplg, ®] := [, L(gap(z), ®"(x), V, 2" (2),
V.V, ®"(z))e. The Euler-Lagrange expressions for the matter ﬁelds (i.e. the functional derivative
of Iplg, ®] with respect to ") are

oL oL oL

En[L,®] = — — V,(——r S(——
n[ ’ ] aq)n M(avﬂq)n)—’—vﬂv (avyv#q)n

). (2.1.1)
Let 7, s be fixed nonnegative integers. For r = s = 0 let A% = 0, while for r + s # 0 let us define

b . AT
Abgr-Grn e (OGSO L 218060 )% 65 —

vB1.Bsv1 e (2.1.2.)
a1 S (8§61 Os g ds B
— 051057 (0710 0+ o+ 0000 ).

This is just the invariant tensor occurring in the expression of the Lie derivative Lx® of an (r, s)
type tensor field ® along the vector field K in terms of the covariant derivatives:

Qap...Qp ..o VA MO0 .05 1YL -
L ®p, 75 = VP gl — VaK A s s T R s, (2.1.3.)

Since the first term on the right hand side contains K purely algebraically while the second is
proportional to the first derivative of K, this expression may be interpreted as the splitting up of
the rate of the Lie dragging along K into a translational and a rotational part. (Similarly to the
spacetime indexes of the matter fields the r + s upper and r + s lower indexes of Affgll g T,f s wﬂl
not in general be written out. Thus, for example, ALV ,® will stand for AJZ* g:fll 3. V,®3lin)
By means of A the commutators of the covariant derivations and the covariant and L1e derlvatlons

can be written in the following short forms:

(VaVg —V5Va)® = R” ,apAL® (2.1.4.)
and

LkVa® — VoLk® = (—R”,ap K” + VoV, K")ALD. (2.1.5.)

(Eq. (2.1.4.) shows that our sign convention for the curvature tensor is the same that is used in
[2,27]. The Ricci tensor is defined by Rag := R*aus.)
It will be useful to introduce the following tensor field:
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N oL oL .
ohy = ( —vu(i)) AGD" +

agz@ Vi@ (2.1.6.)
—————(A%V, 9" — 52V 50"M).

Using this definition, the dynamical (or symmetric) energy-momentum tensor (which is, by defini-
tion, twice the functional derivative of Ip[g, ®] with respect to gog) takes the form:

oL
T =2 + Lg*P+
Gap (2.1.7.)
+ %V#(Uaﬁu 4 gfBon _ gauB _ GBua _ spaf Uuﬁa)'

Let K be any vector field on M. Then

1
V. (LK") = Lx L + §LgO‘BLKga[3 -

oL 1
=( + —LQQB)LKQQ[} + E,[L, P]Lg D"+
agag 2
oL oL
—— Vi (e——m—) | Lk ®" + ————— LV, P"
+v“<{8vu¢" v (avyvqu)} K *av“qum KV >+ (2.1.8.)
oL oL
= Vilgeo—3) | {Ex V2" — V, Lk ®"
i <avuq>n v (avyvqu)){ KV Vb ®"} +
+87L{L V.V, " -V, LkV,0"}
avuvu(bn KVuvy pwHK Vv :
Let us define
oL oL
9#,/ = LM — -V qu)nf
Y <5Vm1>" p(avpvuqm)) 219
oL .1.9.
- ——V,V,0".
ov,V,on P

Using the definitions of #%5 and 6*,, the expression (2.1.7.) for 7% and (2.1.4.) and (2.1.5.)
both for the (r,s) and (r, s 4+ 1) type fields ® and V,®, after a rather long calculation one arrives
at

1
V. (LK") = E,[L, ®|Lg®" + §T“BLKgag+
+V, (LK” — 0", KY — (Uu[aﬁ] + golBul 4 Uﬁ[au])vaKﬁ) ,

and hence

1
E,|L, ®|Lg®" + ETaﬁLKgaﬁ =V, (O“VK” + (oMoPl 4 galBrl 4 aﬁ[w)vaz(ﬁ) . (2.1.10)

The most important consequences of this identity are the following [11-15]:
1. For the field configurations satisfying the Euler-Lagrange equations, E,[L, ®] = 0, T%? is
divergence free: VT = 0.



2. Using V7% = 0 and E,[L,®] = 0 again, one obtains:

TP — gof 4 vu(aﬂ[aﬂ] 4+ golBul oﬂ[al‘]) (2.1.11.)

We will call its right hand side as the Belinfante-Rosenfeld combination of g and o . Taking

its antisymmetric part and its divergence, respectively, one has

gled] — 7 ghled] (2.1.12.)

and

V,uo'uu = *Rupaﬁo—paﬁ- (2113)

These will be called the algebraic and differential Belinfante—Rosenfeld relations, respectively.

If K is any smooth vector field and v is the local 1 parameter transformation group generated
by K such that 1o = Id then (£1y,(p)lg, ®]),_, = — [p Ex(Le) = — [, Vu(LK")e. Thus if K is
a Killing vector and the Euler-Lagrange equations are satisfied then the infinitesimal changing of
the action integral along K is only a surface term. Its translational part is connected to Ld¥ — 6#,
while its rotational part to a combination of the o#“g’s.

3. For any vector field K one can form the vector field (Noether current)

CHK] : = 0", K" + (oPloB) 4 golBnl 4 Uﬁ[au])va[(ﬁ =

(2.1.14)
=T"K,+V, ((Uu[vn] _ g¥leel _ UP[#“])KP) )

The difference C*[K] — T*" K,,, being the divergence of an antisymmetric tensor, is identically
conserved. Since V,C*[K] = V,(T"K,) = +T"Lkgu, the vector fields C*[K] and T K,
themselves are conserved if K is a Killing vector. The interpretation of the conserved vector fields
CH[K] depends not only on the Killing vector K, or possibly on the global properties of its integral
curves, but on the structure of the whole Lie algebra of the Killing vectors too. There is an
obvious and commonly accepted interpretation of these conserved quantities only in the case of
flat (Lorentz) geometry, yielding the interpretation of 6#, as the canonical energy-momentum and
o#“3 as the canonical spin tensors of the matter fields: The Lie algebra of the Killing vectors is
isomorphic to the semi direct sum of R™ and so(1, m—1), and hence the classification of the Killing
vectors as "translations” or ”boost-rotations” comes from the structure of the Lie algebra itself.
In a Descartes coordinate system, adapted to the translation Killing vectors, the conserved vector
field associated to the ”translation” Killing vector K* = ¢# is the linear momentum C*[K,] = 6*,,
and to the "rotation-boost” Killing vector K 5,6 = x”gmég — 2¥g,p0l is the angular momentum
CH[Kap) = Javgpp(0PPa? — 07 xP — 2041P¥]). The last is the sum of the orbital momentum of 6%,
and some ”internal” quantity: the sum of the orbital and spin angular momenta. If K is only a
conformal Killing vector then the additional property 0 =T, = 0%, + an@vuaaw ensures the
conservation of C*[K] and T*" K,, [16].

Now consider the invariance properties of the quantities introduced so far under certain trans-
formations of the Lagrangian and the fields.

a. Let [* be any vector field built up from g,g, the fields and possibly their first covariant

derivatives; i.e. I# = 1*(gag, ®", V3®™). Then the transformation L — L + V,I* leaves invariant
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both the Euler-Lagrange expressions, i.e. E,[L+ V", ®] = E,[L, ®], and the dynamical energy-
momentum tensor 7%, since they are functional derivatives of Ip[g, ®]. However, both 6*, and

o#*z will in general change: Since

9 o o
Y v (L
vl = Velaw )t e

and

0 1, o o

P - [
"=3ve T av,e

oV, Vv, T2 )

one has

o o "
1, o ol

_ - o
2V T av,en) VAT

1] o o 1
Vo <§ {avqu - aquw] Aj )

oh%g— ot%g +

and

ol ol
LB — =V, V, 0"
a5 ¥ oV, Ve

1 oe al,
_z _ Lo
5 Ve (av#@n aquw) Vet
i o o

s \av,en ~ ov,en

o, — 0", + V,IP00 —

) V,V,o".

Similarly, T’ K5 does not change if the Lagrangian is modified by a total divergence, but in
general C*[K] does.

b. Suppose that the matter fields have some internal symmetry, characterized by a Lie group
G and a linear representation of it on some N dimensional vector space V; and the matter fields are
either particle or gauge (connection) fields. The action of G on V mixes linearly the particle fields
\prgi:::g‘;, P =1,..., N, while the remaining matter fields, the connection fields, are G -valued 1
forms AE (G is the Lie algebra of G), and they transform according to the adjoint representation
of G. Let {)‘1le} be the basis of a linear representation of G on V, I' = 1,...,dim G, and c} the
structure constants. Then any gauge invariant matter Lagrangian with minimal coupling must have
the form [17): Ly, = Ly(gap, Y¥, D, Y D, D, V?) + Lc(gap, F¥ guv), where D, UF =V, 0F +
AE)\IEQ\IIQ is the spacetime-gauge covariant derivative and F},,, := 9, A}, — 9, A}, +c£nAﬁA§ is the
field strength of the connection fields. If L,, is gauge invariant, or it can be made gauge invariant
by adding to it a total divergence V ,[# then the dynamical energy momentum tensor TP is gauge
invariant too. But in general neither *, nor o3 is gauge invariant. T*PK, is gauge invariant
also, but in general C*[K] is not.

If the spacetime geometry is specified by a (local) field of basis 1 forms {2} and a constant
matrix 1, for which na, = 1y A, A, VAT € O(p, q) then gop := 19319%77@;, is a metric of p—gq signa-
ture and the analysis above can be repeated. The requirement of the local O(p, ¢) -invariance of the
matter Lagrangian implies L = Ly, (®"51 ", V @il 07 V V@01 07) and 61 = —V oclot],
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where e.g. V @mgl i = V0" 09 99 BAE B}, Thus the algebraic Belinfante—
Rosenfeld equation is a consequence of the O(p, ¢)—invariance of L,,, independently of the field
equations, and hence the Belinfante-Rosenfeld combination of 6, and o#*g is symmetric. The
functional derivative 7%, of Ip[9, ®] with respect to 9% is Enqz (0161 + WV (o*(ef] 4 gelfHl 4 o Flek]y)
+E2E,[L, ®]A¢®", and hence the matter field equations imply the symmetry of T := 92T n.
Moreover, since V,T% = V0% + R, ;.09 = E,[L, ®|n*V.®", the field equations imply the van-
ishing of V,7%: and hence the differential Belinfante-Rosenfeld equation.

2.2. Canonical pseudotensors of gravity

The formalism described in the previous section cannot be applied to gravity in its original form,
since a sharp distinction between the field variables and the fields specifying the spacetime geom-
etry was needed, while for gravity these two coincide. The gravitational action is therefore built
only from the gravitational field variables and thus one can form only its functional derivative
with respect to the gravitational field variables. These are the Euler—Lagrange expressions but
we do not have any gravitational counterpart of the dynamical energy momentum tensor. Thus
if we want to describe the energy-momentum (and possibly angular momentum) content of grav-
ity the gravitational counterpart of the canonical energy-momentum and spin tensors should be
introduced. But since

1 1
E“[R, glLicgas = — (Raﬁ - §Rgaﬂ) Excgas = —2Va ((R% - §R55>Kﬁ> . (221)

thus, at least for Hilbert’s scalar Lagrangian ﬁR of Einstein’s theory, the comparison of the
equation above with (2.1.10.) shows that the canonical energy momentum tensor of gravity would
be f%GO‘ s while the canonical spin tensor would be zero. In the weak field approximation, however,
gravity behaves as a spin two field on Minkowski’s spacetime; and hence in general non-vanishing
spin tensor and non-symmetric canonical energy-momentum tensor would be expected. (If the
first Noether theorem were used for Hilbert’s gravitational action then in the big round brackets
on the right hand side Komar’s expression 1V(V/K* — V*K?) would also appear [6]. However
Komar’s expression is identically conserved and contains the second derivative of K, and hence it
cannot be considered as the spin term.)

A formalism analogous to that described in the previous paragraph can however be developed
by choosing a local coordinate system and using partial derivations as torsion free flat covariant
derivations [10]. This coordinate system defines a local background geometry on which the physical
metric becomes a field, and hence the scenario of the Lagrangian field theory can be applied to it.
(Another approach is to choose a non-dynamical background metric [18] or connection [19] on M,
and to ”covariantize” the formalism. Although the limitation of the first, coordinate approach is
obvious: the results are valid only in a coordinate neighbourhood, we choose this approach since
here we are interested only in local expressions, and locally all three approaches are essentially
equivalent.) This yields the so-called canonical energy-momentum and spin pseudotensors (or
complexes) of gravity, according to the following formal prescription:

Choose a local coordinate neighbourhood U C M with coordinates (z1!,...,2™) on U and
the collection ¢™ of gravitational field variables. ¢™ may be, for example, the metric tensor
gap Or a collection {92} of basis 1 forms satisfying go‘ﬁﬂgﬂ% = 1% for some constant matrix
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n®, a,b = 1,..,m. The first description will be called holonomic while the second anholo-

nomic. The gravitational Lagrangian £ will be assumed not to depend on higher than the
second derivatives of ¢": L = L(¢™,0,¢",0,0,¢") and the gravitational action functional is
Ip[¢] == [, L(¢"(x),0.¢"(x),0,0,¢™ (x))d™x, D € M. If g is the determinant of g, in the
coordinate system (x!,...,2™) then the canonical energy-momentum and spin pseudotensors, t*,

and s#“g, are defined by

oL oL
Vg [t =68 — [ = — (o) ) By " —
9] <aau¢n ”(aauapqw)) ¢

2.2.2.
9L 06 -
90,0, "
and
oL oL
po L= - 8 59"
VIglss <55H¢n P(aauapqﬁ")) 59 (2.2.3.)
0, 2.3.
oL a Aa n75a(9 n
G0, OB~ 0,050"),
respectively. Assuming the gravitational field equations to hold, £,[L + Ly, ¢] := %_
aﬂ(%%ti;” " 5M5u(§é—gfgﬁ) =0, where L, := /| g |L., is considered as a function of the gravi-

tational and matter field variables and their first and possibly the second partial derivatives, the

coordinate (or pseudo) divergence of (2.2.2.)

O (V] g [t",) = EnlL, $]0, 0" =

But the functional derivative &£,[L,,, ¢] is essentially the dynamical energy-momentum tensor of

(2.2.4.)

the matter fields. Thus, assuming the matter field equations to hold, one finally has

3. (V] g (", +T",)) =0 (2.2.5.)

This equation implies the existence of a so-called superpotential U, *® = U, [+ such that

1
V | g |(tul/ + THV) = 58a Uy, e, (226)

In the theory of pseudotensors of general relativity [4-10,18,20,21,25,26] one usually starts with
a more or less ad hoc superpotential, built from the gravitational field variables, and using Ein-
stein’s equations kT#, = G*, := R*, — éRéfj one defines the energy-momentum pseudotensor by
eq.(2.2.6.). But now one has as many pseudotensors as the equivalence classes of Ug“*’s, where U
and U are equivalent if Ug®* — Ug®" = 9, V3" for some V3™ = Vgo‘[“”] =Vs [@1]v  Thus in the
sea of pseudotensors it is rather difficult to find which pseudotensors may have physical significance
(if any). On the other hand the Lagrangian formalism above may be considered as a selection rule
to choose from the mathematically possible pseudotensors. This is the reason why we prefer this
approach of pseudotensors and consider only the so-called canonical ones.

If the gravitational Lagrangian is modified as £ — £ + 9,,I* for some I* = [#(¢™,0,¢"), then

t#, and s#**g will in general change according to
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o
" M PSH _ m n__
VIg it = V] gt + 8,078, — (%n By o™ — awnaapqs

Ly ([ o (2.2.7.)
2P\ [00,9™  00,0m | "
and
Vg lsts— |9|5“ﬁ+a¢n Ajo" + aaqﬁnAB b®
1, ol o1~ ny
— 5(@ + 290 o )di) (2.2.8.)

1 o o] .
X qamn - aapaﬁ"] A59 ) |

The price we have to pay for this construction is the non tensorial character of these quantities,
they are highly coordinate dependent. Because of the noncommutativity of partial derivations with
index risings and lowering, it will not always be trivial which quantities will be useful. For example
an equation may be extremely complicated if covariant indexes are used, while remarkably simple
in its contravariant form.

In the next paragraphs the canonical pseudotensors of Einstein’s theory, based first on Ein-
stein’s first order and then Hilbert’s second order Lagrangian, will be studied both in holonomic

and anholonomic descriptions.

2.3. Einstein’s pseudotensors in holonomic description

The gravitational field variables are the components gos of the metric in a fixed coordinate system

(x!,...,2™) and Einstein’s Lagrangian is

Lo:= 5 {RVIGT- 00 (Vg 10 — 1))} =
1 (2.3.1.)
= % | g |gW6(F§VF Fpl/ w&)
where £ > 0 is Einstein’s gravitational constant. For later convenience let us define
".=4/lg |(1":Sg"7‘S = g"T},) = Vg l9" (Oagus — Dvgap) g7 (2.3.2.)

Thus 26Lg = Ry/| g | —9,0". Einstein’s energy-momentum pseudotensor [10] is defined by (2.2.2.)
and (2.3.1.):

oL
26| g |Eﬁa5 =2k (ﬁEég 90 E 6ﬁguu) =
aGuv

[91{05 (T8, s = T, T%5)g7% 4 g/ Ts00, (2.3.3.)

GO, T T, + T, T — 275 T .
gt can be recovered from P. von Freud’s superpotential [4-8,10]: If H# :=| g | G7° .=

| g | (g*7g% — g*°¢P7) — which is called the Landau-Lifshitz superpotential — then von Freud’s
superpotential is defined by



b — O HOP0 —

1
— =0
Vigl (2.3.4.)

— 2 a1 (g + e — g,

FUp

Trivially r U, of = g Up (B8] puleeBl = 0 and p U, *? = (m — 2)I*. Now the so-called von Freud
equation is

2 | g |(Ga5 + HEtag) = GMF Ug ok, (2.3.5.)

Because of the antisymmetry of U, *? (2.3.5.) implies the (pseudo)divergence equation J, (\/m
(G5 + kpt®g)) = 0. Since 8,03 = 030, this pseudo divergence equation looks like as the
differential Belinfante-Rosenfeld equation. gt®s does not determine the superpotential uniquely:
FUg ® and g Ug ®* 40, V3" belong to the same pseudotensor, pt®s, for any Vzo# = Vzolwl
= Vsl which therefore has the symmetry Vzo# = Vjlonvl,

Using definition (2.2.3.) we introduce the canonical spin pseudotensor:

OLE
K =059, — 059 =
90 gpu (=0 ges re) (2.3.6.)

= VT 1{05(Tsg™® = /T4, + gT%, + 6g° Ty, — 26°°Th, |

26| g |gs" g =2

This spin pseudotensor and von Freud’s superpotential are not quite independent since their sum
is a total coordinate divergence:

1
261 9 |p5"p + p Ug " = 5 (g“O‘FZﬁ =g — " Ths + 5gF3(;g”5) =

o, (VITl6" g,5).

Thus although the canonical energy-momentum pseudotensor determines only a class of superpo-

(2.3.7.)

tentials and does not specify any element of this class, the canonical spin pseudotensor does single
out uniquely a superpotential: Since for Vg**" := \/mgng”a“” one has V3 lonv] = 0, thus the
superpotential that the canonical spin pseudotensor specifies is just the von Freud superpotential.
r Ug ** therefore has distinguished role among the superpotentials associated to gt®g. However,
although for general V3" = Vga[‘“’] the sum g Ug ** 4 9, V3“*” is not antisymmetric in o and
i, and hence it is not a superpotential in the strict sense, but its J,-divergence is just the right
hand side of (2.3.5.). Thus it can be considered as a superpotential in a more general sense. (The
Landau—Lifshitz superpotential is not superpotential in either sense, but because of historical rea-
sons we retain this terminology.) In this sense the canonical spin pseudotensor is a superpotential

for the canonical energy-momentum pseudotensor:

VI9T(Gs + kt®s) = =0, (19 5" 5) (2.3.8.)

It is a remarkable property of (2.3.8.) that it contains only canonically defined quantities. In the
classical Lagrangian theory of matter fields the canonical energy momentum tensor is not a source
of the canonical spin tensor, one has only the algebraic Belinfante-Rosenfeld equation (2.1.12.).

10



Thus the fact that the (pseudo)source of the canonical spin pseudotensor is the canonical energy
momentum pseudotensor seems to be a characteristic feature of gravity. Although the definition
(2.3.6.) and the equations (2.3.7.), (2.3.8.) appeared in the literature [20,22] but it was not
identified as the canonical spin pseudotensor of gravity, gps*“g was introduced only as a useful
auxiliary quantity.

Recalling the noncommutativity of partial derivation and index rising, the antisymmetric part
of (2.3.8.),

VIgT (6t = 5t%) = =0, (VIgTes",) 9 + 0 (Vg s, ) 9", (2.3.9.)

takes just the form of the algebraic Belinfante-Rosenfeld equation (2.1.12.). To transform (2.3.9.)
to the usual form of the algebraic Belinfante—Rosenfeld equation, the contravariant form of the
energy-momentum and spin pseudotensors are needed.

First consider the contravariant form of gt*g. In general pt®? = pto pgf’ﬁ is not symmetric,
and, since partial derivation and index rising do not commute, 2\/m (Go‘ﬁ + Kkpt®P ) is not Jy-

divergence free. But from von Freud’s equation we have

2/ g | (Go‘ﬁ + f@'EtO‘B) = 6H(gﬁpp Up *H) — Bugﬁpp U, *.

Therefore if we define

KEGO‘B = FaEtaB + Gugﬁpp Uy b =

1
2/l 9|

1
= {97 (DT — T T5) 67 + gD T 4 T Tl 77—

v Py (2.3.10.)
_ ny‘(;g'yaFgl,gp” _ QMQWFZWF,&; _ gappzvpfagﬁ _ gﬁppzwpgég'ﬂ?,
+ T8I 597 + g%PT5, T 5970 + gy, T ,g7° — ga’)l“ffyl“iag”‘s}
then we obtain
2v/| g 1 (G + k0*7) = 0, (6" F U, ). (2.3.11.)

The pseudotensor z#°7 is therefore associated to the contravariant form of von Freud’s superpoten-
tial, and hence we have the (pseudo)divergence equation 9, (\/m (G*P + kp>P )) = 0. Therefore
we would have to consider p? as the "true” contravariant form of Einstein’s canonical energy-
momentum pseudotensor instead of pt®?. This is just the pseudotensor known as Bergmann’s
energy-momentum pseudotensor [18,23]. g7 is a quadratic expression of the Christoffel symbols
and contains only the first partial derivatives of the metric.

0P is not symmetric either, because

Ak p0loP) = g0 (QC"TZVF% — g7y, TS5 — 9T s + 97T 55) :

Taking the antisymmetric part of (2.3.11.) and using U = 0 we obtain an equation for g7l

45\/@}59[0‘6] =d, (gﬁpF U, * — g™’ U, ﬁu) =

(2.3.12)
=0 (97 U, *°)

11



If we defined 2x+/| g [po#1®?l ;= —1giP U, @F then (2.3.12.) would take the form

V9108 = -8, (VIgleo"®¥), (2.3.13.)

which looks like as the algebraic Belinfante-Rosenfeld equation (2.1.12.). (The analogy with

(2.1.12.) could be made closer observing that 4xp0l*% = 9, (ﬁ@u(\d g |Ga5“”)>, since with
g

4n\/m ghlefl .= _p, \/|7Gaﬁ;w ) we would have gler) = —0, pat1abl However the coefficient
\/m appears now naturally and the structure of the equations suggest to retain those forms of
equations that contain /| g |.)

For the contravariant form of the spin pseudotensor we define

26/Tg [0 s = 20y/[ g 65" + /191G 91,0, = 0, (Vg 1G9 ) =

(2.3.14.)
_ 7gﬁpF U, ap.

Then the contravariant form of equation (2.3.8.) is

VIg (G + kpo°?) = 0, (\/m@awﬁ) : (2.3.15.)

The antisymmetric part of EU“O‘B, %(EU”O‘B — Ea”ﬁo‘), is just potleBl introduced earlier, while
the antisymmetric part of (2.3.15.), the contravariant form of (2.3.8.), is just (2.3.12.). Trivially,
goteB = polalB and polhehl = 0. However, (2.3.8.) does not determine gpo**8 uniquely: we can
add to pot*? a total pseudodivergence 9, VA yBerr — yhelw] guch that (2.3.15.) remains
the same. We discuss the effect of this freedom in paragraph 2.6.

In the classical Lagrangian theory of matter fields the Belinfante-Rosenfeld combination of #°7
and o#*? is a gauge invariant tensor field which, moreover, it does not depend on total divergences
added to the Lagrangian. It might therefore be interesting to see what is the Belinfante—Rosenfeld

combination of the canonical energy-momentum and spin pseudotensors. It is

|9 150°" + 0, (\/m [EU"[O‘B] + goolPrl 4 Eaﬁ[o‘“]]) =
:7_\/|7Gaﬁ+a <—gﬁpFU au+\/|7[ ohleBl o pelBul L oh [mt]}) =
= fEMG“ﬁ-

(2.3.16.)
Thus, surprisingly enough at first sight, the Belinfante-Rosenfeld combination of the highly co-
ordinate dependent objects g’ and go*®? is tensorial, i.e. gauge (coordinate) independent;
moreover, since the Einstein tensor is an Euler-Lagrange expression, it does not depend on total
(pseudo) divergences added to the gravitational Lagrangian. However, these were the most remark-
able properties of the Belinfante-Rosenfeld combinations of the canonical energy-momentum and
spin tensors in the theory of matter fields. It is interesting that, apart from the factor \/m , this
Belinfante—Rosenfeld combination is just the tensor that the covariant analysis at the beginning
of the previous section suggested as the gravitational energy-momentum tensor.

For any vector field K one can form the following pseudocurrent:

12



gCH[K]: = 0" K, + (Egu[aﬁ] + Ega[ﬁu] + Egﬁ[au])aa[(ﬁ —

= p0" Ky + o 0Ky = (2.3.17.)

#aﬂ (Kﬁp Us up).

1
= —G"EK, +
K 264/ g |

The sum +/| g | (kgC*[K] + G*,K"), being the coordinate divergence of an antisymmetric quan-
tity, is identically pseudoconserved, and %K *p Uq #P is the corresponding superpotential. Since

w0 (Vg 1CHK]) = 0, (VIg1G" K, ) =
= V916" g

the pseudocurrent /| g |[pC*[K] is pseudoconserved in vacuum, but for general Einstein tensor
V| 9 |lEC*[K] is pseudo-conserved iff K is a Killing symmetry of the geometry. Then pC*[K] and
G K, are conserved separately. /| g |C*[K] is pseudoconserved even if K is only a conformal

(2.3.18.)

Killing vector provided the scalar curvature of the spacetime vanishes. This result is in accordance
with our physical picture: the sum of the gravitational and matter Noether pseudocurrents is
pseudoconserved, and the gravitational and matter pseudocurrents are conserved separately only
if they are associated to a symmetry of the ”gravitational interaction”.

It might be interesting to note that eq.(2.3.17.) can be rewritten in the following form

v I3 — By vIcp 1 pryp
2\/|g|(G K, +kpC [K]) 78U(\/|g|(v K- V'K )+ﬁap(|g|c KW)), (2.3.19.)

where the first term on the right hand side is the familiar tensorial superpotential of Komar [21].
The vector fields satisfying J(,Kpg) = 0 are thought to have distinguished role in the theory of
pseudotensors since the associated gpC*[K] are considered to be the energy-momentum and total
angular momentum pseudocurrents. In fact, 9, K,y = 0 has %m(m + 1) independent solutions: m
coordinate translations K} = d;f (v is the "name index”) and im(m — 1) coordinate rotations:
Kﬁ‘ﬁ = maéﬁ — xﬁéz‘. For the coordinate translations (2.3.17.) is just the contravariant form of the
von Freud equation (2.3.11.), but for the coordinate rotation K37 (2.3.17.) takes the form

2v/] ¢ | (M“o‘ﬁ + /-@Eu‘“lﬂ) =0, (zo‘gﬁpp U, ¥ — 2P g U, ", (2.3.20)

where M#P .= G K2P = GMPr® — GHoxP and

Eﬂ,uaﬂ = EC#[KQB] = E@uﬁxa - EG“O‘:EH - 2Eo_,u[ﬂa]7 (2321)

the so-called total angular momentum pseudotensor. One can see that, in fact, po#*? plays the
role of the spin part of the total angular momentum. The superpotential K3?g"7 g U, #*| the right
hand side of (2.3.20.), is just the angular momentum superpotential of Bergmann and Thomson
[23], introduced in a rather heuristic way.

The equation 9, K,y = 0 can be thought of as the Killing equation in a local flat geometry
(U, nap) where (2, ...,2™) are Descartes coordinates. To specify a wider class of vector fields K*
one can relax the Killing equation e.g. to the conformal Killing equation 9(,K,) = %wn,“,. For
m # 2 its new solutions are the so-called special conformal Killing vectors, or rather 1-forms:

13



cp = 22%2Png, — 27,65 (v is the "name index”) and the dilatation: D, = 27,,; and the
corresponding pseudocurrents can be called conformal pseudocurrents. Another possible weakening
of 9, K,y = 0 may be to require only J,,...0,, K,y = 0 for some k& € N. The dilatation is its

solution for k = 2 and the special conformal Killing 1 forms for k = 3.

2.4. FEinstein’s pseudotensors in anholonomic description

In the anholonomic description the gravitational field variables are local basis 1-forms {9% } defined

on an open domain U C M, and normalized by

Gap = V20 1ap, (2.4.1.)

where 74 is a constant matrix (see e.g. [24]). Let {E2} be local basis vectors on U such that
{E&} and {92} are dual bases:

VLB = o5, 0GB = 68

The structure functions ¢, on U are defined by

[E,.E,] = ¢, E,. (24.2.)

2%rs

Then trivially 2, = EXEP (9592 — 009%) and dy* = —Ler 9T NS,
Ricci’s rotational coefficients are defined by
V8, = (0%, Vg, By) = —V ,03ECE}.
Because of the metric compatibility of the connection n.c7v5, = —MveVra, and because of the van-
ishing of the torsion
C?s = 7;“15 - ’Y;lr

and

1
Vb = 2 (c?b + naecernfb + U“eczbnﬁ) ’

The components of the curvature and Ricci tensors in the bases {E$} and {92} are
R%ca = Vabje = Vebjd T VerYab — VrVeb — CedVrb
and
R% = UaeReb = 77ae (f}/geh“ - 7:e|b + 7;’)“7{7‘6 - ’ngf}/ie) s
where the stroke denotes partial directional derivative: 751)\0 = E%0,75,- The scalar curvature is
R = bd —9~T S AT AT A8
=1 Yrbld T VsrVod = VsbVrd ) >
and thus

14



VIGIR = =200, (VIg 1Bk + VT T (Virkan™ = Aikar™) =
= —2n""0, ( lg IE#VLZ) + (2.4.3.)
bd TS 1 TS 1 r skl
Vg cucia — 5 CsbCra = yCkbCla s ) -
In the anholonomic description the Lagrangian is chosen to be [24]

1 r S 1 T S 1 ' S
Log = Q_H\/ lg| (Crbcsd - icsbcrd - chbcldnklnm) nbd- (2.4.4.)

Apart from the /| g | factor, this is scalar, but, of course, not O(p,q)-gauge invariant. The

canonical energy-momentum pseudotensor derived from L, g is

Lo
2 N‘V:ZQ a o v € =
VAR AL K (c B 88#1956 ﬁp)

=Vl |{5z?(vfev§f — Ve rpn T+ (245
+ 20, BX, (v + (6267 — 62620 ) } Lol
This energy-momentum pseudotensor can be derived from Goldberg’s superpotential [8]:
2V 9 1 (G%3 + Kapt®g) = Ouc Ug ¥, (2.4.6.)
where
¢ Us = 2v/] g [ (=v6n™ + (0387 — 65000 i) V3 EG EX-. (24.7)
Trivially, ¢ Ug ®* = ¢ Ug [*#, Up * = (m — 2)41%, where % = —2+/| g [n*°E$), is the vector

density whose coordinate divergence has been left from \/WR to obtain the Lagrangian. It might
be worth noting that Goldberg’s superpotential, apart from \/m , is a tensor field but it, of course,
depends on the field of basis 1-forms; i.e. ¢ Ug “* is not O(p, ¢)-gauge invariant. ¢ Ug ** can be
derived from the ”square-root” of the Landau-Lifshitz superpotential: If

« 1 T « (3
H = Ew 7| det |97 (Ea B} - EPE ) (2.4.8.)

then HY = HYGP = HE), HEYH)neen" = He%% and

T

¢ U aB _ Gup (Hstbﬁnarnbsany;/ + ngpnabnrsaUHliu B ngnbanrsayHgsu) ) (249)

The contravariant form of ,gtg is

kap0™® : = Kkept™® + augﬁpg U, =

1
2v/1 gl
1 bd

= 50 (e = Ve "+ (2.4.10)
+ (VovE = Ve — YR F Y™ AGs) nFent ES B+

OB T (e + (0205 — 0t ) BB,
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for which

2v/| 9 1 (G*? + kap0*?) = 0, (9P U, “*) . (2.4.11.)
Neither 45t*® nor ,g0*% is symmetric: Taking the antisymmetric part of (2.4.10.) we obtain
[af] 1 Bp ap ap Bu
26| g |agf :Eau(g aUp ™ —g*Pa U, )

Therefore if we defined 4r+/| g | apa™1®? := g*Pg U, P~ ¢PPc U, ** then we would have /] g |

aEe[aﬁ] = _aﬂ(1 /| g |aE0'N[O‘B])_
The canonical spin pseudotensor is defined by (2.2.3.) and (2.4.4.):

e aEGE @, qr
26| g lags"®s : = 2R68M19; (*5;319;3) =

= =2 g | (=i + (6505 — 6265)* i) VB EL B =

=—gUg ™,

(2.4.12))

i.e. the anholonomic canonical spin pseudotensor is just the Goldberg superpotential. Thus

VI g 1(GYs + kapt®s) = 0y (H\/I g IaEs“o‘g) (2.4.13.)

and hence

Vg1 (G + kapt?) = 0, (m/| g |aEs‘m‘*8) . (2.4.14.)

(2.4.13.) has just the same structure as (2.3.8.), it is a relation between canonically defined quan-
tities. ops"“g is tensor, and (2.4.14.) suggests to define the covariant form of ,gs"“g simply
by

1
nol —  — —gfro U, o (2.4.15.)

oES
" 260/1 9|

apot? =

and therefore one has

VITg1(GP + kapt°?) = 0, (m/| g |aEa#°‘ﬁ) . (2.4.16.)

The antisymmetric part of ,5o**? is just ozo**Pl introduced above and the antisymmetric part
of (2.4.16.) looks like as the algebraic Belinfante-Rosenfeld equation.

One can form the Belinfante—Rosenfeld combination of 4£0%° and 4zo#*? which, as one could

expect, is just —<+/] g | times the Einstein tensor again.

K
One can form the Noether pseudocurrent:

aECH[K] L= anuyKl, + (aEO'“[aB] +GEUQ[BH] +aEO'ﬁ[aM]) aaKﬁ =

= ap0" Ky + apo" P 0, K3 = (2.4.17.)
1

264/1 g |

1
= —ZG"™K, + 9, (K¥ ¢ U, ).
K
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The pseudocurrent /] g | (k,5C*[K] + G"** K,,) is pseudoconserved again; and /| g [ozC*[K] and
GM" K, are conserved in themselves iff K* is a Killing vector of the spacetime geometry. One can
again introduce the angular momentum pseudocurrents just in the same way we have done in the
holonomic description.

Since Goldberg’s superpotential, apart from the \/m factor, is a tensor, we can rewrite our
equations in covariant form. If

1
a Vg = cUg (2.4.20.)

Vigl

then (2.4.6.) is equivalent to

1
2(G% + kapt®s) = Ouc Vp ™ + TGM\A gl Ve =
g

VIgl (2.4.21.)

= qu Vg o FftﬁG Vo ak,

Thus if we define

QKAEGQ =2k Eta -re aV Ol —
’ Z kﬁ l #ﬁk lp rs a k a k rs o ,qb (2422)

= {5b (’Ykr’Yls - %ﬂks) n°+2 (7kr7bs - %T’Yks) Ui }Ea 3,
which is a tensor field, and we recall that 4go"“g := po"“g = (gs"*g is also tensor field then
we have

GaﬁJrfiAE@ag = 7I£V#AEO'”O‘Q. (2.4.23.)

This implies the covariant
AEG[O‘B] = —VMAEU”[aﬁ] (2.4.24.)
VaAanﬁ = *Rﬁp,uuAEO—m“j (2425)

Belinfante-Rosenfeld equations. The covariant Belinfante-Rosenfeld combination of 4z0°” and
apotel ig f%Go‘ﬂ. The covariant Noether current associated to K is

ApC*[K] 1 = A" K\ + (AEU“[O‘B] + apo®Prl 4 AEUB[Q“]) VoKg =

1 1 (2.4.26.)

— __G#VKV + _vp (KVG vV, #P) .
K 2K

But since

1

VIl

the Noether pseudocurrent ,zC*[K] coincides with 4pC*[K], and hence it is, in fact, a true

Vo (KY GV ") = 8,(K¥ GV, ")+ T8 KV GV, P4+ T0 K¥ GV, " = 9, (KVqU, M), (2.4.27.)

vector field. However, 4p0*", Apct®B and the Noether current ApCHK] itself are O(p, q) gauge
dependent. This gauge dependence is not surprising, since, e.g. in electrodynamics, neither the

canonical tensors nor the Noether currents are gauge invariant.
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2.5. Mpller’s pseudotensors

First consider the holonomic description. Now the gravitational field variables are the metric
components again but the Lagrangian is Hilbert’s second order scalar Lagrangian:

1 1
-/ - 2 90r
Ly o |lg|R=LEr+ QIiapl , (2.5.1.)

where Lg and [? are given by (2.3.1.) and (2.3.2.), respectively. The canonical energy-momentum
pseudotensor can be calculated using (2.2.6): Since

arr 1
B9 ; = 3 (lpgaﬁ _ lagﬁp _ lﬁgap) +

1
+ 5V (0" 50" + 97T, g — 27, 9"g"")

and

ol 1

_ i po B | gpBgie _ 9 gpit aﬁ,
g sVIg (9”9 + 979 g""g*?)

the energy-momentum pseudotensor, p/t%g, is

26/Tg lart®s = 26v/T g [t — 0, (91° = 6517 =

(2.5.2.)
=Vligl (R5§ + 9,8~ gpurguﬁ) :
Using 7 U, *? = (m — 2){* and (2.3.5.) one has
2\/— G“ t%3) =0 an L Pl 1 oy 2.5.3

|9 1(G% + kart®s) = Ou | P Us ™ = ——p Up P05 + ——— p U, 05 ). (2.5.3.)

However, the superpotential on the right hand side is just Mgller’s superpotential [20]:

MUQO‘“::FUgaﬂf—l Shp U, ¥ 4 0GF U, P =

m—2 0" m—2 " (2.5.4.)

= V1919%°9" (9p905 = 0v9p5)
and hence we could recover Mgller’s energy-momentum pseudotensor, originally defined by (2.5.3.)
for m = 4, as the canonical energy-momentum pseudotensor for Hilbert’s Lagrangian. The con-
travariant form of pt®g is defined by

26v/] g |0 : = 26+/| g |t + 0 0 U, =

(2.5.5.)
=2r\/] g |[E0°7 + 0, (g*°1" — g"M1?),
for which
2v/| g [ (G*? + k00°P) = 0, (¢°° a1 U, ™) . (2.5.6.)
The canonical spin pseudotensor can be calculated from (2.2.8.), (2.3.2.) and (2.3.6.):
26| g s 5 = 26\/] g | "5 — o1 + 01 = (257)

= VITH (T30 =67 T%,) T + 04975, — 20" Tl )
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This implies

26| g |msts + v Ug M =2k/| g |lES" s+ rUg =
=0, (V916" g5)

(2.5.8.)

and hence

VIg (G + kmt®p) = —K0, (\/ l g |MSW5) . (2.5.9.)

The structure of this equation is similar to that of eq.(2.3.8.). The contravariant form of prs#*g is
defined by

26v/] g |mo"? = 26+/| g |ms"*? — g°°0, (V lg IG”‘W”W) -

(2.5.10.)
— _gﬁpM Up CW,

and finally one has

V11 (G + kp0°?) = —k0), (\/| g |Ma“°‘ﬁ) . (2.5.11.)

Its antisymmetric part is a Belinfante-Rosenfeld type equation. (2.5.11.) does not specify jro#®?
uniquely: /] g [pro#? + 0, VP also satisfies (2.5.11.) for any VAer = yhalw],
The Belinfante-Rosenfeld combination of 3,6*? and ;o is, essentially, the Einstein tensor

again:

| g [1260°° Jra#( /19| (Mgu[aﬁ] + polPrl 4 Mgﬁ[om])) =

1
Z—Ev|ng@

The Noether pseudocurrent constructed from the Mgller pseudotensors is:

MCH[K] C= yO K, + (Mau[aﬁ] + Maa[ﬁu] + Maﬁ[ocu}) OuKp =

(2.5.12.)

= %GWKV - 9y (K Ug ) ;

1
2r/1 9 |
and hence +/| g | (kpCH*[K] + G* K,) is always pseudoconserved. In contrast to gC*[K] or

«2C*[K], this pseudocurrent contains the second derivative of the metric too. (2.5.12.) can
also be written in the form containing Komar’s superpotential:

219 (G Ky + kg CH[K]) = 0, (Vg | (VHKY = V7 E") +

1 LS
\/maa(|9|G ))

As a consequence the difference of the Noether pseudocurrents built up from Mgller’s and Einstein’s

+ KHlY — KV +

pseudotensors, respectively, is identically pseudoconserved. As is expected, /| g | C*[K] and
V| g |G* K, are pseudoconserved if K is a Killing vector.
In the anholonomic description the Lagrangian is i times the right hand side of eq.(2.4.3.),

and hence the canonical energy-momentum pseudotensor, a3, can be calculated using (2.2.7.)
and (2.4.5.):
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261/1 g lamt®s = 26V/] g lapt™s + 650,1" — Opl™+

(2.5.13.)
+0, (VIg119° B — 9" Eg] 99} )

This implies

2/ g (G5 + Kamt®s) = Opant U “*, (2.5.14.)

where

ant Up ¥ = g Ug ™ + 051" — 051 + /| g [ (9°7 BY, — 9" BY) 950} =
=19 ((g® Bt — g" E2)0,075 4 g™ g"? (8,9), — 9,07 )mesy) = (2.5.15.)
=VIglg™g"* (avgpﬁ - angﬁ) = p Ug ¥,

and hence

amt®s = mt%s. (2.5.16.)

The canonical spin pseudotensor can be calculated using (2.2.8.) and (2.4.12):

264/1 g lams"“ g = —ars Ug ' + 0, (\/ | g |G”‘p‘“’gpg) =26+/| g |ms"s. (2.5.17.)

Thus both the canonical energy-momentum and spin pseudotensors in the anholonomic description
coincide with the corresponding pseudotensors calculated in the holonomic description; and there-
fore all the quantities built up from »;0%g and prs*“s coincide with those built up from 4703
and aMS‘uo‘g.

2.6. Landau-Lifshitz—Goldberg type pseudotensors

In the previous three paragraphs we saw that the canonical spin pseudotensors single out super-
potentials for the canonical energy-momentum pseudotensors from the mathematically possible
collection of superpotentials. Thus although in general the contravariant forms 2 of the canoni-
cal energy-momentum pseudotensors depend not only on t*g, but the superpotential we use also,
the contravariant forms 7 we defined in (2.3.10.), (2.4.10.) and (2.5.5.) are distinguished be-
cause the superpotentials we used are distinguished by the spin pseudotensors. Since the equations
(2.3.5.), (2.4.6.) and (2.5.3.), by means of which the contravariant forms 6 have been defined,
contain t“g algebraically, 6" is uniquely defined by ¢ g and the superpotentials. (We do not use
here the indexes E, aFE, M,... etc., since the formulae we will have hold for any of the three cases
we considered in the previous paragraphs.)

However, the contravariant form o#®? of the canonical spin pseudotensors are not uniquely
determined even if we have preferred superpotentials, since the equations (2.3.8.), (2.4.13.) and
(2.5.9.), by means of which 0#*% was defined, contain only the divergence of \/WS“O‘ g- Thus in
the definition of o#*# we have the freedom

oheB o GhaB = ghal éauvﬁa””, (2.6.1.)

264/] g |
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where VAo — yBaluv] ig arbitrary. Although for VA = ( the pseudotensors o#*? are just the
contravariant forms of the distinguished superpotentials, supporting our opinion that VA# = (
is the "right” choice, we should consider the effect of the freedom (2.6.1.).

The Belinfante-Rosenfeld combination of 8% and 548 is

k0% 1 Haﬂ( /| q |(&u[aﬁ] + golsul 4 65[%])) =
1
= /[g]G* - 50u0s (V[au][ﬁt/] n V[ﬂu][w])_

The second term on the right hand side is just the combination by means of which Goldberg’s

(2.6.2.)

infinite series of Landau—Lifshitz type pseudotensors is defined. Recall [25] that for any fixed
k € R Goldberg’s 2kth symmetric pseudotensor, Gt?‘fk), is defined by

« 1 « 1%
[g | (Gaﬂ +“Gt<2€c)) . iauavo g "G ) (263

For k = 0 this is known as the Landau-Lifshitz pseudotensor [26]: 1, 0P = Gt?oﬁ) . Thus for a
general VA2 the Belinfante-Rosenfeld combination is not expected to be tensorial. In fact, rather
long but simple calculations show that the Belinfante—Rosenfeld combination can be tensorial only
if the second term on the right hand side of (2.6.2.) vanishes. This is equivalent to the existence

of a five index quantity ZPmwr = z(@Bwwp — zaBuw)p — zoBulvel for which

ylenlBvl oy Bullev] o y/lenllBul 4 y/16vlen] apzaﬂ;wp_ (2.6.4.)

This gives restrictions for certain irreducible parts of the general V*##  Thus although the
requirement of the tensorial character of the Belinfante-Rosenfeld combination does not rule out
completely the freedom (2.6.1.), as for example the left hand side of eq.(2.6.4.) vanishes for a
completely skew VP  this result gives a partial support of our choice V*##*” = ( in the definition
of 0" For the other natural choice —%\/mGBO‘W in the definitions (2.3.8.) and (2.5.9.) the
Belinfante-Rosenfeld combination (2.6.2.) is just Goldberg’s —1th pseudotensor; i.e. Gt‘(lf} 1) can

naturally be recovered as a Belinfante—Rosenfeld combination.

3. Energy-momentum and spin forms on L(M)

3.1. Metric connection on L(M)

Let L(M) be the linear frame bundle over M, {§;}, i = 1,...,m, be the standard basis for R™,
ie. & = (0,...,0,1;0,...,0) and § = 6'5; the canonical R™-valued 1-form on L(M). (For the
differential geometric preliminaries see, for example, [27].) The metric g and the volume form e
of M define a set of functions on L(M). If, for example, w = (p, {E,}) € L(M); i.e. w is a basis
{E.} at T, M, then g.(w) := g,(Ea, Ey) and €4, .4, (0) := £p(Eqa,, ..., Eq,,). One can define g

and €%1% too, for which €4, q .. ¢, €01 Orertiem — () ( — p)1§b1--0r
1 rCr4+1 m al...a,r
For any r =0, 1, ...,m let [28,29]
1 [ 1 e
Eal...aT = mgal---ar6r+l---em,9 LA NG (3.1.1.)
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It is a tensorial (m — r) form on L(M), transforming according to the rth exterior power of the
contragredient representation of GL(m,R). If r = 0 then this is just X := %sel___emOQ AR A
while for » = m this is the function €4, . 4,,. One can easily verify that

0" A Lay.ar = (=) 760, Tay.a)- (3.1.2.)

Let w®, be a connection 1-form on L(M) compatible with the metric g. The structure equations
for the torsion = and curvature 2-form Q%, are

2 = df* +wy A 0P (3.1.3)
Q% = dw® + we A w. (314)

If index lowering and rising are defined by g4, and g, €.g. Wap ‘= Gaewy, then the condition of
metric compatibility is
dgab = Wab + Wha- (3.1.5.)

This implies deq, ...a,, = €ay...a,, W e and, in general,

d

dzal...ar == Eal...aru, - (_)Trwa[al A EGQ...(IT](I' (316)

The first and the second Bianchi identities are

d=2 = Q% NO® — W N E® (3.1.7)
dQ% = Q% Aw — w A Q%,. (318)
Because of the metric compatibility, Qup := gaef2% = —Qpe. In this formalism Einstein’s tensor,
G'j:=R'; — %R&;, is given by
Loab 50, = 67,3
3 N 2ijab = i245 (319)

The curvature tensor can be expressed by horizontal m-forms:

Q% AXeqg = R%edX, (3.1.10.)

and hence both the Ricci tensor and the curvature scalar can also:

—Q¥ A, = R,Y (3.1.11.)
and

RY =Q® AT, =

ab a eb ab A —e (3112)
=d(w” AZap) —we Aw® AZap +w® ANEC A Bape,

respectively.
A local section s : U — L(M) is a field of basis vectors {E,} on U. (More precisely, the vector
E, at p € U is the element s(p)(d,) of the vector bundle T(M), associated to s(p) € L(M) and
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d, € R™.) The pull back s*(0%) is a field of basis 1-forms on U, dual to the vector basis. The
structure coefficients of the section is the collection {c?,} of functions defined on U by [E,, E;] =

¢ E,. s is called coordinate or holonomic section if there is a coordinate system (x!,...,2™) on

U such that E, = a;gav a=1,..,m, and then s*(0%) = dz®. s is a coordinate section iff ¢?, = 0.
s is called rigid or anholonomic with respect to the metric g if for the pull backs ¥ := s*(6%)

and for some constant matrix 74, we have g = 9 ® ¥°14,. The pull back s*(w%) is a gl(m, R)-
valued 1-form on U, thus it can be expressed in the naturally defined basis of 1-forms {s*(6%)}:
s*(w%) = ws*(07). If s is a coordinate section then I'%,, defined by s*(w®) = ', dz", are the
usual Christoffel symbols; while if s is a rigid section then 4%, defined by s*(w®,) = 7% 9", are the
Ricci rotation coefficients. Twice the pull back of the curvature form is just the curvature tensor:
25*(Q%) = R%;s8™(07) A s*(0%). Since the pull back s*(X) is the volume form on M, the pull back
of iﬂ“b A 3ap gives Hilbert’s Lagrangian. It is given in the holonomic/anholonomic description if
s is a holonomic/anholonomic section. The pull back of d (w“b A Eab) gives the total divergence left
from Hilbert’s Lagrangian, thus Einstein’s Lagrangian in the holonomic/anholonomic description

is the pull back of —%w“e A w® A X4, along a holonomic/anholonomic section of L(M).

3.2. Sparling type forms on L(M)

Let us define the Nester—Witten form as

1
u; = f?ﬂb A Biap- (3.2.1.)

(This form appeared first in its spinorial form by means of which Nester [30] could give a simple
proof of Witten’s energy positivity theorem [31]. In its tensorial form u; was introduced by Sparling
[28]; and for m dimensions u; was defined in [29].) u; is an R™*-valued pseudotensorial (m — 2)-
form which transforms according to the contragredient representation of GL(m,R). Its exterior

derivative is

1 1_,
du; = _§Qab A Siap + 5Z°A W A Siape + ts, (3.2.2)
where

1
tii=—5 (W& A W™ A Seap + we Aw? A igp) (3.2.3)
is Sparling’s (m — 1)-form [28,29]. What is interesting here is the structure of the right hand side
of eq.(3.2.2.): the curvature appears only through the Einstein tensor. ¢; is only pseudotensorial,
transforming according to the contragredient representation of GL(m,R) [32]. The importance
of u; and ¢; is shown by the following theorem, due to Sparling [28] for the vacuum case and

Dubois-Violette and Madore [29] for the general case:

Theorem 3.2.1.:

For any R™*-valued horizontal (m — 1) form T; satisfying dT; — w®; AT. = 0 and k € R the
following statements are equivalent:

(1) w? is torsion free, 2¢ = 0, and Q% A Z;4 + KT} = 0;

(2) KT; +t; = duy;

(3) d(kTi +1;) = 0.
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This theorem gives an alternative formulation of Einstein’s theory: a metric connection on L(M)
is torsion free and satisfies Einstein’s equations with matter energy momentum tensor T7;, defined
by T; =: T7;%;, iff the Sparling and the Nester-Witten forms satisfy condition (2); which is
equivalent to the Sparling form to satisfy condition (3) above. In Einstein’s theory (3) looks
like as a conservation equation, while (2) tells us the ”superpotential” for the conserved quantity
KT; +t;: it is just the Nester—Witten form. But since these quantities are defined in L(M) instead
of M, moreover t; and u; are only pseudotensorial forms, the exterior equations (2) and (3) yield
equations in M only if we pull them back along a local section of L(M). In fact, Frauendiener [32]
calculated the pull back of u; and du; along a coordinate section of L(M). Here we first repeat
his calculation along a general section and then specialize s to be a coordinate and then a rigid
section. Then we pull back various forms of Sparling’s equation (2) above and we will recover a
number of energy-momentum pseudotensors and superpotentials we have considered.

Since T is horizontal it has the form 77;%;, thus the pull back of T} is independent of the
section: If (x!,...,2™) is any coordinate system on U then

N 1
S (T’z) = E?T“ﬁm\/ | g |6M72___de$72 AN dxm (324)

(

The pull back of the Nester—Witten form along a general section s : U — L(M) is
* 1 a _eb _x/pnr
s (ug) = —5Wred”s (0" ANXiap) =

1
=L (g + 50l — ) 5 ().

(3.2.5.)

If s is a coordinate section and (21, ..., 2™) is the corresponding coordinate system on U (and hence
there is no difference between the Greek and Latin indexes), then

1
l gl

FU; s (Se) =
(3.2.6.)

FU_ab 1
4

1
= Z mEabeBV”edeﬁB VAN d:l:em,

where r U; 2 is von Freud’s superpotential given by (2.3.4.). If s is a rigid section and (x!, ..., 2™)

is a coordinate system on U, then

1
G Uy “PEM29Ys™ (Sap) =

W9l (3.2.7.)

1 *
= ZEZ#G Vi *Ps (Zap),

s (u;) =

where gU,, @8 is Goldberg’s superpotential given by (2.4.7.). Thus, apart from the factor (2(m—2)!
Vg |)71, the pull backs of w; are the dual of the von Freud and the Goldberg superpotentials,
respectively. If u;% is defined by s*(u;) = u;*s*(Xqp) then the pull back of the exterior derivative

du; can easily be calculated:

s*(duy) = ds* (u;) = dui® A s*(Sap) + u; 5™ (dSa) =
= —2 (BX0,u;" + w;"wg, + ui"wl,) s*(Ze).

ra

(3.2.8.)

If s is a coordinate section then E# = 0¥ and, using p U; *© = p U; [ae], one has

24



§*(du;) = =2 (0qu; ™ + T u %) s7 () =
1 . 1
I . Ja . €2 €m
= 28,1;7 U; (m— 1)16]62___emd1‘ A oA dx®m.
Comparing (3.2.4.) and (3.2.9) with (2.3.5.) one can expect that the pull back of the Sparling
form is essentially Einstein’s canonical energy-momentum pseudotensor [32,33]. In fact, the pull

(3.2.9.)

back of Sparling’s form along a general section s is

* Lo k k ik ik, |l i rs
S (tl) = 75 (55 (w:kwrs - wfkwes>gTs + gJ W?k“’:i - gj wikw:l - w:z’wing& - wiiw:ngs+
+whwisg” + Wi, wie™ + (Wl — whwlg™ + (Wl — wp)wkeg') s (55),
(3.2.10.)
which, if s is a coordinate section, takes the following form
. . 1
s*(t;) = kpt’ 18" (8;) = /-;Et]iﬁsﬂ 9 |€jes...cn dT® A .o A dxm. (3.2.11.)
m —1)!

Thus von Freud’s equation, given in a coordinate system (x!,...,2™), is just the pull back of
Sparling’s equation along the coordinate section associated to (x!,...,2™). Similarly, the pull

back of the conservation equation (3) of Theorem 3.2.1. is just the pseudo divergence equation
o (\/| g1G*s + ﬁEth]) = 0. If s is a rigid section then

s*(duy) = —2 (BR0,u;" + w; e, + u"l,) 5% (Ze) =
1
N (Efﬂiaw Un " GUpa“ﬂZﬂZEﬁr) S (Ze) = (3.2.12)
g 2.

1
= §VP (E,LHG\/#VP) S*(Eu)7

which is tensorial, and the pull back of Sparling’s form is

s*(t) = 5 (6 (Ve — Ve =
— 2T 20 — ALIVEN™S + 2k (W — E)) 8% (2) =

j 1 j (3.2.13.)
= (Kapt", I EY + ————=g U, “"9 9" E- )s*(5;) =
( g 2yg]" " g ) !

i|r
wopw L ) v o*
= kagt VEi +§G\/u VpEi S (E#%

which is also tensorial. Thus although the components of the pull back of Sparling’s form deviates
from kqpt!; and from k4 on i too, the pull back of the Sparling equation along a rigid section s
of L(M) is just equation (2.4.6.) calculated in the rigid frame determined by s. Thus the various
energy-momentum pseudotensors are not simply pull backs of a single geometric object, e.g. t;,
along various sections.

Let us define the contravariant form of the Nester—Witten form simply by u’ := g*/u;. Then
by (3.1.5.) condition (2) of Theorem 3.2.1. (i.e. Sparling’s equation) takes the form

du® = dgij Auj+ gijdui = gT" + @i’ (3.2.14.)
where
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O =1t — (w7 + ') Auy. (3.2.15.)

Obviously, the pull back of v’ along coordinate and rigid sections are essentially the contravari-
1

' 44/19l

%nwEgG V. “Ps*(X4p), respectively. Thus one may expect that the pull back of (3.2.14.) along a

g°F Ue ®s*(X4p) and Goldberg’s superpotential:

ant form of von Freud’s superpotential:

coordinate and a rigid section is (2.3.11.) and (2.4.11.), respectively. In fact, the pull back of du’

along a general section is

s*(du') = 5" (duy)g”" — 2 (wreg™ +wleg™) u"s" (Ze),

while if 77; is defined by s*(t;) =: 77;5*(3;) then

51(07) = (749" = 2wig™ + wlg ;)" (5).

If s is a coordinate section then s*(0%) gives the contravariant form of Einstein’s energy-momentum

(i.e. Bergmann’s) pseudotensor:
s7(07) = kpb”'s"(3));
but its pull back along a rigid section is not exactly x4 p6”":
5°(67) = 5° (1) =
af qi 1 ap p. ki) . *
- (KAEe P+ 36V, VBl )s (a).

Let us define the dual form of the Nester—Witten form by

Uey...p — ueeeeg...emy (3216)
and let Te,. e, :=T%cey...c,,- Then
du62...6m = KTeg...em + 662...€m7 (3217)
where
Ocy..e = (t°+ (¢ Wk —wef —wle) A Uf) Eces...om - (3.2.18.)

The pull back of u.,. ., along a coordinate section is

m

1 b

* _ fe * _

S (Ueg...em) - F Uf “ 9’ Eeey...e;nS (Eab> -
4/lg|

= _ar (| g | Gaber) €eey...em

(3.2.19.)

e~

(m —2)
and hence
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1
mﬁeeZ___em€ff2___fmdl'f2 A A d.’l?fm =
1

(m—1)!

is the double dual of the symmetric object defining the Landau—

1 3
S*(dueZ_“em) = 567,65 (| g | Gf’!‘&s)

. (3.2.20)

= —aras (| g | Gf?"es)

2]g| EeeroromEffo fr T A A datm

Since the pull back of due,. . e,,

Lifshitz pseudotensor, one may expect that the pull back of ©,. ., is just the double dual of the
Landau-Lifshitz pseudotensor. In fact, the pull back of (3.2.18.) along a coordinate section is

S*(®€2...em) = HLLtfegeez...emS*(zf)- (3221)

One can take various forms of the Nester—Witten form and hence the Sparling equation, and
one can then pull them back along various local sections of L(M), yielding different superpotentials
and pseudotensors derived from Einstein’s first order Lagrangian. However, the mathematical
content of all these quantities is the same: it is what Sparling’s equation describes. From physical
points of view, however, these may have different significance: For example if Kz is any vector
field satisfying 0, /) = 0 then for the Landau-Lifshitz pseudotensor we have

1
0 (191 (G + R1st™)K5) = 50,0, H 00Ky = 0.

What is (globally) conserved here is therefore the integral

1
m/ VIg (G + k11t®”) Ko/ g leans.qndz™ Ao Ada™

for an (m — 1) dimensional submanifold. However this is not the energy-momentum of the matter
+ gravity system even if J,K3 = 0, since we have an extra \/m coefficient not only in front
of the gravitational part, but in front of the matter part also. If the extra \/m factor were in
front of the gravitational term only but the matter term had the right coefficient then the matter
part could be interpreted e.g. as energy-momentum or angular momentum and, in contrast to
the strange feature of the gravitational part, would suggest the interpretation of the gravitational
part also. The result would be surprising but acceptable [25]. Thus it is hard to interpret these
conserved quantities, in contrast to the integral of the Noether pseudocurrents built up e.g. from
Einstein’s pseudotensors. Moreover if K is a Killing vector of the geometry then in general the
pseudocurrent | g | (Go‘ﬁ + kppt®? ) K is not the sum of separately conserved (pseudo) currents,
while the Noether pseudo currents built up e.g. from Einstein’s pseudotensors are. Perhaps the
Landau—Lifshitz pseudocurrents above should be completed by spin parts, but, since the Landau—
Lifshitz pseudotensor is not a canonical pseudotensor, it is not a priori clear how these spin parts
should be defined. At the end of the next paragraph we return to this question and construct the

missing spin part.

3.3. The spin form on L(M)

In this paragraph we would like to recover the canonical spin pseudotensors of Einstein’s theory
as pull backs of a single differential form on L(M), and we would like to interpret this form as
the geometric object describing the spin content of gravity. However, there may be different forms
((m — 1) forms and (m — 2) forms) on L(M) whose pull backs yield the same pseudotensors. (For
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example —u; is such an (m — 2) form.) But the spin pseudotensors satisfy Belinfante-Rosenfeld
equations, thus, in addition, we want to have an exterior differential equation on L(M) whose pull
backs are just the Belinfante—Rosenfeld equations.

The quantities in the Belinfante—Rosenfeld equations have two free indexes, thus the spin form
would have two free indexes too. Since the spin pseudotensors are three index quantities and we
would like to recover them as the duals of the components of the pull backs (as in the case of
Sparling’s form), the spin form must be an (m — 1) form. Thus minus the Nester—Witten form
is not the spin form we are searching for. However, the fact that the pull backs of —u; yield the

canonical spin pseudotensors suggests to define the spin form by

, , 1 ‘ ‘ ,
wﬂ:mAWZEWM(&&ngg—%ag. (3.3.1.)
This is a gl(m,R)-valued pseudotensorial (m — 1) form on L(M) of type ad GL(m,R). It is
interesting that its trace,
% 1 ab
oy = 5(m—2)w A b,

is k(m — 2) times the (m — 1) form whose exterior derivative has been dropped from 7 RY to
obtain the m-form describing Einstein’s Lagrangian. The pull back of ¢7; along a local section
s:U — L(M) is:
5*(075) =5 (07 (whg™ — g™wi) +
2 T o (3.3.2.)
07 (wrg™ = whg™) = O (whg" — wlg™) )" (B).

Thus if s is a coordinate section (when there is no difference between Latin and Greek indexes),
then

5" (09;) = kpo®5*(8e) =

. 1 3.3.3.
= K,Eo'e]im\/ | g |€eeg...emdme2 TANAN d.’l?em, ( )
while if s is a rigid section then
s*(09;) = m?éEiBaEa“o‘gﬂzs*(Ee) =
, 1 3.3.4.
= m?JaEiBaEU”O‘gW\M 9 |€urya..ym d7? A o A dXT™ ( )
m — 1)!

The form o7; therefore seems to be a good candidate to be the spin form we search for.
For a moment let us consider general, not necessarily torsion free, metric connections. Then,

using (3.1.2.), (3.1.3.) and the general Sparling equation (3.2.2.), we have

—do’; = —dt’ AN+ 67 N\ du; =
I w i 4 ; 4 4 (3.3.5.)
= 5E AW A (6] Sabe + 61 Bich + 6, Siac) + G7iX + 7,

where
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i i=0 Nty +w e NO° Ay =
1, b bi " 4 , (3.3.6.)

*5(53(«0% AW ANZgp +w A (w I — W ) ATy +Fw A (wej erje) A Eia).

Using eq.(3.3.5.) and the fact that ¥ is horizontal one can prove easily the next theorem.

Theorem 3.3.1.:

Let T; = T7;%; be any horizontal R™*-valued (m — 1) form on L(M), k € R and m # 2. Then

the following statements are equivalent:

(1) w®, is torsion free, =¢ = 0, and G7; = kT,

(2) RTjiE —+ tji = 7d0'ji.

Thus the connections satisfying Einstein’s theory can be characterized in terms of ¢/; and the

spin form too. The exterior derivative of (2) above looks like as a conservation equation again,

but Einstein’s equations, in contrast to Theorem 3.2.1., can be recovered from this conservation

equation only up to a non specified cosmological constant:

Theorem 3.3.2.:
Let T; = T7;%; be any horizontal R™*-valued (m — 1) form on L(M), satisfying dT; —w®; AT, = 0,
k € R and m # 2. Then
(1') w®, is torsion free and IA € R such that G7; + A(Sf = KT,
(3) d(kT9; S +1;) =0
are equivalent statements.
Proof:
To prove (1) — (3) it is enough to show that d (AéfZ) = 0, but, because of the vanishing of the
torsion, it follows from eq.(3.1.6.).
To prove the converse, first calculate the exterior derivative of ¢7;. After a simple but rather

long calculation we arrive at
=219 = Q% A (8] (0 = W) A Tap + 207" A Sapt

+ 60 (W7 — W) A Sy + (WT + W) A Zm) +

_ ‘ } (3.3.7.)
+E°A (6§w“c Aw® A Sape +w A (W7 — wI®) A Sgpet
+ wab A (u}bj + ij) A Eiae) .
Furthermore, because of the condition imposed on T;:
d(T7;%) =d(¢? ANT;) =2/ ATy —wle NO° AT, — 07 ANdT; =
=ZIANT —T¢w NS+ T7 w5 A X,
thus the condition (3) of Theorem 3.3.2. takes the form
0=—2d(kT?; X +t;) = =25 ANT; 4 26(T%w’ e — T w) NS — 2dt7;. (3.3.8.)

Let {D,,"} be the collection of fundamental vector fields associated to the Weyl basis of gi(m, R).
Recall [27] that {D,,"} together with the standard horizontal vector fields {B(d,)} form a basis
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on L(M), dual to {w%, 0°}; and hence w*(Dyp,") = 62,07 and 6°(D,,™) = 0. Taking the interior
product of eq.(3.3.8.) first with D,,,” and with D,* and then contracting in j and r and in m and
5 we obtain:

0=(2—m)Z°A Dipeg™.

For m # 2 this implies the vanishing of the torsion. Substituting =Z¢ = 0 back to eq.(3.3.8.) and
using (3.1.10) we have

0=2((Rc—rT?:)w — (R — KT)w'c) A .
Taking its interior product with D,,™ and contracting in n and :
L Lo g
Rji — —R(SZ = H(T]i — =T kéz)
m m
This equation can be rewritten in the following form:
. . j 1 Rk j
G — KT, = =0 (=—(m — 2)R+ —T";) = —6&/A.
2m m

But then, because of the contracted (second) Bianchi identity and the differential condition imposed
on T;, A must be constant. O
In the rest of this paragraph we calculate the pull backs of condition (2) of Theorem 3.3.1.

and its contravariant and dual forms.
If 0%, is defined by s*(07;) =: 0%;5*(X.) then

s*(do?;) = do®; A s*(Be) + 0% 8% (d2,) =

_ L (3.3.9.)
- (Egauae]i JFUe]iWke)s*(E)-
If s is a coordinate section then
s*(do’;) = —=—=0c(kV/| g |50 ;) s* (%),
Vi0gl
while for a rigid section it is
s*(do?;) = KV, (AEU“O‘ﬁﬂZYEiﬁ) s*(%).
The pull back of t/; is
s* (1) = s*(07) A s* (¢ +wﬁss* 0") A s*(c®%;) =
() (07) A s™(t:) (07) A s™(0%) (3.3.10)

— (sz- + wﬁsomi)s*(E).

For coordinate section this is just
S*(tji) = mEtjis*(Z),
i.e. Einstein’s pseudotensor again, while for a rigid section
*(#9.) = o 97 pf 1 ap J B o*
s*(t;) = (ka0 gV E + 2G\/5 Vﬂ(ﬁaEi ) s*(X%).
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Thus, observing that 0,pc"*g = 0, gs"* s and (go"“g = ors"*g, the pull backs of condition (2)
above along coordinate or rigid sections are the equations (2.3.8.) and (2.4.23.), respectively.

One can take the contravariant form of the spin form, ¢7¢ := ¢7.¢°, and its exterior derivative:

—do’' = KT + 67, (3.3.11.)

where

O =7 4 (W + w) Ao (3.3.12.)

The pull back of ©7% along a general section is

s* (07 = (Tji +wl o™ + (wh,g% + wfsgSi)aTje) s*(%). (3.3.13.)

Thus for a coordinate section

s*(07") = kp’'s*(X),
while for a rigid section
s°(07) = 5" (t ) =
— (,QAEGQ%JO;% + %gﬁpgvavu (0@%))5*(2).

The calculations show that the pull backs of eq.(3.3.11.) along coordinate or rigid sections are
eq.(2.3.15.) and (2.4.23.), respectively. Trivially, the pull backs of the antisymmetric part of
eq.(3.3.11.) are the Belinfante-Rosenfeld equations.

For the sake of completeness, finally, let us consider the dual form of the spin form:

0 ey =0 Ngy...c,- (3.3.14.)
Then
—dod ey ep, = KTy 0 S+, ., (3.3.15.)
where TV, o, = T%¢e,. ., and
®j€2---€m = ®j65662.,.em - Wkk A O'jeeeez...em- (3316)

The pull back of ¢7 es...en, along a coordinate section is

m

s i 1 1 .
s (0-]52---57‘@) = _5 (m — 1)'af(| g | (;]Tef)Geez...em67"7"2...7"md‘rT2 A A dem,
and hence

_ 11 _
—5%(do? ¢y 0, ) = —'8T85(| g | Gﬂes)eeez___emellmlmdzll Ao Adatm,

2m
Therefore the pull back s*(©7., .. ) must yield the Landau-Lifshitz pseudotensor again. In fact,

it is
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5*(®jez...em) = 3*(@j€)5662...em - ’irerarjegeezmemS*(E) =
= KLLtjeEeeg...emS*(E)a

and therefore the pull back of eq.(3.3.15.) along a coordinate section is equivalent to

fn8#(| g | EU“O‘B) =|g| (Go‘ﬁ +nLLtO‘B).

Thus 10" := po"*P plays the role of the spin pseudotensor in the Landau-Lifshitz case also.
Because of the symmetry of G and 1,;t*?, the algebraic Belinfante-Rosenfeld equation is simply
Ou (| glL Lo“[o‘ﬁ]) = 0. The Belinfante-Rosenfeld combination of these pseudotensors is essentially

tensorial again:

lg| ot 4 aﬂ(| g (LLUu[aﬁ] B i o LLUH[W])) =
=g Lot +0u( g | Lro™@?) =
1
=——lglGa*.
K

The Noether pseudocurrent, associated to a vector field K*, is defined by

LCMK] - = Lt K, + (LLUu[aﬁ] + ppo®Bul 4 LLUH[W])Z?QKQ =

= t"K, + LLaWﬁ@aKﬁ =
1 1
= _EGMVKV + maa“ g | LLU”O‘BKﬁ)-

Then | g | (kL CH[K] + G*K,) is always pseudoconserved. However, if K is a Killing vector
of the geometry then, in general, it is not the sum of separately (pseudo)conserved matter and
gravitational pseudocurrents: We have only

0= a#(| g (kLLC[K] + G””Kl,)) -

1
=|g| §GWLK9W+
00,19 | 1L CPIKI) | g | GR, T

mp?
and hence the gravitational Noether pseudocurrent is not pseudoconserved even for a Killing vector
K. For vector fields satisfying 0, K5y = 0 the pseudocurrent | g | (kLLC*[K]+ G K,) is the sum
of two separately pseudoconserved parts: the first, as we saw at the end of the previous paragraph,
is|g| (HLLt“V-‘rG“V)KV; and the second is | ¢ | LLU“O‘BGQK@ However, if K, generates coordinate
rotation then the second part is not zero, and, if we accepted the interpretation of ;70" as the
spin pseudotensor of gravity in the Landau-Lifshitz formulation — which view would be supported
by the interpretation of ¢7; as the spin form and the fact that the relation between r;c#*? and
Lt is the same that between e.g. gotB and pH*P —, the result would be rather surprising: the
orbital and spin angular momenta of gravity would be separately conserved.

This strange behaviour, together with others mentioned above and at the end of the previous
paragraph, supports our view that the proper energy-momentum and spin pseudotensors of gravity

are the canonical ones.

3.4. The Noether form on L(M)
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Let K be any vector field on M and {K*} be the collection of functions on L(M) defined by
K: if w = (p,{E,}) € L(M) then let K%(w) be the ath component of K in the basis {E,} at
T,M. (In the language of Kobayashi and Nomizu [27] {K®} is a zero form on L(M) of type
(R™,GL(m,R)).) Thus Lp,,» K, = 67 K,,, where D,,,” is the fundamental vector field on L(M)
associated to the element e,,” of the Weyl basis of gl(m,R). K is a conformal Killing vector on
M iff Lps,) Ky + Lps,) Ka = Qgap for some GL(m, R)-invariant function @ on L(M); and K is a
Killing vector iff @ = 0. Here {B(d,)} are the standard horizontal vector fields on L(M).
The gravitational Noether form, associated to K, is defined by

CIK]:=0°K, +dK, ANu* =

b (3.4.1.)
=0K, + K.w, Nu® + LB(ga)KbO'a .
Then trivially
d(Kqu®) = C[K] + kT*K,, (3.4.2.)
and the pull back of C[K] along a general local section of L(M) is
s*(CK]) = s"(0Y) Ky + s"(dK,) A s™(u®) = (3.43)
= 5"(0Y) K, + E"9,Kys* (a?). T
If s is a coordinate section then
s*(CIK]) = k(g0" K, + Eo“aﬂaaKg)s*(E#), (3.4.4.)

which is just the Noether pseudocurrent (2.3.17.) built up from the Einstein pseudotensors in
holonomic description. For a rigid section the pull back is

s (CIK]) = k(ap0" Ky + oo P9, K3)s*(S,) = (3.45)
= k(B0 K, + apo"* PV, Kg)s*(3,), T

the Noether current (2.4.17.), (2.4.26.). Thus although the pull backs of the Sparling type forms
t;, t/; and ©7, ©7% along rigid sections are not exactly the tensors 4g6’; and 4g67%, respectively,
the pull backs of the Noether form are the Noether (pseudo)currents. The Noether form is there-
fore seems to be the geometric object on L(M) which, with appropriately chosen vector field K,
describes the momentum-angular momentum content of gravity.

A simple consequence of eq. (3.4.2.) is d(C[K] + kT*K,) = 0; and since

dC[K] = —k(dK, NT* + K,dT*") =
= —kLp(s) KoT%,

and the symmetry 7% = T(@%) implied by the symmetry of Einstein’s tensor in absence of torsion,
CIK] is closed for Killing vectors.

4. Summary and discussion

In the present paper the "orthodox” pseudotensorial description of the gravitational linear and
angular momenta was reexamined. In the usual approach three difficulties are involved: (1) There
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is an ambiguity in the definition of the conserved quantities: one can add to them arbitrary curls,
and it does not seem to have a selection rule to rule out this ambiguity. With an appropriate
curl one can obtain the completely different energy-momentum expressions of Einstein, Bergmann,
Mpgller, Komar etc. (2) In contrast to the requirement of the principle of general covariance
the conserved quantities are in general not geometric objects. Although Komar’s expression is
tensorial, but at infinity for the Kerr spacetime it yields 2+ as the angular momentum/mass ratio
instead of the expected = [8]. In the "m-legs” formalism of gravity the conserved quantities are
all SO(p, q)-gauge dependent. (3) The conserved quantities are associated to vector fields on the
spacetime manifold. Thus they are built up not only from the gravitational field variables, but
the actual vector field too. Therefore there are infinitely many conserved quantities even if the
superpotential is fixed. One wants to identify m of them as the linear, and %m(m — 1) as the
angular momentum. However it is not a priori clear how to choose the corresponding vector fields
and what is the interpretation of the remaining infinite conserved quantities.

In the first part of this paper the first difficulty was tried to resolve. To choose from the
mathematically possible infinitely many conserved currents and pseudotensors we followed the
scenario of the Lagrangian theory of matter fields. However, at least in well known textbooks on
field theory, this formalism is available only for first order Lagrangians. Since we wanted to consider
not only first order, but second order Lagrangian too, first we had to generalize the formalism.
This has been done in paragraph 2.1.

In contrast to the canonical energy-momentum and spin tensors the symmetric energy-mom-
entum tensor has several attractive properties, e.g. gauge invariance, independence of total diver-
gences added to the Lagrangian, and its contraction with any Killing vector is conserved if the field
equations are satisfied. Thus the symmetric energy-momentum tensor seems to be better to de-
scribe the energy-momentum and angular momentum of fields. However, conceptually the notion
of energy, momentum and angular momentum is connected to the first Noether theorem. In fact,
this theorem, applied for the material action, gives us just the identity (2.1.10.) and predicts the
conservation of the Noether current (2.1.14.), provided K is a Killing vector and the field equations
are satisfied. On the other hand, the interpretation of the symmetric energy-momentum tensor
as the relativistic energy-momentum density of fields is possible only since it is the Belinfante—
Rosenfeld combination of the canonical tensors. One may say that this interpretation is a matter
of taste. However, this can be so until gravitation is taken into account. In fact, there is no
gravitational counterpart of the symmetric energy-momentum tensor of the matter fields, even in
principle, while one can apply the first Noether theorem for the total action and any vector field
and obtain conserved Noether currents. The symmetric energy-momentum tensor of the matter
fields is simply the ”source density of gravitation”.

Unfortunately, as we saw at the beginning of paragraph 2.2., we cannot introduce acceptable
tensorial energy momentum and angular momentum expressions for gravity, and hence, for lack
of better, we should use the so-called pseudotensorial quantities. Since we would like to have as
complete characterization of the energy, momentum and angular momentum properties of grav-
ity as it is possible, we had to consider the gravitational counterpart not only of the canonical
energy-momentum, but the spin tensor as well. These pseudotensors were defined for second order
Lagrangians in the rest of paragraph 2.2.

Paragraphs 2.3., 2.4. and 2.5. are systematic applications of the general Lagrangian scenario.

First the metric was chosen as the gravitational field variable and Einstein’s first order Lagrangian
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was considered. It was shown that the spin pseudotensor plays the role of a superpotential for
the energy-momentum pseudotensor and von Freud’s superpotential is distinguished among the
superpotentials by the Lagrangian formalism. The contravariant form of these pseudotensors were
defined and it was shown that they satisfy the Belinfante-Rosenfeld equations. Furthermore, their
Belinfante—Rosenfeld combination is just Einstein’s tensor. The Noether pseudocurrent, defined in
the standard way, was shown to give the angular momentum expression of Bergmann and Thomson
as a special case.

Then, instead of the metric, a rigid basis of 1-forms was chosen as the field variable. The spin
pseudotensor, apart from the factor \/m , was shown to be tensorial, just minus the superpotential
of Goldberg. A tensorial canonical energy-momentum expression was found, such that these tensors
satisfy the tensorial Belinfante—Rosenfeld relations. The Noether current constructed from them
is also tensorial. However, they are not invariant with respect to local rigid rotations of the basis
1-forms.

Finally, Hilbert’s second order Lagrangian was considered. It was found that the canonical
energy-momentum pseudotensor is nothing but Mgller’s energy-momentum pseudotensor, intro-
duced originally in a completely different way. The spin pseudotensor plays also the role of a
superpotential and distinguishes Mgller’s superpotential. The results do not depend on whether
the field variable is the metric or a rigid basis of 1-forms. (In the previous two cases not only the
description, but the Lagrangian was different too.)

Now turn to the problem of the appearing contradiction to the principle of general covariance.
As is usually stated the principle of general covariance requires that the laws of Nature must have a
form containing only geometric objects. In the holonomic description the Noether pseudocurrents
are not tensorial objects, in contrast to the requirement of the principle of general covariance. Al-
though for first order Lagrangian and anholonomic description the Noether current is a true vector
field, but it depends on the basis 1-forms; i.e. it is O(p, q) -gauge dependent. The stronger form
of the principle of general covariance formulated e.g. in [1] does not allow this gauge dependence
either.

However, if the geometric objects in the principle of general covariance were not required to
be geometric objects on the spacetime manifold, but they were allowed to be geometric objects on
the manifold of frames of the spacetime; i.e. on the bundle of linear frames L(M) over M, and
if the previous coordinate and/or gauge dependent quantities and formulae could be reformulated
in terms e.g. of differential forms on L(M), then the contradiction with the principle of general
covariance would be resolved. This reformulation of the canonical pseudotensors for the first order
gravitational Lagrangian was done in the second part of this paper.

First we defined the Nester—Witten and Sparling forms on the bundle of linear frames (as
Frauendiener did in four dimensions [32]) in m dimensions (as Dubois-Violette and Madore did
on the bundle of orthonormal frames [31]), and then their contravariant and dual forms were
introduced. Frauendiener has shown that the pull back of Sparling’s form along a coordinate
section of L(M) is Einstein’s canonical energy-momentum pseudotensor, and the pull back of the
contravariant form of Sparling’s form was tried to identify as the Landau—Lifshitz pseudotensor
[32,33]. Here we showed that the pull back (along a coordinate section) of the contravariant
form of Sparling’s form is Bergmann’s pseudotensor, while the Landau-Lifshitz pseudotensor can
be recovered as the pull back of the dual form of Sparling’s form. The pull backs of Sparling’s

form and its contravariant form were calculated along rigid sections of L(M) too. It turned out
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that although the results are tensorial but neither the canonical energy-momentum tensor nor
its contravariant form is a simple pull back of some form of Sparling’s form. However, the pull
backs of the full Sparling equation (or its contravariant form) always yield the equations giving
the canonical energy-momentum tensors in terms of the corresponding superpotentials.

Then a gl(m,R)-valued (m — 1) form, the so-called spin form and its contravariant form
were defined. It is known that by means of Sparling’s form one can give necessary and sufficient
conditions for a metric connection being torsion free and solution of Einstein’s equations. It was
proved that similar equivalent characterization of Einstein’s theory is possible by means of the spin
form too. The pull back of the spin form and its covariant form along any section are shown to
be the corresponding canonical spin pseudotensor. Exterior differential equations for the various
forms of the spin form could be derived, the pull backs of whose antisymmetric part are always
the Belinfante-Rosenfeld equations for the (pseudo) tensors. Finally, for any vector field of the
spacetime an (m — 1) form, called the Noether form, was defined on L(M), whose pull backs are
always the corresponding Noether pseudocurrents.

The comparison of the apparently different and complicated pseudotensorial calculations with
the simple differential form approach suggests to consider the bundle of linear frames as more
natural arena to describe the gravitational (and, to retain the unity of physics, the physical)
phenomena than the spacetime itself. Although it has been shown only in the holonomic and
anholonomic descriptions that the pseudotensorial formulae and quantities can be recovered from
Sparling’s equation and differential forms on L(M), respectively, we interpret the spin form (it
is only a name here), the Sparling form and the Nester—Witten form as the spin and energy-
momentum form of gravity, and the superpotential for the energy-momentum form, respectively.

Accepting this interpretation and recalling that the Landau-Lifshitz pseudotensor is a pull
back of the dual form of Sparling’s form along a coordinate section, the pull back of the dual form
of the spin form would have to be interpreted as the spin pseudotensor in the Landau—Lifshitz
approach. (Since the Landau—Lifshitz energy-momentum pseudotensor is not a canonical pseu-
dotensor, one cannot use the Lagrangian scenario to construct the corresponding spin pseudoten-
sor.) However, it turned out that the orbital and spin parts of the total Landau—Lifshitz angular
momentum are separately conserved. This might suggest not to consider the Landau-Lifshitz
pseudotensors as the proper quantities describing the energy-momentum and angular momentum
properties of gravity.

Unfortunately, we could not recover Mgller’s superpotential, pseudotensors and Noether pseu-
docurrent as pull backs of certain differential forms on L(M) such that, at the same time, the
pull backs of the exterior differential equations for them would be the familiar pseudotensorial
equations.

The reformulation of the pseudotensorial formalism in the coordinate free differential geometric
language does not mean, of course, that the notion of gravitational energy-momentum and angular
momentum became coordinate (gauge) independent. Mathematically this gauge dependence is
coded in the non horizontal character of the Nester-Witten, Sparling, spin and the Noether forms,
and hence their pull backs along local sections of L(M) will depend on the actual sections. (In the
language of [27] these forms are only pseudotensorial, but not tensorial.)

The gauge dependence of the Noether current is not a specific property of gravity, it is common
in non abelian gauge theories: In the gauge theory specified at the end of paragraph 2.1. the field

equation for the connection fields is
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oL oL
©wo_ c c A II
—Ji = 2vy(ﬁ) + 26TCFHAU,
pv g
where JE, the ”source density of the connection fields”, is defined as the functional derivative of
the particle action with respect to AE. Denoting the second term on the right by jf, the connection

field equation is equivalent to

Il — —zvy(%).
While J£ is gauge covariant, neither j& nor the right hand side, the superpotential for the conserved
currents, is gauge covariant. This is the reason why jh is sometimes called pseudocurrent. Since
it is proportional to the structure constant of G, it vanishes for abelian G.

If, however, the notion of gravitational energy-momentum and angular momentum is nec-
essarily gauge dependent, one may ask whether it is good for anything at all, and the problem
considered here is not only a rule how to split the gauge independent Einstein tensor into energy-
momentum and spin parts in a gauge dependent way. Isn’t it a pure gauge? It would be difficult to
avoid this question if we wanted to have only local, energy density-like quantities. However, if we
have a closed (m — 2) dimensional closed submanifold S in M then, in contrast to internal gauge
theories, S may be used to reduce the gauge freedom at the points of S. Thus although we use
the non-horizontal Nester—Witten form, the integral of its pull backs to S along the preferred local
sections may be well defined quasi local integrals. These quasi local integrals will be considered
elsewhere.

Finally, in this paper we did not deal with difficulty (3). The vector field K, if it was specified
at all, was defined by certain properties of the coordinate transformation it generated. It does
not seem to be possible to specify K geometrically within the framework considered here. Quasi
locally, however, there is a chance to define K to generate acceptable linear and angular momenta
of the matter + gravity system.

Acknowledgments

The author is grateful to Professors Peter Bergmann and Venzo De Sabbata for the useful discus-
sions on the spin of gravity, and to the Ettore Majorana Centre for the financial support during
the 12th Erice Summer School of Cosmology and Gravitation, where a part of this paper could be

presented.

References

[1] R. M. Wald, General relativity, The University of Chicago Press, 1984

[2] S. W. Hawking, G. F. R. Ellis, The large scale structure of spacetime, Cambridge Univ. Press,
Cambridge 1973

[3] S. Weinberg, Gravitation and Cosmology, John Wiley and Sons Inc. New York, 1972

[4] A. Trautman, Conservation Laws in Gen. Rel., in Gravitation: An Introduction to Current
Research, Ed.: L. Witten, Wiley, New York 1962

37



[5] A. Trautman, F. A. E. Pirani and H. Bondi, Lectures on General Relativity, Brandeis Summer
Institute in Theor. Phys., New Jersey 1964

[6] P. G. Bergmann, The general theory of relativity, in Handbuch der Physik IV., Ed.: S. Flugge,
Springer - Verlag, Berlin 1962

[7] J. Horsky and J. Novotny, Czech. J. Phys.B 19 419 (1969)

[8] J.N. Goldberg, Invariant transformations, conservation laws, and energy-momentum, in: Gen-
eral relativity and gravitation, Vol.1, Ed.: A. Held, Plenum, New York, 1980

[9] P. G. Bergmann, Phys. Rev. 112 287 (1958)

[10] A. J. Anderson: Principles of Relativity Physics, Acad. Press, New York and London, 1967,

Ch. 13

[11] F. J. Belinfante, Physica, VI. 887 (1939)

[12] F. J. Belinfante, Phisica, VII. 305 (1940)

[13] L. Rosenfeld, Mem. Roy. Acad. Belg. Cl. Sci. 18 No6 (1940)

[14] F. W. Hehl, Rep. Math. Phys. 9 55 (1976)

[15] F. W. Hehl, P. von der Heyde, G. D. Kerlick, J. M. Nester, Rev. Mod. Phys. 48 393 (1976)
[16] R. Penrose, W. Rindler, Spinors and spacetime Vol 1, Spinor calculus and relativistic fields,

Cambridge Univ. Press, Cambridge, 1984

[17] R. Utiyama, Phys. Rev. 101 1597 (1956)

[18] F. H. J. Cornish, Proc. Roy. Soc. Lond. A 282 358 (1964)

[19] M. Ferraris, M. Francaviglia, Gen. Rel. Grav. 22 965 (1990)

[20] C. Mpller, Ann. Phys. 4 347 (1958)

[21] A. Komar, Phys. Rev. 113 934 (1959)

[22] F. de Felice, C. J. S. Clarke, Physics in curved manifolds, Cambridge Univ. Press, Cambridge,
1990

[23] P. G. Bergmann, R. Thomson, Phys. Rev. 89 400 (1953)

[24] J. N. Nester, Phys. Lett. 139 A 112 (1989)

[25] J. N. Goldberg, Phys. Rev. 111 315 (1958)

[26] L. Landau, E. M. Lifshitz, Classical theory of fields, (in Hungarian), Tankényvkiad6, Budapest
1975

[27] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol 1, Interscience 1964

[28] G. A. J. Sparling, Twistors, spinors and the Einstein vacuum equations, Preprint, 1982

[29] M. Dubois-Violette, J. Madore, Commun. Math. Phys. 108 213 (1987)

[30] J. N. Nester, Phys. Lett. 83 A 241 (1981)

[31] E. Witten, Commun. Math. Phys. 80 381 (1981)

[32] J. Frauendiener, Class. Quantum Grav. 6 L237 (1989)

[33] L. J. Mason, J. Frauendiener, in Twistors in Mathematics and Physics, London Math. Soc.
Lecture Notes No. 156, Ed.: T. N. Bailey and R. J. Baston, Cambridge Univ. Press, Cam-
bridge 1990

38



