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Abstract

The Lagrangian scenario is applied both to Einstein’s first and Hilbert’s second order Lagrangians

when the field variable is the metric and when it is a rigid basis of 1-forms. The canonical

spin pseudotensors, as the gravitational counterparts of the canonical spin tensor of the matter

fields, are introduced and it is shown that they play the role of superpotentials for the canonical

energy-momentum pseudotensors. The canonical spin pseudotensors distinguishes von Freud’s and

Goldberg’s superpotentials for Einstein’s, and Møller’s superpotential for Hilbert’s Lagrangian.

(For Hilbert’s Lagrangian there is no difference between the metric and rigid basis descriptions.)

Møller’s energy-momentum pseudotensor is therefore recovered as the canonical energy-momentum

pseudotensor for Hilbert’s Lagrangian. The contravariant form of the canonical pseudotensors

are shown to satisfy Belinfante–Rosenfeld type equations, furthermore their Belinfante–Rosenfeld

combination is always the Einstein tensor. It is shown that, for first order Lagrangian and rigid

basis description, the canonical energy-momentum, the canonical spin and the Noether current

are tensorial quantities, and the canonical energy-momentum and spin tensors satisfy the tensorial

Belinfante–Rosenfeld equations. These tensorial quantities, however, depend on the basis of 1-

forms we use.

The second part of the paper is the differential geometric unification and reformulation of the

previous different pseudotensorial approaches. First it is shown that, along coordinate sections,

the pull backs of the contravariant and dual forms of Sparling’s form, defined on the bundle of

linear frames L(M) over the m dimensional spacetime, are the Bergmann and the Landau–Lifshitz

pseudotensors, respectively. Although the pull backs of Sparling’s form along rigid sections are

not exactly the energy-momentum tensors, they are always tensorial and the pull backs of the

full Sparling equation are always the equations expressing the canonical (pseudo) tensors by the

corresponding superpotentials. A gl(m,R) valued (m − 1) form, called the spin form, is defined

on L(M), and it is shown that its pull backs are the various canonical spin (pseudo) tensors. An

exterior differential equation for the contravariant form of the spin form is derived, whose pull

backs are just the Belinfante–Rosenfeld equations for the canonical (pseudo) tensors. In terms

of the spin form a necessary and sufficient condition is found for the metric connections being

torsion free and to satisfy Einstein’s equations. Finally, for any vector field on the spacetime an

(m− 1) form, called the Noether form, is defined on L(M) whose pull backs to the spacetime are

the corresponding Noether (pseudo) currents.
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1. Introduction

In special relativistic classical Lagrangian field theories one can associate ten conserved quanti-

ties, namely divergence free vector fields, to the ten independent Killing vectors of Minkowski’s

spacetime [1]. As a consequence of the semi-direct sum structure of the Lie algebra of the Killing

vectors it is natural to interpret the conserved quantities as the linear and angular momenta of

the matter fields. If the spacetime is curved but it is of constant curvature then the Lie alge-

bra of the Killing vectors is so(1, 4) or so(2, 3). Thus although one has ten conserved quantities

again, their interpretation as linear and angular momenta is not obvious, because both so(1, 4)

and so(2, 3) are semisimple and do not admit canonical ”4 + 6” decomposition. If the spacetime is

not of constant curvature then the number of independent Killing vectors, and hence the number

of conserved kinematical quantities, is less than ten, e.g. zero; and, apart from exceptional cases,

their interpretation is far from being obvious.

In a pure geometric interpretation of gravity [2] the result is not surprising in the light of the

first Noether theorem: if the spacetime does not admit symmetries then one cannot expect to have

conserved kinematical quantities. In the field theoretical interpretation of gravity [3] one can say

that the matter fields together is not a closed system, they are interacting with the gravitational

field and hence the kinematical quantities of the matter fields are not constant. One can have

conserved kinematical quantities for the matter fields only if the ”gravitational interaction” has

symmetries, i.e. Killing vectors. Since, however, the matter and gravitational fields together can

be considered as a semi - closed system (i.e. a closed system allowing in- and out going radiation),

one may expect to be able to associate kinematical quantities to the gravitational field such that

they, together with those of the matter fields, be conserved [4-8]. In fact, this philosophy works for

non - gravitational matter fields on Minkowski’s spacetime, where one has ten independent Killing

symmetries as symmetries of the whole material action too, and hence, using the first Noether

theorem, one can construct the conserved currents to the Killing symmetries [4-8]. Although these

conserved quantities are unique only up to a curl, there is a canonical choice to build up these

currents from the canonical energy - momentum and spin tensors of the matter fields and the

Killing vectors. These are the canonical Noether currents. However, in the case of gravitation

one does not have (ten) Killing vectors and hence one cannot use the first Noether theorem to

construct the (ten) gravitational kinematical quantities. One has too few symmetries. On the

other hand any smooth vector field generates a 1 parameter group of coordinate transformations

leaving the field equations invariant and forming a subgroup of the group of general coordinate

transformations. As a consequence of the two Noether theorems one has a weak and a strong

conservation law [4-10]. Unfortunately, the conserved quantity is not determined uniquely, one can

add to it a curl, and it does not seem to have a canonical choice for the ”currents”. Because of

the arbitrariness of the vector field, the interpretation of the conserved quantity is far from being

obvious. Now one has too many ”symmetries”. The most serious difficulty is, however, the non

tensorial character of both these conserved quantities and the conservation equations. One of the

most important achievements of general relativity is probably the perception that Nature must be

described in terms of absolute elements; i.e. geometric objects (”principle of general covariance”).

Thus the usage of these non tensorial quantities seems to contradict to the principle of general

covariance, and, as is written in [29], this ”difficulty has led most physicists to the conclusion that

the problem is ill-defined and the field irrelevant, density of gravitational energy is like density

of beauty of a panting”. Nevertheless, in certain situations, e.g. in studying the gravitational
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radiation, gravitational energy - momentum and angular - momentum like quantities would be

useful.

The present paper, which is intended to be the first part of a series, is devoted to the problem

of linear and angular momenta in general relativity. First we consider the ”orthodox” pseudoten-

sorial description [4-10]. To choose from the mathematically possible infinitely many different

pseudotensors we follow the scenario of the Lagrangian formalism of fields, where we have not

only the canonical energy - momentum, but the canonical spin tensor as well [10-15]. The most

important characteristic feature of these canonical tensors is the pair of Belinfante - Rosenfeld

relations for them. In paragraph 2.1. this formalism is reviewed for tensorial matter fields and

second order Lagrangian. The Belinfante - Rosenfeld combination of the canonical tensors, the

Noether currents and the invariance properties of these objects are also considered.

In paragraph 2.2. the canonical energy - momentum and spin pseudotensors are defined for

second order Lagrangians and tensorial gravitational field variables. The notion of spin pseudoten-

sor introduced here is believed to be new. In paragraph 2.3. and 2.4. the general scenario is applied

for Einstein’s first order Lagrangian first if the gravitational field variable is the metric and then

if it is a rigid basis of 1 forms. The canonical pseudotensors for Hilbert’s second order Lagrangian

are considered in paragraph 2.5., and finally, in paragraph 2.6., the Landau - Lifshitz - Goldberg

type (non canonical) pseudotensors, appearing naturally as Belinfante - Rosenfeld combinations,

are considered.

The appearing contradiction between these canonical gravitational quantities and the principle

of general covariance has not been resolved. To do this one should try to find geometric objects

describing the energy - momentum and spin content of gravity. In the second part of the present

paper we deal with certain differential forms defined on the bundle of linear frames, the Sparling

form [28,29] and a so-called spin form, that we can interpret as the geometric objects we search

for. In paragraph 3.1. the differential geometric formulae we need are reviewed. Paragraph 3.2.

is devoted to the study of Sparling’s form. The pull back of this form along a coordinate section

is known to be Einstein’s canonical energy - momentum pseudotensor [32,33]. Here the relation

between Sparling’s form and other energy - momentum pseudotensors is clarified. In paragraph

3.3. the spin form is introduced, Belinfante - Rosenfeld type equation for the spin and energy -

momentum forms are derived and the relation between the spin form and the spin pseudotensors

is clarified. Then the Noether form is introduced on the bundle of linear frames and its pull backs

along various sections of the bundle are shown to be the various Noether pseudocurrents built

up from the canonical pseudotensors. Finally, in the last section of this paper we summarize and

discuss the results. In our following paper we will deal with the quasi local integrals of the pull

back of the Noether form, their interpretation and properties [34].

Since the aim of the present paper is not only to derive new formulae for new (and old) pseu-

dotensorial quantities, but also to study the structure of these equations to be able to reformulate

them in the differential geometric language, some formulae will be known from the pseudotensor

literature. (Thus the first part of this paper may also be considered as a review of the canonical

pseudotensors from a specific point of view, but it is definitely more than a pure review.) But this

literature is so extensive [4-10,18-23,25,26] that it is almost impossible to cite always the original

papers where they were published. Thus we frequently refer only to widely accepted and well

known review articles [4-6].
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2. Canonical pseudotensors of Einstein’s theory

2.1. Canonical energy-momentum and spin tensors of matter fields

Let M be an m dimensional manifold, g a metric on M of signature p − q, p + q = m, let ∇µ
be the unique torsion-free covariant derivation determined by g and ε the natural volume m-form

associated to g; i.e. if (x1, ..., xm) is a local coordinate system then ε =
√
|g|εα1...αmdx

α1∧...∧dxαm
= m!

√
|g|dx1∧ ...∧dxm. (εα1...αm is the totally skew Levi-Civita symbol, ε1...m = 1, Greek indexes

are coordinate indexes and for the exterior product the convention compatible with 2dx1 ∧ dx2 =

dx1 ⊗ dx2 − dx2 ⊗ dx1 is used. Abstract indexes will not be used in this paper.)

By matter fields we mean a finite N number of tensor fields Φnα1...αr
β1...βs

, n = 1, ..., N , and the

type (r, s) of the nth field may depend on n. The Lagrangian for these fields is assumed not

to depend on higher than the second covariant derivatives of the fields: L = Lm(gαβ ,Φ
nα1...αr
β1...βs

,

∇µΦnα1...αr
β1...βs

, ∇µ∇νΦnα1...αr
β1...βs

). If no confusion can arise we will frequently omit the spacetime

indexes of the matter fields. For an open domain D ⊂ M having compact closure and a field

configuration Φn(x) the action functional is defined as ID [g,Φ] :=
∫
D L(gαβ(x),Φn(x),∇µΦn(x),

∇µ∇νΦn(x))ε. The Euler-Lagrange expressions for the matter fields (i.e. the functional derivative

of ID[g,Φ] with respect to Φn) are

En[L,Φ] :=
∂L

∂Φn
−∇µ(

∂L

∂∇µΦn
) +∇µ∇ν(

∂L

∂∇ν∇µΦn
). (2.1.1.)

Let r, s be fixed nonnegative integers. For r = s = 0 let ∆µ
ν = 0, while for r + s 6= 0 let us define

∆µα1...αrδ1...δs
νβ1...βsγ1....γr

: = (δα1
ν δµγ1

...δαrγr + ...+ δα1
γ1
...δαrν δµγr )δ

δ1
β1
...δδsβs−

− δα1
γ1
...δαrγr (δδ1ν δ

µ
β1
...δδsβs + ...+ δδ1β1

...δδsν δ
µ
βs

).
(2.1.2.)

This is just the invariant tensor occurring in the expression of the Lie derivative  LKΦ of an (r, s)

type tensor field Φ along the vector field K in terms of the covariant derivatives:

 LKΦα1...αr
β1...βs

= ∇KΦα1...αr
β1...βs

−∇µKν∆µα1 ...αrδ1...δs
νβ1...βsγ1...γr

Φγ1...γr
δ1...δs

. (2.1.3.)

Since the first term on the right hand side contains K purely algebraically while the second is

proportional to the first derivative of K, this expression may be interpreted as the splitting up of

the rate of the Lie dragging along K into a translational and a rotational part. (Similarly to the

spacetime indexes of the matter fields the r+s upper and r+s lower indexes of ∆µα1...αrδ1...δs
νβ1,,,βsγ1...δr

will

not in general be written out. Thus, for example, ∆µ
ν∇ρΦ will stand for ∆µα1 ...αrδ1...δs

νβ1...βsγ1...γr
∇ρΦγ1...γr

δ1...δs
.)

By means of ∆µ
ν the commutators of the covariant derivations and the covariant and Lie derivations

can be written in the following short forms:

(∇α∇β −∇β∇α)Φ = Rνµαβ∆µ
νΦ (2.1.4.)

and

 LK∇αΦ−∇α  LKΦ = (−RνµαβKβ +∇α∇µKν)∆µ
νΦ. (2.1.5.)

(Eq. (2.1.4.) shows that our sign convention for the curvature tensor is the same that is used in

[2,27]. The Ricci tensor is defined by Rαβ := Rµαµβ .)

It will be useful to introduce the following tensor field:
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σµαβ : =

(
∂L

∂∇µΦn
−∇ν(

∂L

∂∇ν∇µΦn
)

)
∆α
βΦn+

+
∂L

∂∇µ∇νΦn
(∆α

β∇νΦn − δαν∇βΦn).

(2.1.6.)

Using this definition, the dynamical (or symmetric) energy-momentum tensor (which is, by defini-

tion, twice the functional derivative of ID [g,Φ] with respect to gαβ) takes the form:

Tαβ = 2
∂L

∂gαβ
+ Lgαβ+

+
1

2
∇µ(σαβµ + σβαµ − σαµβ − σβµα − σµαβ − σµβα).

(2.1.7.)

Let K be any vector field on M . Then

∇µ(LKµ) =  LKL+
1

2
Lgαβ  LKgαβ =

= (
∂L

∂gαβ
+

1

2
Lgαβ) LKgαβ +En[L,Φ] LKΦn+

+∇µ
([

∂L

∂∇µΦn
−∇ν(

∂L

∂∇ν∇µΦn
)

]
 LKΦn +

∂L

∂∇µ∇νΦn
 LK∇νΦn

)
+

+

(
∂L

∂∇µΦn
−∇ν(

∂L

∂∇ν∇µΦn
)

)
{ LK∇µΦn −∇µ  LKΦn}+

+
∂L

∂∇µ∇νΦn
{ LK∇µ∇νΦn −∇µ  LK∇νΦn} .

(2.1.8.)

Let us define

θµν := Lδµν −
(

∂L

∂∇µΦn
−∇ρ(

∂L

∂∇ρ∇µΦn
)

)
∇νΦn−

− ∂L

∂∇µ∇ρΦn
∇ν∇ρΦn.

(2.1.9.)

Using the definitions of σµαβ and θµν , the expression (2.1.7.) for T αβ and (2.1.4.) and (2.1.5.)

both for the (r, s) and (r, s+ 1) type fields Φ and ∇νΦ, after a rather long calculation one arrives

at

∇µ(LKµ) = En[L,Φ] LKΦn +
1

2
Tαβ  LKgαβ+

+∇µ
(
LKµ − θµνKν − (σµ[αβ] + σα[βµ] + σβ[αµ])∇αKβ

)
,

and hence

En[L,Φ] LKΦn +
1

2
Tαβ  LKgαβ = ∇µ

(
θµνK

ν + (σµ[αβ] + σα[βµ] + σβ[αµ])∇αKβ

)
. (2.1.10.)

The most important consequences of this identity are the following [11-15]:

1. For the field configurations satisfying the Euler–Lagrange equations, En[L,Φ] = 0, Tαβ is

divergence free: ∇αTαβ = 0.
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2. Using ∇αTαβ = 0 and En[L,Φ] = 0 again, one obtains:

Tαβ = θαβ +∇µ(σµ[αβ] + σα[βµ] + σβ[αµ]) (2.1.11.)

We will call its right hand side as the Belinfante–Rosenfeld combination of θαβ and σµαβ . Taking

its antisymmetric part and its divergence, respectively, one has

θ[αβ] = −∇µσµ[αβ] (2.1.12.)

and

∇µθµν = −Rνραβσραβ . (2.1.13.)

These will be called the algebraic and differential Belinfante–Rosenfeld relations, respectively.

If K is any smooth vector field and ψt is the local 1 parameter transformation group generated

by K such that ψ0 = Id then
(
d
dtIψt(D)[g,Φ]

)
t=0

= −
∫
D

 LK(Lε) = −
∫
D
∇µ(LKµ)ε. Thus if K is

a Killing vector and the Euler–Lagrange equations are satisfied then the infinitesimal changing of

the action integral along K is only a surface term. Its translational part is connected to Lδµν − θµν
while its rotational part to a combination of the σµαβ ’s.

3. For any vector field K one can form the vector field (Noether current)

Cµ[K] : = θµνK
ν + (σµ[αβ] + σα[βµ] + σβ[αµ])∇αKβ =

= T µνKν +∇ν
(

(σµ[νρ] − σν[µρ] − σρ[µν])Kρ

)
.

(2.1.14)

The difference Cµ[K] − T µνKν , being the divergence of an antisymmetric tensor, is identically

conserved. Since ∇µCµ[K] = ∇µ(T µνKν) = 1
2T

µν  LKgµν , the vector fields Cµ[K] and T µνKν

themselves are conserved if K is a Killing vector. The interpretation of the conserved vector fields

Cµ[K] depends not only on the Killing vector K, or possibly on the global properties of its integral

curves, but on the structure of the whole Lie algebra of the Killing vectors too. There is an

obvious and commonly accepted interpretation of these conserved quantities only in the case of

flat (Lorentz) geometry, yielding the interpretation of θµν as the canonical energy-momentum and

σµαβ as the canonical spin tensors of the matter fields: The Lie algebra of the Killing vectors is

isomorphic to the semi direct sum of Rm and so(1,m−1), and hence the classification of the Killing

vectors as ”translations” or ”boost-rotations” comes from the structure of the Lie algebra itself.

In a Descartes coordinate system, adapted to the translation Killing vectors, the conserved vector

field associated to the ”translation” Killing vectorKµ
α = δµα is the linear momentum Cµ[Kα] = θµα,

and to the ”rotation-boost” Killing vector Kµ
αβ = xνgναδ

µ
β − xνgνβδµα is the angular momentum

Cµ[Kαβ ] = gανgβρ(θ
µρxν − θµνxρ − 2σµ[ρν]). The last is the sum of the orbital momentum of θµν

and some ”internal” quantity: the sum of the orbital and spin angular momenta. If K is only a

conformal Killing vector then the additional property 0 = T αα = θαα + 2gαβ∇µσα[βµ] ensures the

conservation of Cµ[K] and T µνKν [16].

Now consider the invariance properties of the quantities introduced so far under certain trans-

formations of the Lagrangian and the fields.

a. Let lµ be any vector field built up from gαβ , the fields and possibly their first covariant

derivatives; i.e. lµ = lµ(gαβ ,Φ
n,∇βΦn). Then the transformation L 7→ L+∇µlµ leaves invariant
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both the Euler–Lagrange expressions, i.e. En[L+∇µlµ,Φ] = En[L,Φ], and the dynamical energy-

momentum tensor Tαβ, since they are functional derivatives of ID[g,Φ]. However, both θµν and

σµαβ will in general change: Since

∂

∂∇µΦ
∇ρlρ = ∇ρ(

∂lρ

∂∇µΦ
) +

∂lµ

∂Φ

and

∂

∂∇µ∇νΦ
∇ρlρ =

1

2
(
∂lµ

∂∇νΦ
+

∂lν

∂∇µΦ
),

one has

σµαβ 7→ σµαβ +
∂lµ

∂Φn
∆α
βΦn +

∂lµ

∂∇ρΦn
∆α
β∇ρΦn−

− 1

2
(

∂lµ

∂∇αΦn
+

∂lα

∂∇µΦn
)∇βΦn+

+∇ρ
(

1

2

[
∂lρ

∂∇µΦn
− ∂lµ

∂∇ρΦn
]

∆α
βΦn

)

and

θµν 7→ θµν +∇ρlρδµν −
∂lµ

∂Φn
∇νΦn − ∂lµ

∂∇ρΦn
∇ν∇ρΦn−

− 1

2
∇ρ
(

∂lρ

∂∇µΦn
− ∂lµ
∂∇ρΦn

)
∇νΦn+

− 1

2

(
∂lρ

∂∇µΦn
− ∂lµ

∂∇ρΦn
)
∇ν∇ρΦn.

Similarly, TαβKβ does not change if the Lagrangian is modified by a total divergence, but in

general Cµ[K] does.

b. Suppose that the matter fields have some internal symmetry, characterized by a Lie group

G and a linear representation of it on some N dimensional vector space V ; and the matter fields are

either particle or gauge (connection) fields. The action of G on V mixes linearly the particle fields

ΨP α1...αr
β1...βs

, P = 1, ..., N , while the remaining matter fields, the connection fields, are G -valued 1

forms AΓ
µ (G is the Lie algebra of G), and they transform according to the adjoint representation

of G. Let {λPΓQ} be the basis of a linear representation of G on V , Γ = 1, ..., dimG, and cΓ
∆Π the

structure constants. Then any gauge invariant matter Lagrangian with minimal coupling must have

the form [17]: Lm = Lp(gαβ ,Ψ
P , DµΨP , DµDνΨP ) + Lc(gαβ , F

P
Qµν), where DµΨP := ∇µΨP +

AΓ
µλ

P
ΓQΨQ is the spacetime-gauge covariant derivative and F Γ

µν := ∂µA
Γ
ν −∂νAΓ

µ+cΓ∆ΠA
∆
µ A

Π
ν is the

field strength of the connection fields. If Lm is gauge invariant, or it can be made gauge invariant

by adding to it a total divergence ∇µlµ then the dynamical energy momentum tensor T αβ is gauge

invariant too. But in general neither θµν nor σµαβ is gauge invariant. TαβKα is gauge invariant

also, but in general Cµ[K] is not.

If the spacetime geometry is specified by a (local) field of basis 1 forms {ϑaα} and a constant

matrix ηab for which ηab = ηefΛeaΛf b ∀Λij ∈ O(p, q) then gαβ := ϑaαϑ
b
βηab is a metric of p−q signa-

ture and the analysis above can be repeated. The requirement of the local O(p, q) -invariance of the

matter Lagrangian implies L = Lm(Φna1...ar
b1...bs

,∇eΦna1...ar
b1...bs

,∇e∇fΦna1...ar
b1...bs

) and θ[ab] = −∇eσe[ab],
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where e.g. ∇eΦna1...ar
b1...bs

:= ∇µΦnα1...αr
β1...βs

ϑa1
α1
...ϑarαrE

µ
e E

β1

b1
...Eβsbs . Thus the algebraic Belinfante–

Rosenfeld equation is a consequence of the O(p, q)–invariance of Lm, independently of the field

equations, and hence the Belinfante–Rosenfeld combination of θµν and σµαβ is symmetric. The

functional derivative Tαa of ID[ϑ,Φ] with respect to ϑaα is Eαe ηaf
(
θ[ef ] +∇k(σk[ef ] +σe[fk] +σf [ek])

)

+Eαe En[L,Φ]∆e
aΦn, and hence the matter field equations imply the symmetry of T ab := ϑaαT

α
eη
eb.

Moreover, since ∇aT ab = ∇aθab+Rbijkσ
ijk = En[L,Φ]ηbc∇cΦn, the field equations imply the van-

ishing of ∇aT ab; and hence the differential Belinfante–Rosenfeld equation.

2.2. Canonical pseudotensors of gravity

The formalism described in the previous section cannot be applied to gravity in its original form,

since a sharp distinction between the field variables and the fields specifying the spacetime geom-

etry was needed, while for gravity these two coincide. The gravitational action is therefore built

only from the gravitational field variables and thus one can form only its functional derivative

with respect to the gravitational field variables. These are the Euler–Lagrange expressions but

we do not have any gravitational counterpart of the dynamical energy momentum tensor. Thus

if we want to describe the energy-momentum (and possibly angular momentum) content of grav-

ity the gravitational counterpart of the canonical energy-momentum and spin tensors should be

introduced. But since

Eαβ [R, g] LKgαβ = −
(
Rαβ − 1

2
Rgαβ

)
 LKgαβ = −2∇α

(
(Rαβ −

1

2
Rδαβ )Kβ

)
, (2.2.1.)

thus, at least for Hilbert’s scalar Lagrangian 1
2κR of Einstein’s theory, the comparison of the

equation above with (2.1.10.) shows that the canonical energy momentum tensor of gravity would

be − 1
κG

α
β while the canonical spin tensor would be zero. In the weak field approximation, however,

gravity behaves as a spin two field on Minkowski’s spacetime; and hence in general non-vanishing

spin tensor and non-symmetric canonical energy-momentum tensor would be expected. (If the

first Noether theorem were used for Hilbert’s gravitational action then in the big round brackets

on the right hand side Komar’s expression 1
2∇β(∇βKα −∇αKβ) would also appear [6]. However

Komar’s expression is identically conserved and contains the second derivative of K, and hence it

cannot be considered as the spin term.)

A formalism analogous to that described in the previous paragraph can however be developed

by choosing a local coordinate system and using partial derivations as torsion free flat covariant

derivations [10]. This coordinate system defines a local background geometry on which the physical

metric becomes a field, and hence the scenario of the Lagrangian field theory can be applied to it.

(Another approach is to choose a non-dynamical background metric [18] or connection [19] on M ,

and to ”covariantize” the formalism. Although the limitation of the first, coordinate approach is

obvious: the results are valid only in a coordinate neighbourhood, we choose this approach since

here we are interested only in local expressions, and locally all three approaches are essentially

equivalent.) This yields the so-called canonical energy-momentum and spin pseudotensors (or

complexes) of gravity, according to the following formal prescription:

Choose a local coordinate neighbourhood U ⊆ M with coordinates (x1, ..., xm) on U and

the collection φn of gravitational field variables. φn may be, for example, the metric tensor

gαβ or a collection {ϑaα} of basis 1 forms satisfying gαβϑaαϑ
b
β = ηab for some constant matrix
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ηab, a, b = 1, ...,m. The first description will be called holonomic while the second anholo-

nomic. The gravitational Lagrangian L will be assumed not to depend on higher than the

second derivatives of φn: L = L(φn, ∂µφ
n, ∂µ∂νφ

n) and the gravitational action functional is

ID [φ] :=
∫
D
L(φn(x), ∂µφ

n(x), ∂µ∂νφ
n(x))dmx, D ⊆ M . If g is the determinant of gαβ in the

coordinate system (x1, ..., xm) then the canonical energy-momentum and spin pseudotensors, tµν

and sµαβ , are defined by

√
| g |tµν := Lδµν −

(
∂L

∂∂µφn
− ∂ρ(

∂L
∂∂µ∂ρφn

)

)
∂νφ

n−

− ∂L
∂∂µ∂ρφn

∂ν∂ρφ
n

(2.2.2.)

and

√
| g |sµαβ : =

(
∂L

∂∂µφn
− ∂ρ(

∂L
∂∂µ∂ρφn

)

)
∆α
βφ

n+

+
∂L

∂∂µ∂ρφn
(∂ρ∆

α
βφ

n − δαρ ∂βφn),

(2.2.3.)

respectively. Assuming the gravitational field equations to hold, En[L + Lm, φ] := ∂(L+Lm)
∂φn −

∂µ(∂L+Lm
∂∂µφn

)+ ∂µ∂ν( ∂L+Lm
∂∂µ∂νφn

) = 0, where Lm :=
√
| g |Lm is considered as a function of the gravi-

tational and matter field variables and their first and possibly the second partial derivatives, the

coordinate (or pseudo) divergence of (2.2.2.)

∂µ(
√
| g |tµν) = En[L, φ]∂νφ

n =

= −En[Lm, φ]∂νφ
n.

(2.2.4.)

But the functional derivative En[Lm, φ] is essentially the dynamical energy-momentum tensor of

the matter fields. Thus, assuming the matter field equations to hold, one finally has

∂µ
(√
| g |(tµν + T µν)

)
= 0 (2.2.5.)

This equation implies the existence of a so-called superpotential ∪νµα = ∪ν [µα] such that

√
| g |(tµν + T µν) =

1

2
∂α ∪ν µα. (2.2.6.)

In the theory of pseudotensors of general relativity [4-10,18,20,21,25,26] one usually starts with

a more or less ad hoc superpotential, built from the gravitational field variables, and using Ein-

stein’s equations κT µν = Gµν := Rµν − 1
2Rδ

µ
ν one defines the energy-momentum pseudotensor by

eq.(2.2.6.). But now one has as many pseudotensors as the equivalence classes of ∪βαµ’s, where ∪
and ∪̃ are equivalent if ∪βαµ − ∪̃βαµ = ∂νVβ

αµν for some Vβ
αµν = Vβ

α[µν] = Vβ
[αµ]ν . Thus in the

sea of pseudotensors it is rather difficult to find which pseudotensors may have physical significance

(if any). On the other hand the Lagrangian formalism above may be considered as a selection rule

to choose from the mathematically possible pseudotensors. This is the reason why we prefer this

approach of pseudotensors and consider only the so-called canonical ones.

If the gravitational Lagrangian is modified as L 7→ L+ ∂µl
µ for some lµ = lµ(φn, ∂ρφ

n), then

tµν and sµαβ will in general change according to

8



√
| g |tµν 7→

√
| g |tµν + ∂ρl

ρδµν −
∂lµ

∂φn
∂νφ

n − ∂lµ

∂∂ρφn
∂ν∂ρφ

n−

− 1

2
∂ρ

([
∂lρ

∂∂µφn
− ∂lµ

∂∂ρφn

]
∂νφ

n

) (2.2.7.)

and

√
| g |sµαβ 7→

√
| g |sµαβ +

∂lµ

∂φn
∆α
βφ

n +
∂lµ

∂∂ρφn
∆α
β∂ρφ

n

− 1

2
(
∂lµ

∂∂αφn
+

∂lα

∂∂µφn
)∂βφ

n+

+
1

2
∂ρ

([
∂lρ

∂∂µφn
− ∂lµ

∂∂ρφn

]
∆α
βφ

n

)
.

(2.2.8.)

The price we have to pay for this construction is the non tensorial character of these quantities,

they are highly coordinate dependent. Because of the noncommutativity of partial derivations with

index risings and lowering, it will not always be trivial which quantities will be useful. For example

an equation may be extremely complicated if covariant indexes are used, while remarkably simple

in its contravariant form.

In the next paragraphs the canonical pseudotensors of Einstein’s theory, based first on Ein-

stein’s first order and then Hilbert’s second order Lagrangian, will be studied both in holonomic

and anholonomic descriptions.

2.3. Einstein’s pseudotensors in holonomic description

The gravitational field variables are the components gαβ of the metric in a fixed coordinate system

(x1, ..., xm) and Einstein’s Lagrangian is

LE : =
1

2κ

{
R
√
| g | − ∂µ

(√
| g |(Γµγδgγδ − gµρΓνρν)

)}
=

=
1

2κ

√
| g |gγδ(ΓργνΓνδρ − ΓρρνΓνγδ),

(2.3.1.)

where κ > 0 is Einstein’s gravitational constant. For later convenience let us define

lµ :=
√
| g |(Γµγδgγδ − gµρΓνρν) =

√
| g |gµν (∂αgνβ − ∂νgαβ) gαβ . (2.3.2.)

Thus 2κLE = R
√
| g |−∂µlµ. Einstein’s energy-momentum pseudotensor [10] is defined by (2.2.2.)

and (2.3.1.):

2κ
√
| g |Etαβ : = 2κ

(
LEδαβ −

∂LE
∂∂αgµν

∂βgµν

)
=

=
√
| g |

{
δαβ (ΓρνγΓνρδ − ΓρρνΓνγδ)g

γδ + gαρΓνρβΓγγν−

− gαρΓνρνΓµβµ + Γαγδg
γδΓνβν + ΓαβγΓρρδg

γδ − 2ΓαργΓρβδg
γδ
}
.

(2.3.3.)

Et
α
β can be recovered from P. von Freud’s superpotential [4-8,10]: If Hαβγδ :=| g | Gαβγδ :=

| g | (gαγgβδ − gαδgβγ) – which is called the Landau–Lifshitz superpotential – then von Freud’s

superpotential is defined by
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F ∪ρ αβ : =
1√
| g |

gργ∂δH
αβγδ =

= −2
√
| g |

(
Γ[α
ρµg

β]µ + δ[α
ρ Γ

β]
γδg

γδ − δ[α
ρ g

β]µΓννµ

)
.

(2.3.4.)

Trivially F ∪ρ αβ = F ∪ρ [αβ], F∪[ραβ] = 0 and F ∪ρ αρ = (m− 2)lµ. Now the so-called von Freud

equation is

2
√
| g |(Gαβ + κEt

α
β) = ∂µF ∪β αµ. (2.3.5.)

Because of the antisymmetry of F ∪ρ αβ (2.3.5.) implies the (pseudo)divergence equation ∂α
(√
| g |

(Gαβ + κEt
α
β)
)

= 0. Since ∂α∂β = ∂β∂α this pseudo divergence equation looks like as the

differential Belinfante–Rosenfeld equation. Et
α
β does not determine the superpotential uniquely:

F ∪β αµ and F ∪β αµ +∂νVβ
αµν belong to the same pseudotensor, Et

α
β , for any Vβ

αµν = Vβ
α[µν]

= Vβ
[αµ]ν , which therefore has the symmetry Vβ

αµν = Vβ
[αµν].

Using definition (2.2.3.) we introduce the canonical spin pseudotensor:

2κ
√
| g |Esµαβ : = 2κ

∂LE
∂∂µgρν

(−δαρ gνβ − δαν gρβ) =

=
√
| g |

{
δαβ (Γµγδg

γδ − gµρΓνρν) + gµαΓρβρ + δµβg
αρΓγργ − 2gαρΓµρβ

}
.

(2.3.6.)

This spin pseudotensor and von Freud’s superpotential are not quite independent since their sum

is a total coordinate divergence:

2κ
√
| g |Esµαβ + F ∪β αµ =

1

2

(
gµαΓρρβ − gαρΓ

µ
ρβ − gµρΓαρβ + δµβΓαγδg

γδ
)

=

= ∂ν

(√
| g |Gαρµνgρβ

)
.

(2.3.7.)

Thus although the canonical energy-momentum pseudotensor determines only a class of superpo-

tentials and does not specify any element of this class, the canonical spin pseudotensor does single

out uniquely a superpotential: Since for Vβ
αµν :=

√
| g |gβρGραµν one has Vβ

[αµν] = 0, thus the

superpotential that the canonical spin pseudotensor specifies is just the von Freud superpotential.

F ∪β αµ therefore has distinguished role among the superpotentials associated to Et
α
β . However,

although for general Vβ
αµν = Vβ

α[µν] the sum F ∪β αµ + ∂νVβ
αµν is not antisymmetric in α and

µ, and hence it is not a superpotential in the strict sense, but its ∂µ-divergence is just the right

hand side of (2.3.5.). Thus it can be considered as a superpotential in a more general sense. (The

Landau–Lifshitz superpotential is not superpotential in either sense, but because of historical rea-

sons we retain this terminology.) In this sense the canonical spin pseudotensor is a superpotential

for the canonical energy-momentum pseudotensor:

√
| g | (Gαβ + κEt

α
β) = −∂µ

(
κ
√
| g |Esµαβ

)
. (2.3.8.)

It is a remarkable property of (2.3.8.) that it contains only canonically defined quantities. In the

classical Lagrangian theory of matter fields the canonical energy momentum tensor is not a source

of the canonical spin tensor, one has only the algebraic Belinfante–Rosenfeld equation (2.1.12.).
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Thus the fact that the (pseudo)source of the canonical spin pseudotensor is the canonical energy

momentum pseudotensor seems to be a characteristic feature of gravity. Although the definition

(2.3.6.) and the equations (2.3.7.), (2.3.8.) appeared in the literature [20,22] but it was not

identified as the canonical spin pseudotensor of gravity, Es
µα

β was introduced only as a useful

auxiliary quantity.

Recalling the noncommutativity of partial derivation and index rising, the antisymmetric part

of (2.3.8.),

√
| g |

(
Et
αβ − Et

βα
)

= −∂µ
(√
| g |Esµαρ

)
gρβ + ∂µ

(√
| g |Esµβρ

)
gρα, (2.3.9.)

takes just the form of the algebraic Belinfante–Rosenfeld equation (2.1.12.). To transform (2.3.9.)

to the usual form of the algebraic Belinfante–Rosenfeld equation, the contravariant form of the

energy-momentum and spin pseudotensors are needed.

First consider the contravariant form of Et
α
β. In general Et

αβ := Et
α
ρg
ρβ is not symmetric,

and, since partial derivation and index rising do not commute, 2
√
| g |

(
Gαβ + κEt

αβ
)

is not ∂α-

divergence free. But from von Freud’s equation we have

2
√
| g |

(
Gαβ + κEt

αβ
)

= ∂µ(gβρF ∪ρ αµ)− ∂µgβρF ∪ρ αµ.

Therefore if we define

κEθ
αβ : = κEt

αβ +
1

2
√
| g |

∂µg
βρ
F ∪ρ αµ =

=
1

2

{
gαβ

(
ΓρνγΓνρδ − ΓρρνΓνγδ

)
gγδ + gαγgβδΓρνγΓνρδ + ΓαργΓβνδg

ρνgγδ−

− Γαγδg
γδΓβρνg

ρν − gαγgβδΓνργΓρνδ − gαρΓνργΓβνδg
γδ − gβρΓνργΓανδg

γδ−

+ gαρΓβρνΓνγδg
γδ + gβρΓαρνΓνγδg

γδ + gαρΓνρνΓβγδg
γδ − gαρΓβργΓννδg

γδ
}

(2.3.10.)

then we obtain

2
√
| g |

(
Gαβ + κEθ

αβ
)

= ∂µ
(
gβρF ∪ρ αµ

)
. (2.3.11.)

The pseudotensor Eθ
αβ is therefore associated to the contravariant form of von Freud’s superpoten-

tial, and hence we have the (pseudo)divergence equation ∂α

(√
| g |(Gαβ + κEθ

αβ)
)

= 0. Therefore

we would have to consider Eθ
αβ as the ”true” contravariant form of Einstein’s canonical energy-

momentum pseudotensor instead of Et
αβ . This is just the pseudotensor known as Bergmann’s

energy-momentum pseudotensor [18,23]. Eθ
αβ is a quadratic expression of the Christoffel symbols

and contains only the first partial derivatives of the metric.

Eθ
αβ is not symmetric either, because

4κEθ
[αβ] = gγδ

(
gαρΓνρνΓβγδ − gβρΓνρνΓαγδ − gαρΓβργΓννδ + gβρΓαργΓννδ

)
.

Taking the antisymmetric part of (2.3.11.) and using F∪[ραµ] = 0 we obtain an equation for Eθ
[αβ]:

4κ
√
| g |Eθ[αβ] = ∂µ

(
gβρF ∪ρ αµ − gαρF ∪ρ βµ

)
=

= ∂µ
(
gµρF ∪ρ αβ

) (2.3.12.)
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If we defined 2κ
√
| g |Eσµ[αβ] := − 1

2g
µρ
F ∪ρ αβ then (2.3.12.) would take the form

√
| g |Eθ[αβ] = −∂µ

(√
| g |Eσµ[αβ]

)
, (2.3.13.)

which looks like as the algebraic Belinfante–Rosenfeld equation (2.1.12.). (The analogy with

(2.1.12.) could be made closer observing that 4κEθ
[αβ] = ∂µ

(
1√
|g|
∂ν(
√
| g |Gαβµν)

)
, since with

4κ
√
| g | σ̃µ[αβ] := −∂ν(

√
| g |Gαβµν) we would have Eθ

[αβ] = −∂µEσ̃µ[αβ]. However the coefficient√
| g | appears now naturally and the structure of the equations suggest to retain those forms of

equations that contain
√
| g |.)

For the contravariant form of the spin pseudotensor we define

2κ
√
| g |Eσµαβ : = 2κ

√
| g |Esµαβ +

√
| g |Gαγµνgγρ∂νgρβ − ∂ν

(√
| g |Gαβµν

)
=

= −gβρF ∪ρ αµ.
(2.3.14.)

Then the contravariant form of equation (2.3.8.) is

√
| g |

(
Gαβ + κEθ

αβ
)

= −∂µ
(√
| g |κEσµαβ

)
. (2.3.15.)

The antisymmetric part of Eσ
µαβ , 1

2 (Eσ
µαβ − Eσ

µβα), is just Eσ
µ[αβ] introduced earlier, while

the antisymmetric part of (2.3.15.), the contravariant form of (2.3.8.), is just (2.3.12.). Trivially,

Eσ
µαβ = Eσ

[µα]β and Eσ
[µαβ] = 0. However, (2.3.8.) does not determine Eσ

µαβ uniquely: we can

add to Eσ
µαβ a total pseudodivergence ∂νV

βαµν , V βαµν = V βα[µν], such that (2.3.15.) remains

the same. We discuss the effect of this freedom in paragraph 2.6.

In the classical Lagrangian theory of matter fields the Belinfante–Rosenfeld combination of θαβ

and σµαβ is a gauge invariant tensor field which, moreover, it does not depend on total divergences

added to the Lagrangian. It might therefore be interesting to see what is the Belinfante–Rosenfeld

combination of the canonical energy-momentum and spin pseudotensors. It is

√
| g |Eθαβ + ∂µ

(√
| g |

[
Eσ

µ[αβ] + Eσ
α[βµ] + Eσ

β[αµ]
])

=

= − 1

κ

√
| g |Gαβ + ∂µ

(
1

2κ
gβρF ∪ρ αµ +

√
| g |

[
Eσ

µ[αβ] + Eσ
α[βµ] + Eσ

β[αµ]
])

=

= − 1

κ

√
| g |Gαβ .

(2.3.16.)

Thus, surprisingly enough at first sight, the Belinfante–Rosenfeld combination of the highly co-

ordinate dependent objects Eθ
αβ and Eσ

µαβ is tensorial, i.e. gauge (coordinate) independent;

moreover, since the Einstein tensor is an Euler–Lagrange expression, it does not depend on total

(pseudo) divergences added to the gravitational Lagrangian. However, these were the most remark-

able properties of the Belinfante–Rosenfeld combinations of the canonical energy-momentum and

spin tensors in the theory of matter fields. It is interesting that, apart from the factor
√
| g |, this

Belinfante–Rosenfeld combination is just the tensor that the covariant analysis at the beginning

of the previous section suggested as the gravitational energy-momentum tensor.

For any vector field K one can form the following pseudocurrent:
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EC
µ[K] : = Eθ

µνKν + (Eσ
µ[αβ] + Eσ

α[βµ] + Eσ
β[αµ])∂αKβ =

= Eθ
µνKν + Eσ

µαβ∂αKβ =

= − 1

κ
GµνKν +

1

2κ
√
| g |

∂ρ
(
Kβ

F ∪β µρ
)
.

(2.3.17.)

The sum
√
| g | (κECµ[K] +GµνK

ν), being the coordinate divergence of an antisymmetric quan-

tity, is identically pseudoconserved, and 1
2K

α
F ∪α µρ is the corresponding superpotential. Since

κ∂µ

(√
| g |ECµ[K]

)
= −∂µ

(√
| g |GµνKν

)
=

= −1

2

√
| g |Gµν  LKgµν

(2.3.18.)

the pseudocurrent
√
| g |ECµ[K] is pseudoconserved in vacuum, but for general Einstein tensor√

| g |ECµ[K] is pseudo-conserved iff K is a Killing symmetry of the geometry. Then EC
µ[K] and

GµνKν are conserved separately.
√
| g |ECµ[K] is pseudoconserved even if K is only a conformal

Killing vector provided the scalar curvature of the spacetime vanishes. This result is in accordance

with our physical picture: the sum of the gravitational and matter Noether pseudocurrents is

pseudoconserved, and the gravitational and matter pseudocurrents are conserved separately only

if they are associated to a symmetry of the ”gravitational interaction”.

It might be interesting to note that eq.(2.3.17.) can be rewritten in the following form

2
√
| g |

(
GµνKν +κEC

µ[K]
)

= ∂ν

(√
| g |

(
∇µKν−∇νKµ

)
+

1√
| g |

∂ρ
(
| g | GµνγρKγ

))
, (2.3.19.)

where the first term on the right hand side is the familiar tensorial superpotential of Komar [21].

The vector fields satisfying ∂(αKβ) = 0 are thought to have distinguished role in the theory of

pseudotensors since the associated EC
µ[K] are considered to be the energy-momentum and total

angular momentum pseudocurrents. In fact, ∂(µKν) = 0 has 1
2m(m+ 1) independent solutions: m

coordinate translations Kα
µ = δαµ (α is the ”name index”) and 1

2m(m − 1) coordinate rotations:

Kαβ
µ = xαδβµ −xβδαµ . For the coordinate translations (2.3.17.) is just the contravariant form of the

von Freud equation (2.3.11.), but for the coordinate rotation Kαβ
µ (2.3.17.) takes the form

2
√
| g |

(
Mµαβ + κEµ

µαβ
)

= ∂ν
(
xαgβρF ∪ρ µν − xβgαρF ∪ρ µν

)
, (2.3.20)

where Mµαβ := GµνKαβ
ν = Gµβxα −Gµαxβ and

Eµ
µαβ := EC

µ[Kαβ] = Eθ
µβxα − Eθ

µαxβ − 2Eσ
µ[βα], (2.3.21.)

the so-called total angular momentum pseudotensor. One can see that, in fact, Eσ
µαβ plays the

role of the spin part of the total angular momentum. The superpotential Kαβ
ν gνγF ∪γ µρ, the right

hand side of (2.3.20.), is just the angular momentum superpotential of Bergmann and Thomson

[23], introduced in a rather heuristic way.

The equation ∂(µKν) = 0 can be thought of as the Killing equation in a local flat geometry

(U, ηαβ) where (x1, ..., xm) are Descartes coordinates. To specify a wider class of vector fields Kµ

one can relax the Killing equation e.g. to the conformal Killing equation ∂(µKν) = 1
2ωηµν . For

m 6= 2 its new solutions are the so-called special conformal Killing vectors, or rather 1-forms:
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Cαµ = 2xαxβηβµ − xρxγηργδαµ (α is the ”name index”) and the dilatation: Dµ = xρηρµ; and the

corresponding pseudocurrents can be called conformal pseudocurrents. Another possible weakening

of ∂(µKν) = 0 may be to require only ∂(µ1
...∂µkKν) = 0 for some k ∈ N. The dilatation is its

solution for k = 2 and the special conformal Killing 1 forms for k = 3.

2.4. Einstein’s pseudotensors in anholonomic description

In the anholonomic description the gravitational field variables are local basis 1-forms {ϑaα} defined

on an open domain U ⊂M , and normalized by

gαβ = ϑaαϑ
b
βηab, (2.4.1.)

where ηab is a constant matrix (see e.g. [24]). Let {Eαa } be local basis vectors on U such that

{Eαa } and {ϑaα} are dual bases:

ϑaµE
µ
b = δab , ϑ

e
αE

β
e = δβα.

The structure functions cars on U are defined by

[
Er,Es

]
= carsEa. (2.4.2.)

Then trivially cars = Eαr E
β
s (∂βϑ

a
α − ∂αϑaβ) and dϑa = − 1

2c
a
rsϑ

r ∧ ϑs.
Ricci’s rotational coefficients are defined by

γarb := 〈ϑa,∇ErEb〉 = −∇ρϑaβEρrEβb .

Because of the metric compatibility of the connection ηaeγ
e
rb = −ηbeγera, and because of the van-

ishing of the torsion

cars = γars − γasr

and

γarb =
1

2

(
carb + ηaecferηfb + ηaecfebηfr

)
.

The components of the curvature and Ricci tensors in the bases {Eαa } and {ϑaα} are

Rabcd = γadb|c − γacb|d + γacrγ
r
db − γadrγrcb − crcdγarb

and

Rab := ηaeReb = ηae
(
γrbe|r − γrre|b + γssrγ

r
be − γrsbγsre

)
,

where the stroke denotes partial directional derivative: γadb|c := Eαc ∂αγ
a
db. The scalar curvature is

R = ηbd
(
−2γrrb|d + γssrγ

r
bd − γrsbγsrd

)
,

and thus
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√
| g |R = −2ηrs∂µ

(√
| g |Eµr γkks

)
+
√
| g |

(
γkrlγ

l
ksη

rs − γkklγlrsηrs
)

=

= −2ηrs∂µ

(√
| g |Eµr γkks

)
+

+
√
| g |ηbd

(
crrbc

s
sd −

1

2
crsbc

s
rd −

1

4
crkbc

s
ldη

klηrs

)
.

(2.4.3.)

In the anholonomic description the Lagrangian is chosen to be [24]

LaE :=
1

2κ

√
| g |

(
crrbc

s
sd −

1

2
crsbc

s
rd −

1

4
crkbc

s
ldη

klηrs

)
ηbd. (2.4.4.)

Apart from the
√
| g | factor, this is scalar, but, of course, not O(p, q)-gauge invariant. The

canonical energy-momentum pseudotensor derived from LaE is

2κ
√
| g |aEtµν : = 2κ

(
LaEδµν −

∂LaE
∂∂µϑeρ

∂νϑ
e
ρ

)
=

=
√
| g |

{
δab (γrreγ

s
sf − γrseγsrf )ηef+

+ 2ϑrρE
ρ
s|b
(
γareη

es + (δae δ
s
r − δar δse)ηekγllk

)}
Eµaϑ

b
ν .

(2.4.5.)

This energy-momentum pseudotensor can be derived from Goldberg’s superpotential [8]:

2
√
| g | (Gαβ + κaEt

α
β) = ∂µG ∪β αµ, (2.4.6.)

where

G ∪β αµ := 2
√
| g |

(
−γabeηer + (δab δ

r
s − δas δrb )ηseγkke

)
ϑbβE

α
aE

µ
r . (2.4.7.)

Trivially, G ∪β αµ = G ∪β [αµ], G ∪ρ αρ = (m− 2)al
α, where al

α = −2
√
| g |ηaeEαa γrre is the vector

density whose coordinate divergence has been left from
√
| g |R to obtain the Lagrangian. It might

be worth noting that Goldberg’s superpotential, apart from
√
| g |, is a tensor field but it, of course,

depends on the field of basis 1-forms; i.e. G ∪β αµ is not O(p, q)-gauge invariant. G ∪β αµ can be

derived from the ”square-root” of the Landau–Lifshitz superpotential: If

Hαβ
ab :=

1√
2

√
| η | det ‖ϑrρ‖

(
EαaE

β
b −EβaEαb

)
(2.4.8.)

then Hαβ
ab = H

[αβ]
ab = Hαβ

[ab], H
αβ
ab H

γδ
cd η

acηbd = Hαβγδ and

G ∪µ αβ = gµρ

(
Hαβ
ab η

arηbs∂νH
ρν
rs +Hαρ

ar η
abηrs∂νH

βν
bs −H

βρ
br η

baηrs∂νH
αν
as

)
. (2.4.9.)

The contravariant form of aEt
α
β is

κaEθ
αβ : = κaEt

αβ +
1

2
√
| g |

∂µg
βρ
G ∪ρ αµ =

=
1

2
gαβ (γrrbγ

s
sd − γrsbγsrd) ηbd+

+
(
γrskγ

s
rl − γrleγerk − γrrkγssl + γrslγ

e
efηkrη

sf + γrlkγ
e
er

)
ηkaηlbEαaE

β
b +

+ ϑbρE
ρ
k|eη

kr
(
−γarsηse + (δar δ

e
s − δas δer)ηslγffl

)
EαaE

β
b ,

(2.4.10)
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for which

2
√
| g |

(
Gαβ + κaEθ

αβ
)

= ∂µ
(
gβρG ∪ρ αµ

)
. (2.4.11.)

Neither aEt
αβ nor aEθ

αβ is symmetric: Taking the antisymmetric part of (2.4.10.) we obtain

2κ
√
| g |aEθ[αβ] =

1

2
∂µ
(
gβρG ∪ρ αµ − gαρG ∪ρ βµ

)
.

Therefore if we defined 4κ
√
| g | aEσµ[αβ] := gαρG ∪ρ βµ− gβρG ∪ρ αµ then we would have

√
| g |

aEθ
[αβ] = −∂µ(

√
| g |aEσµ[αβ]).

The canonical spin pseudotensor is defined by (2.2.3.) and (2.4.4.):

2κ
√
| g |aEsµαβ : = 2κ

∂LaE
∂∂µϑrρ

(
−δαρ ϑrβ

)
=

= −2
√
| g |

(
−γabrηre + (δab δ

e
s − δas δeb )ηsrγkkr

)
ϑbβE

µ
eE

α
a =

= −G ∪β αµ,

(2.4.12.)

i.e. the anholonomic canonical spin pseudotensor is just the Goldberg superpotential. Thus

√
| g | (Gαβ + κaEt

α
β) = −∂µ

(
κ
√
| g |aEsµαβ

)
(2.4.13.)

and hence

√
| g |

(
Gαβ + κaEθ

αβ
)

= −∂µ
(
κ
√
| g |aEsµαβ

)
. (2.4.14.)

(2.4.13.) has just the same structure as (2.3.8.), it is a relation between canonically defined quan-

tities. aEs
µα
β is tensor, and (2.4.14.) suggests to define the covariant form of aEs

µα
β simply

by

aEσ
µαβ := aEs

µαβ = − 1

2κ
√
| g |

gβρG ∪ρ αµ, (2.4.15.)

and therefore one has

√
| g |

(
Gαβ + κaEθ

αβ
)

= −∂µ
(
κ
√
| g |aEσµαβ

)
. (2.4.16.)

The antisymmetric part of aEσ
µαβ is just aEσ

µ[αβ] introduced above and the antisymmetric part

of (2.4.16.) looks like as the algebraic Belinfante–Rosenfeld equation.

One can form the Belinfante–Rosenfeld combination of aEθ
αβ and aEσ

µαβ which, as one could

expect, is just − 1
κ

√
| g | times the Einstein tensor again.

One can form the Noether pseudocurrent:

aEC
µ[K] : = aEθ

µνKν +
(
aEσ

µ[αβ] + aEσ
α[βµ] + aEσ

β[αµ]
)
∂αKβ =

= aEθ
µνKν + aEσ

µαβ∂αKβ =

= − 1

κ
GµνKν +

1

2κ
√
| g |

∂ρ (Kν
G ∪ν µρ) .

(2.4.17.)
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The pseudocurrent
√
| g | (κaECµ[K] +GµνKν) is pseudoconserved again; and

√
| g |aECµ[K] and

GµνKν are conserved in themselves iff Kµ is a Killing vector of the spacetime geometry. One can

again introduce the angular momentum pseudocurrents just in the same way we have done in the

holonomic description.

Since Goldberg’s superpotential, apart from the
√
| g | factor, is a tensor, we can rewrite our

equations in covariant form. If

G ∨β αµ :=
1√
| g |G

∪β αµ (2.4.20.)

then (2.4.6.) is equivalent to

2 (Gαβ + κaEt
α
β) = ∂µG ∨β αµ +

1√
| g |

∂µ
√
| g |G ∨β αµ =

= ∇µG ∨β αµ + ΓρµβG ∨ρ αµ.
(2.4.21.)

Thus if we define

2κAEθ
α
β : = 2κaEt

α
β − ΓρµβG ∨ρ αµ =

=
{
δab
(
γkkrγ

l
ls − γklrγlks

)
ηrs + 2

(
γakrγ

k
bs − γabrγkks

)
ηrs
}
Eαa ϑ

b
β ,

(2.4.22.)

which is a tensor field, and we recall that AEσ
µα

β := aEσ
µα

β = aEs
µα

β is also tensor field then

we have

Gαβ + κAEθ
α
β = −κ∇µAEσµαβ . (2.4.23.)

This implies the covariant

AEθ
[αβ] = −∇µAEσµ[αβ] (2.4.24.)

∇αAEθαβ = −RβρµνAEσρµν (2.4.25.)

Belinfante–Rosenfeld equations. The covariant Belinfante–Rosenfeld combination of AEθ
αβ and

AEσ
µαβ is − 1

κG
αβ . The covariant Noether current associated to K is

AEC
µ[K] : = AEθ

µνKν +
(
AEσ

µ[αβ] + AEσ
α[βµ] + AEσ

β[αµ]
)
∇αKβ =

= − 1

κ
GµνKν +

1

2κ
∇ρ (Kν

G ∨ν µρ) .
(2.4.26.)

But since

∇ρ
(
Kν

G∨ν µρ
)

= ∂ρ
(
Kν

G∨ν µρ
)
+ΓµργK

ν
G∨ν γρ+ΓρργK

ν
G∨ν µγ =

1√
| g |

∂ρ
(
Kν

G∪ν µρ
)
, (2.4.27.)

the Noether pseudocurrent aEC
µ[K] coincides with AEC

µ[K], and hence it is, in fact, a true

vector field. However, AEθ
µν , AEσ

µαβ and the Noether current AEC
µ[K] itself are O(p, q) gauge

dependent. This gauge dependence is not surprising, since, e.g. in electrodynamics, neither the

canonical tensors nor the Noether currents are gauge invariant.
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2.5. Møller’s pseudotensors

First consider the holonomic description. Now the gravitational field variables are the metric

components again but the Lagrangian is Hilbert’s second order scalar Lagrangian:

LH :=
1

2κ

√
| g |R = LE +

1

2κ
∂ρl

ρ, (2.5.1.)

where LE and lρ are given by (2.3.1.) and (2.3.2.), respectively. The canonical energy-momentum

pseudotensor can be calculated using (2.2.6): Since

∂lρ

∂gαβ
=

1

2

(
lρgαβ − lαgβρ − lβgαρ

)
+

+
1

2

√
| g |

(
gρµΓαµνg

βν + gρµΓβµνg
αν − 2Γρµνg

µαgνβ
)

and

∂lρ

∂∂µgαβ
=

1

2

√
| g |

(
gραgµβ + gρβgµα − 2gρµgαβ

)
,

the energy-momentum pseudotensor, M t
α
β, is

2κ
√
| g |M tαβ = 2κ

√
| g |Etαβ − ∂ρ

(
δρβl

α − δαβ lρ
)

=

=
√
| g |

(
Rδαβ + gαρΓµµρ,β − gρµΓαρµ,β

)
.

(2.5.2.)

Using F ∪ρ αρ = (m− 2)lα and (2.3.5.) one has

2
√
| g | (Gαβ + κM t

α
β) = ∂µ

(
F ∪β αµ −

1

m− 2
F ∪ρ αρδµβ +

1

m− 2
F ∪ρ µρδαβ

)
. (2.5.3.)

However, the superpotential on the right hand side is just Møller’s superpotential [20]:

M ∪β αµ : = F ∪β αµ −
1

m− 2
δµβF ∪ρ αρ +

1

m− 2
δαβF ∪ρ µρ =

=
√
| g |gαρgµν (∂ρgνβ − ∂νgρβ) ,

(2.5.4.)

and hence we could recover Møller’s energy-momentum pseudotensor, originally defined by (2.5.3.)

for m = 4, as the canonical energy-momentum pseudotensor for Hilbert’s Lagrangian. The con-

travariant form of M t
α
β is defined by

2κ
√
| g |Mθαβ : = 2κ

√
| g |M tαβ + ∂µg

βρ
M ∪ρ αµ =

= 2κ
√
| g |Eθαβ + ∂µ

(
gαβlµ − gβµlα

)
,

(2.5.5.)

for which

2
√
| g |

(
Gαβ + κMθ

αβ
)

= ∂µ
(
gβρM ∪ρ αµ

)
. (2.5.6.)

The canonical spin pseudotensor can be calculated from (2.2.8.), (2.3.2.) and (2.3.6.):

2κ
√
| g |Msµαβ = 2κ

√
| g |Esµαβ − δαβ lµ + δµβ l

α =

=
√
| g |

{
δµβ
(
Γαγνg

γν − gανΓρνρ
)

+ gµαΓρρβ + δµβg
αρΓνρν − 2gαρΓµρβ

}
.

(2.5.7.)
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This implies

2κ
√
| g |Msµαβ + M ∪β αµ = 2κ

√
| g |Esµαβ + F ∪β αµ =

= ∂ν

(√
| g |Gαρµνgρβ

)
,

(2.5.8.)

and hence

√
| g | (Gαβ + κM t

α
β) = −κ∂µ

(√
| g |Msµαβ

)
. (2.5.9.)

The structure of this equation is similar to that of eq.(2.3.8.). The contravariant form of Ms
µα

β is

defined by

2κ
√
| g |Mσµαβ : = 2κ

√
| g |Msµαβ − gβρ∂ν

(√
| g |Gαγµνgγρ

)
=

= −gβρM ∪ρ αµ,
(2.5.10.)

and finally one has

√
| g |

(
Gαβ + κMθ

αβ
)

= −κ∂µ
(√
| g |Mσµαβ

)
. (2.5.11.)

Its antisymmetric part is a Belinfante–Rosenfeld type equation. (2.5.11.) does not specify Mσ
µαβ

uniquely:
√
| g |Mσµαβ + ∂νV

βαµν also satisfies (2.5.11.) for any V βαµν = V βα[µν].

The Belinfante–Rosenfeld combination of Mθ
αβ and Mσ

µαβ is, essentially, the Einstein tensor

again:

√
| g |Mθαβ + ∂µ

(√
| g |

(
Mσ

µ[αβ] + Mσ
α[βµ] + Mσ

β[αµ]
))

=

= − 1

κ

√
| g |Gαβ .

The Noether pseudocurrent constructed from the Møller pseudotensors is:

MC
µ[K] : = Mθ

µνKν +
(
Mσ

µ[αβ] + Mσ
α[βµ] + Mσ

β[αµ]
)
∂αKβ =

= − 1

κ
GµνKν +

1

2κ
√
| g |

∂ρ
(
Kβ

M ∪β µρ
)

;
(2.5.12.)

and hence
√
| g | (κMCµ[K] +GµνKν) is always pseudoconserved. In contrast to EC

µ[K] or

aEC
µ[K], this pseudocurrent contains the second derivative of the metric too. (2.5.12.) can

also be written in the form containing Komar’s superpotential:

2
√
| g |

(
GµνKν + κMC

µ[K]
)

= ∂ν

(√
| g | (∇µKν −∇νKµ) +

+Kµlν −Kν lµ +
1√
| g |

∂δ
(
| g | Gµνγδ

))
.

As a consequence the difference of the Noether pseudocurrents built up from Møller’s and Einstein’s

pseudotensors, respectively, is identically pseudoconserved. As is expected,
√
| g |MCµ[K] and√

| g |GµνKν are pseudoconserved if K is a Killing vector.

In the anholonomic description the Lagrangian is 1
2κ times the right hand side of eq.(2.4.3.),

and hence the canonical energy-momentum pseudotensor, aM t
α
β , can be calculated using (2.2.7.)

and (2.4.5.):
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2κ
√
| g |aM tαβ = 2κ

√
| g |aEtαβ + δαβ∂µl

µ − ∂βlα+

+ ∂ν

(√
| g | [gαρEνk − gνρEαk ] ∂βϑ

k
ρ

)
.

(2.5.13.)

This implies

2
√
| g | (Gαβ + κaM t

α
β) = ∂µaM ∪β αµ, (2.5.14.)

where

aM ∪β αµ = G ∪β αµ + δαβ l
µ − δµβ lα +

√
| g | (gανEµk − gµνEαk ) ∂βϑ

k
ν =

=
√
| g |

(
(gανEµr − gµνEαr )∂νϑ

r
β + gανgµρ(∂νϑ

r
ρ − ∂ρϑrν)ηrsϑ

s
β

)
=

=
√
| g |gανgµρ

(
∂νgρβ − ∂ρgνβ

)
= M ∪β αµ,

(2.5.15.)

and hence

aM t
α
β = M t

α
β . (2.5.16.)

The canonical spin pseudotensor can be calculated using (2.2.8.) and (2.4.12):

2κ
√
| g |aMsµαβ = −aM ∪β αµ + ∂ν

(√
| g |Gαρµνgρβ

)
= 2κ

√
| g |Msµαβ . (2.5.17.)

Thus both the canonical energy-momentum and spin pseudotensors in the anholonomic description

coincide with the corresponding pseudotensors calculated in the holonomic description; and there-

fore all the quantities built up from Mθ
α
β and Ms

µα
β coincide with those built up from aMθ

α
β

and aMs
µα

β .

2.6. Landau–Lifshitz–Goldberg type pseudotensors

In the previous three paragraphs we saw that the canonical spin pseudotensors single out super-

potentials for the canonical energy-momentum pseudotensors from the mathematically possible

collection of superpotentials. Thus although in general the contravariant forms θαβ of the canoni-

cal energy-momentum pseudotensors depend not only on tαβ, but the superpotential we use also,

the contravariant forms θαβ we defined in (2.3.10.), (2.4.10.) and (2.5.5.) are distinguished be-

cause the superpotentials we used are distinguished by the spin pseudotensors. Since the equations

(2.3.5.), (2.4.6.) and (2.5.3.), by means of which the contravariant forms θαβ have been defined,

contain tαβ algebraically, θαβ is uniquely defined by tαβ and the superpotentials. (We do not use

here the indexes E, aE, M ,... etc., since the formulae we will have hold for any of the three cases

we considered in the previous paragraphs.)

However, the contravariant form σµαβ of the canonical spin pseudotensors are not uniquely

determined even if we have preferred superpotentials, since the equations (2.3.8.), (2.4.13.) and

(2.5.9.), by means of which σµαβ was defined, contain only the divergence of
√
| g |sµαβ. Thus in

the definition of σµαβ we have the freedom

σµαβ 7−→ σ̂µαβ := σµαβ +
1

2κ
√
| g |

∂νV
βαµν , (2.6.1.)
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where V βαµν = V βα[µν] is arbitrary. Although for V βαµν = 0 the pseudotensors σµαβ are just the

contravariant forms of the distinguished superpotentials, supporting our opinion that V βαµν = 0

is the ”right” choice, we should consider the effect of the freedom (2.6.1.).

The Belinfante–Rosenfeld combination of θαβ and σ̂µαβ is

κθαβ + κ∂µ

(√
| g |

(
σ̂µ[αβ] + σ̂α[βµ] + σ̂β[αµ]

))
=

= −
√
| g |Gαβ − 1

2
∂µ∂ν

(
V [αµ][βν] + V [βµ][αν]

)
.

(2.6.2.)

The second term on the right hand side is just the combination by means of which Goldberg’s

infinite series of Landau–Lifshitz type pseudotensors is defined. Recall [25] that for any fixed

k ∈ R Goldberg’s 2kth symmetric pseudotensor, Gt
αβ
(2k), is defined by

| g |k+1
(
Gαβ + κGt

αβ
(2k)

)
:=

1

2
∂µ∂ν

(
| g |k+1 Gαµβν

)
. (2.6.3.)

For k = 0 this is known as the Landau–Lifshitz pseudotensor [26]: LLt
αβ := Gt

αβ
(0). Thus for a

general V βαµν the Belinfante–Rosenfeld combination is not expected to be tensorial. In fact, rather

long but simple calculations show that the Belinfante–Rosenfeld combination can be tensorial only

if the second term on the right hand side of (2.6.2.) vanishes. This is equivalent to the existence

of a five index quantity Zαβµνρ = Z(αβ)µνρ = Zαβ(µν)ρ = Zαβµ[νρ] for which

V [αµ][βν] + V [βµ][αν] + V [αν][βµ] + V [βν][αµ] = ∂ρZ
αβµνρ. (2.6.4.)

This gives restrictions for certain irreducible parts of the general V αβµν . Thus although the

requirement of the tensorial character of the Belinfante–Rosenfeld combination does not rule out

completely the freedom (2.6.1.), as for example the left hand side of eq.(2.6.4.) vanishes for a

completely skew V αβµν , this result gives a partial support of our choice V αβµν = 0 in the definition

of σµαβ . For the other natural choice − 1
2

√
| g |Gβαµν in the definitions (2.3.8.) and (2.5.9.) the

Belinfante–Rosenfeld combination (2.6.2.) is just Goldberg’s −1th pseudotensor; i.e. Gt
αβ
(−1) can

naturally be recovered as a Belinfante–Rosenfeld combination.

3. Energy-momentum and spin forms on L(M)

3.1. Metric connection on L(M)

Let L(M) be the linear frame bundle over M , {δi}, i = 1, ...,m, be the standard basis for Rm,

i.e. δi = (0, ..., 0, 1i, 0, ..., 0) and θ = θiδi the canonical Rm-valued 1-form on L(M). (For the

differential geometric preliminaries see, for example, [27].) The metric g and the volume form ε

of M define a set of functions on L(M). If, for example, w = (p, {Ea}) ∈ L(M); i.e. w is a basis

{Ea} at TpM , then gab(w) := gp(Ea,Eb) and εa1...am(w) := εp(Ea1 , ...,Eam). One can define gab

and εa1...am too, for which εa1...arer+1...emε
b1...brer+1...em = (−)q(m− r)!δb1 ...bra1 ...ar .

For any r = 0, 1, ...,m let [28,29]

Σa1...ar :=
1

(m− r)!εa1...arer+1...emθ
er+1 ∧ ... ∧ θem . (3.1.1.)
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It is a tensorial (m − r) form on L(M), transforming according to the rth exterior power of the

contragredient representation of GL(m,R). If r = 0 then this is just Σ := 1
m!εe1...emθ

e1 ∧ ...∧ θem ,

while for r = m this is the function εa1...am . One can easily verify that

θb ∧ Σa1...ar = (−)r+1rδb[a1
Σa2...ar]. (3.1.2.)

Let ωab be a connection 1-form on L(M) compatible with the metric g. The structure equations

for the torsion Ξa and curvature 2-form Ωab are

Ξa = dθa + ωab ∧ θb (3.1.3)

Ωab = dωab + ωae ∧ ωeb. (3.1.4)

If index lowering and rising are defined by gab and gab, e.g. ωab := gaeω
e
b, then the condition of

metric compatibility is

dgab = ωab + ωba. (3.1.5.)

This implies dεa1...am = εa1...amω
e
e and, in general,

dΣa1...ar = Ξa ∧ Σa1...ara − (−)rrωa[a1
∧ Σa2...ar]a. (3.1.6.)

The first and the second Bianchi identities are

dΞa = Ωae ∧ θe − ωae ∧ Ξe (3.1.7)

dΩab = Ωae ∧ ωeb − ωae ∧ Ωeb. (3.1.8)

Because of the metric compatibility, Ωab := gaeΩ
e
b = −Ωba. In this formalism Einstein’s tensor,

Gij := Rij − 1
2Rδ

i
j , is given by

−1

2
Ωab ∧ Σiab = Gj iΣj . (3.1.9.)

The curvature tensor can be expressed by horizontal m-forms:

Ωab ∧ Σcd = RabcdΣ, (3.1.10.)

and hence both the Ricci tensor and the curvature scalar can also:

−Ωaj ∧ Σia = RjiΣ (3.1.11.)

and

RΣ = Ωab ∧ Σab =

= d
(
ωab ∧ Σab

)
− ωae ∧ ωeb ∧ Σab + ωab ∧ Ξe ∧ Σabe,

(3.1.12.)

respectively.

A local section s : U → L(M) is a field of basis vectors {Ea} on U . (More precisely, the vector

Ea at p ∈ U is the element s(p)(δa) of the vector bundle T (M), associated to s(p) ∈ L(M) and

22



δa ∈ Rm.) The pull back s∗(θa) is a field of basis 1-forms on U , dual to the vector basis. The

structure coefficients of the section is the collection {cars} of functions defined on U by [Er,Es] =

carsEa. s is called coordinate or holonomic section if there is a coordinate system (x1, ..., xm) on

U such that Ea = ∂
∂xa , a = 1, ...,m, and then s∗(θa) = dxa. s is a coordinate section iff cars = 0.

s is called rigid or anholonomic with respect to the metric g if for the pull backs ϑa := s∗(θa)

and for some constant matrix ηab we have g = ϑa ⊗ ϑbηab. The pull back s∗(ωab) is a gl(m,R)-

valued 1-form on U , thus it can be expressed in the naturally defined basis of 1-forms {s∗(θa)}:
s∗(ωab) = ωarbs

∗(θr). If s is a coordinate section then Γarb, defined by s∗(ωab) = Γarbdx
r , are the

usual Christoffel symbols; while if s is a rigid section then γarb, defined by s∗(ωab) = γarbϑ
r, are the

Ricci rotation coefficients. Twice the pull back of the curvature form is just the curvature tensor:

2s∗(Ωab) = Rabrss
∗(θr)∧s∗(θs). Since the pull back s∗(Σ) is the volume form on M , the pull back

of 1
2κΩab ∧Σab gives Hilbert’s Lagrangian. It is given in the holonomic/anholonomic description if

s is a holonomic/anholonomic section. The pull back of d
(
ωab ∧ Σab

)
gives the total divergence left

from Hilbert’s Lagrangian, thus Einstein’s Lagrangian in the holonomic/anholonomic description

is the pull back of − 1
2κω

a
e ∧ ωeb ∧ Σab along a holonomic/anholonomic section of L(M).

3.2. Sparling type forms on L(M)

Let us define the Nester–Witten form as

ui := −1

2
ωab ∧ Σiab. (3.2.1.)

(This form appeared first in its spinorial form by means of which Nester [30] could give a simple

proof of Witten’s energy positivity theorem [31]. In its tensorial form ui was introduced by Sparling

[28]; and for m dimensions ui was defined in [29].) ui is an Rm∗-valued pseudotensorial (m − 2)-

form which transforms according to the contragredient representation of GL(m,R). Its exterior

derivative is

dui = −1

2
Ωab ∧ Σiab +

1

2
Ξc ∧ ωab ∧ Σiabc + ti, (3.2.2)

where

ti := −1

2

(
ωei ∧ ωab ∧ Σeab + ωae ∧ ωeb ∧ Σiab

)
(3.2.3.)

is Sparling’s (m− 1)-form [28,29]. What is interesting here is the structure of the right hand side

of eq.(3.2.2.): the curvature appears only through the Einstein tensor. ti is only pseudotensorial,

transforming according to the contragredient representation of GL(m,R) [32]. The importance

of ui and ti is shown by the following theorem, due to Sparling [28] for the vacuum case and

Dubois-Violette and Madore [29] for the general case:

Theorem 3.2.1.:

For any Rm∗-valued horizontal (m − 1) form Ti satisfying dTi − ωei ∧ Te = 0 and κ ∈ R the

following statements are equivalent:

(1) ωab is torsion free, Ξa = 0, and 1
2Ωab ∧ Σiab + κTi = 0;

(2) κTi + ti = dui;

(3) d (κTi + ti) = 0.
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This theorem gives an alternative formulation of Einstein’s theory: a metric connection on L(M)

is torsion free and satisfies Einstein’s equations with matter energy momentum tensor T ji, defined

by Ti =: T j iΣj , iff the Sparling and the Nester–Witten forms satisfy condition (2); which is

equivalent to the Sparling form to satisfy condition (3) above. In Einstein’s theory (3) looks

like as a conservation equation, while (2) tells us the ”superpotential” for the conserved quantity

κTi + ti: it is just the Nester–Witten form. But since these quantities are defined in L(M) instead

of M , moreover ti and ui are only pseudotensorial forms, the exterior equations (2) and (3) yield

equations in M only if we pull them back along a local section of L(M). In fact, Frauendiener [32]

calculated the pull back of ui and dui along a coordinate section of L(M). Here we first repeat

his calculation along a general section and then specialize s to be a coordinate and then a rigid

section. Then we pull back various forms of Sparling’s equation (2) above and we will recover a

number of energy-momentum pseudotensors and superpotentials we have considered.

Since Ti is horizontal it has the form T jiΣj , thus the pull back of Ti is independent of the

section: If (x1, ..., xm) is any coordinate system on U then

s∗(Ti) = Eβi T
µ
β

1

(m− 1)!

√
| g |εµγ2...γmdx

γ2 ∧ ... ∧ dxγm . (3.2.4)

The pull back of the Nester–Witten form along a general section s : U → L(M) is

s∗(ui) = −1

2
ωareg

ebs∗(θr ∧ Σiab) =

= −1

2

(
ω

[a
ieg

b]e + δ
[a
i ω

b]
rsg

rs − δ[a
i g

b]eωrre

)
s∗(Σab).

(3.2.5.)

If s is a coordinate section and (x1, ..., xm) is the corresponding coordinate system on U (and hence

there is no difference between the Greek and Latin indexes), then

s∗(ui) =
1

4
√
| g |F

∪i abs∗(Σab) =

=
1

4
F ∪i ab

1

(m− 2)!
εabe3...emdx

e3 ∧ ... ∧ dxem ,
(3.2.6.)

where F ∪i ab is von Freud’s superpotential given by (2.3.4.). If s is a rigid section and (x1, ..., xm)

is a coordinate system on U , then

s∗(ui) =
1

4
√
| g |G

∪µ αβEµi ϑaαϑbβs∗(Σab) =

=
1

4
Eµi G ∨µ αβs∗(Σαβ),

(3.2.7.)

where G∪µαβ is Goldberg’s superpotential given by (2.4.7.). Thus, apart from the factor
(
2(m−2)!√

| g |
)−1

, the pull backs of ui are the dual of the von Freud and the Goldberg superpotentials,

respectively. If ui
ab is defined by s∗(ui) = ui

abs∗(Σab) then the pull back of the exterior derivative

dui can easily be calculated:

s∗(dui) = ds∗(ui) = dui
ab ∧ s∗(Σab) + ui

abs∗(dΣab) =

= −2
(
Eµa ∂µui

ae + ui
abωeab + ui

aeωrra
)
s∗(Σe).

(3.2.8.)

If s is a coordinate section then Eµa = δµa and, using F ∪i ae = F ∪i [ae], one has
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s∗(dui) = −2 (∂aui
ae + Γrraui

ae) s∗(Σe) =

=
1

2
∂aF ∪i ja

1

(m− 1)!
εje2...emdx

e2 ∧ ... ∧ dxem . (3.2.9.)

Comparing (3.2.4.) and (3.2.9) with (2.3.5.) one can expect that the pull back of the Sparling

form is essentially Einstein’s canonical energy-momentum pseudotensor [32,33]. In fact, the pull

back of Sparling’s form along a general section s is

s∗(ti) = −1

2

(
δji (ω

e
ekω

k
rs − ωerkωkes)grs + gjkωsskω

r
ri − gjkωlikωeel − ωeeiωjrsgrs − ωjriωeesgrs+

+ ωjrkω
k
isg

rs + ωjkrω
k
sig

rs + (ωjki − ω
j
ik)ωkrsg

rs + (ωkil − ωkli)ωlkrgrj
)
s∗(Σj),

(3.2.10.)

which, if s is a coordinate section, takes the following form

s∗(ti) = κEt
j
is
∗(Σj) = κEt

j
i

1

(m− 1)!

√
| g |εje2...emdxe2 ∧ ... ∧ dxem . (3.2.11.)

Thus von Freud’s equation, given in a coordinate system (x1, ..., xm), is just the pull back of

Sparling’s equation along the coordinate section associated to (x1, ..., xm). Similarly, the pull

back of the conservation equation (3) of Theorem 3.2.1. is just the pseudo divergence equation

∂α

(√
| g |[Gαβ + κEt

α
β ]
)

= 0. If s is a rigid section then

s∗(dui) = −2
(
Eµa∂µui

ae + ui
abγeab + ui

aeγrra
)
s∗(Σe) =

=
1

2
√
| g |

(
Eµi ϑ

e
ν∂αG ∪µ να + G∪ραµϑeαϑrµEρi|r

)
s∗(Σe) =

=
1

2
∇ρ
(
Eµi G∨µνρ

)
s∗(Σν),

(3.2.12)

which is tensorial, and the pull back of Sparling’s form is

s∗(ti) =
1

2

(
δji (γ

e
esγ

k
kr − γekrγkes)ηrs−

− 2ηjkγrrkγ
s
si + 2(γjri − γjir)γkksηrs + 2ηjrγlkr(γ

k
li − γkil)

)
s∗(Σj) =

=
(
κaEt

µ
νϑ

j
µE

ν
i +

1

2
√
| g |G

∪ρ αµϑjαϑrµEρi|r
)
s∗(Σj) =

=

(
κAEθ

µ
νE

ν
i +

1

2
G∨νµρ∇ρEνi

)
s∗(Σµ),

(3.2.13.)

which is also tensorial. Thus although the components of the pull back of Sparling’s form deviates

from κaEt
j
i and from κAEθ

j
i too, the pull back of the Sparling equation along a rigid section s

of L(M) is just equation (2.4.6.) calculated in the rigid frame determined by s. Thus the various

energy-momentum pseudotensors are not simply pull backs of a single geometric object, e.g. ti,

along various sections.

Let us define the contravariant form of the Nester–Witten form simply by ui := gijuj . Then

by (3.1.5.) condition (2) of Theorem 3.2.1. (i.e. Sparling’s equation) takes the form

dui = dgij ∧ uj + gijdui = κT i + Θi, (3.2.14.)

where
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Θi := ti −
(
ωij + ωji

)
∧ uj . (3.2.15.)

Obviously, the pull back of ui along coordinate and rigid sections are essentially the contravari-

ant form of von Freud’s superpotential: 1

4
√
|g|
gieF ∪e abs∗(Σab) and Goldberg’s superpotential:

1
4η
ieEµe G ∨µ αβs∗(Σαβ), respectively. Thus one may expect that the pull back of (3.2.14.) along a

coordinate and a rigid section is (2.3.11.) and (2.4.11.), respectively. In fact, the pull back of dui

along a general section is

s∗(dui) = s∗(duj)g
ji − 2

(
ωirsg

sj + ωjrsg
si
)
uj
res∗(Σe),

while if τ j i is defined by s∗(ti) =: τ j is
∗(Σj) then

s∗(Θi) =
(
τekg

ki − 2(ωirsg
sj + ωjrsg

si)uj
re
)
s∗(Σe).

If s is a coordinate section then s∗(Θi) gives the contravariant form of Einstein’s energy-momentum

(i.e. Bergmann’s) pseudotensor:

s∗
(
Θi
)

= κEθ
jis∗(Σj);

but its pull back along a rigid section is not exactly κAEθ
ji:

s∗(Θi) = s∗(te)η
ei =

=
(
κAEθ

αβϑiβ +
1

2
G∨ραµ∇µEρkηki

)
s∗(Σα).

Let us define the dual form of the Nester–Witten form by

ue2...em := ueεee2...em , (3.2.16.)

and let Te2...em := T eεee2...em . Then

due2...em = κTe2...em + Θe2...em , (3.2.17.)

where

Θe2...em :=
(
te + (gefωkk − ωef − ωfe) ∧ uf

)
εee2...em . (3.2.18.)

The pull back of ue2...em along a coordinate section is

s∗(ue2...em) =
1

4
√
| g |F

∪f abgfeεee2...ems∗(Σab) =

=
1

4
∂r
(
| g | Gaber

)
εee2...em

1

(m− 2)!
εabf3...fmdx

f3 ∧ ... ∧ dxfm ,
(3.2.19.)

and hence
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s∗(due2...em) =
1

2
∂r∂s

(
| g | Gfres

) 1

(m− 1)!
εee2...emεff2...fmdx

f2 ∧ ... ∧ dxfm =

=
1

2 | g |∂r∂s
(
| g | Gfres

) 1

(m− 1)!
εee2...emεff2...fmdx

f2 ∧ ... ∧ dxfm .
(3.2.20)

Since the pull back of due2...em is the double dual of the symmetric object defining the Landau–

Lifshitz pseudotensor, one may expect that the pull back of Θe2...em is just the double dual of the

Landau–Lifshitz pseudotensor. In fact, the pull back of (3.2.18.) along a coordinate section is

s∗(Θe2...em) = κLLt
feεee2...ems

∗(Σf ). (3.2.21.)

One can take various forms of the Nester–Witten form and hence the Sparling equation, and

one can then pull them back along various local sections of L(M), yielding different superpotentials

and pseudotensors derived from Einstein’s first order Lagrangian. However, the mathematical

content of all these quantities is the same: it is what Sparling’s equation describes. From physical

points of view, however, these may have different significance: For example if Kβ is any vector

field satisfying ∂(αKβ) = 0 then for the Landau–Lifshitz pseudotensor we have

∂α

(
| g |

(
Gαβ + κLLt

αβ
)
Kβ

)
=

1

2
∂µ∂νH

αµβν∂(αKβ) = 0.

What is (globally) conserved here is therefore the integral

1

(m− 1)!

∫ √
| g |

(
Gαβ + κLLt

αβ
)
Kβ

√
| g |εαγ2...γmdx

γ2 ∧ ... ∧ dxγm

for an (m− 1) dimensional submanifold. However this is not the energy-momentum of the matter

+ gravity system even if ∂αKβ = 0, since we have an extra
√
| g | coefficient not only in front

of the gravitational part, but in front of the matter part also. If the extra
√
| g | factor were in

front of the gravitational term only but the matter term had the right coefficient then the matter

part could be interpreted e.g. as energy-momentum or angular momentum and, in contrast to

the strange feature of the gravitational part, would suggest the interpretation of the gravitational

part also. The result would be surprising but acceptable [25]. Thus it is hard to interpret these

conserved quantities, in contrast to the integral of the Noether pseudocurrents built up e.g. from

Einstein’s pseudotensors. Moreover if K is a Killing vector of the geometry then in general the

pseudocurrent | g |
(
Gαβ + κLLt

αβ
)
Kβ is not the sum of separately conserved (pseudo) currents,

while the Noether pseudo currents built up e.g. from Einstein’s pseudotensors are. Perhaps the

Landau–Lifshitz pseudocurrents above should be completed by spin parts, but, since the Landau–

Lifshitz pseudotensor is not a canonical pseudotensor, it is not a priori clear how these spin parts

should be defined. At the end of the next paragraph we return to this question and construct the

missing spin part.

3.3. The spin form on L(M)

In this paragraph we would like to recover the canonical spin pseudotensors of Einstein’s theory

as pull backs of a single differential form on L(M), and we would like to interpret this form as

the geometric object describing the spin content of gravity. However, there may be different forms

((m− 1) forms and (m− 2) forms) on L(M) whose pull backs yield the same pseudotensors. (For
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example −ui is such an (m − 2) form.) But the spin pseudotensors satisfy Belinfante–Rosenfeld

equations, thus, in addition, we want to have an exterior differential equation on L(M) whose pull

backs are just the Belinfante–Rosenfeld equations.

The quantities in the Belinfante–Rosenfeld equations have two free indexes, thus the spin form

would have two free indexes too. Since the spin pseudotensors are three index quantities and we

would like to recover them as the duals of the components of the pull backs (as in the case of

Sparling’s form), the spin form must be an (m − 1) form. Thus minus the Nester–Witten form

is not the spin form we are searching for. However, the fact that the pull backs of −ui yield the

canonical spin pseudotensors suggests to define the spin form by

σj i := θj ∧ ui =
1

2
ωab ∧

(
δjl Σab + δjaΣbi − δjbΣai

)
. (3.3.1.)

This is a gl(m,R)-valued pseudotensorial (m − 1) form on L(M) of type ad GL(m,R). It is

interesting that its trace,

σii =
1

2
(m− 2)ωab ∧ Σab,

is κ(m − 2) times the (m − 1) form whose exterior derivative has been dropped from 1
2κRΣ to

obtain the m-form describing Einstein’s Lagrangian. The pull back of σj i along a local section

s : U → L(M) is:

s∗(σj i) =
1

2

(
δji (ωersg

rs − gesωrrs) +

+ δei
(
ωrrsg

sj − ωjrsgrs
)
− δri

(
ωersg

sj − ωjrsgse
))
s∗(Σe).

(3.3.2.)

Thus if s is a coordinate section (when there is no difference between Latin and Greek indexes),

then

s∗(σj i) = κEσ
ej
is
∗(Σe) =

= κEσ
ej
i

1

(m− 1)!

√
| g |εee2...emdxe2 ∧ ... ∧ dxem ,

(3.3.3.)

while if s is a rigid section then

s∗(σj i) = κϑjαE
β
i aEσ

µα
βϑ

e
µs
∗(Σe) =

= κϑjαE
β
i aEσ

µα
β

1

(m− 1)!

√
| g |εµγ2...γmdx

γ2 ∧ ... ∧ dxγm .
(3.3.4.)

The form σj i therefore seems to be a good candidate to be the spin form we search for.

For a moment let us consider general, not necessarily torsion free, metric connections. Then,

using (3.1.2.), (3.1.3.) and the general Sparling equation (3.2.2.), we have

−dσj i = −dθj ∧ ui + θj ∧ dui =

=
1

2
Ξc ∧ ωab ∧

(
δjiΣabc + δjaΣicb + δjbΣiac

)
+Gj iΣ + tj i,

(3.3.5.)

where
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tj i : = θj ∧ ti + ωje ∧ θe ∧ ui =

= −1

2

(
δjiω

a
e ∧ ωeb ∧ Σab + ωai ∧

(
ωbj − ωjb

)
∧ Σab + ωae ∧

(
ωej + ωje

)
∧ Σia

)
.

(3.3.6.)

Using eq.(3.3.5.) and the fact that Σ is horizontal one can prove easily the next theorem.

Theorem 3.3.1.:

Let Ti = T jiΣj be any horizontal Rm∗-valued (m − 1) form on L(M), κ ∈ R and m 6= 2. Then

the following statements are equivalent:

(1) ωab is torsion free, Ξe = 0, and Gj i = κT ji,

(2) κT jiΣ + tj i = −dσj i.
Thus the connections satisfying Einstein’s theory can be characterized in terms of tj i and the

spin form too. The exterior derivative of (2) above looks like as a conservation equation again,

but Einstein’s equations, in contrast to Theorem 3.2.1., can be recovered from this conservation

equation only up to a non specified cosmological constant:

Theorem 3.3.2.:

Let Ti = T jiΣj be any horizontal Rm∗-valued (m−1) form on L(M), satisfying dTi−ωei∧Te = 0,

κ ∈ R and m 6= 2. Then

(1’) ωab is torsion free and ∃Λ ∈ R such that Gj i + Λδji = κT ji,

(3) d
(
κT jiΣ + tj i

)
= 0

are equivalent statements.

Proof:

To prove (1′)→ (3) it is enough to show that d
(

ΛδjiΣ
)

= 0, but, because of the vanishing of the

torsion, it follows from eq.(3.1.6.).

To prove the converse, first calculate the exterior derivative of tji. After a simple but rather

long calculation we arrive at

−2dtji = Ωae ∧
(
δji
(
ωeb − ωbe

)
∧ Σab + 2gjeωbi ∧ Σab+

+ δei
(
ωbj − ωjb

)
∧ Σab +

(
ωej + ωje

)
∧ Σia

)
+

+ Ξe ∧
(
δjiω

a
c ∧ ωcb ∧ Σabe + ωai ∧

(
ωbj − ωjb

)
∧ Σabe+

+ ωab ∧
(
ωbj + ωjb

)
∧ Σiae

)
.

(3.3.7.)

Furthermore, because of the condition imposed on Ti:

d
(
T jiΣ

)
= d
(
θj ∧ Ti

)
= Ξj ∧ Ti − ωje ∧ θe ∧ Ti − θj ∧ dTi =

= Ξj ∧ Ti − T eiωje ∧ Σ + T jeω
e
i ∧ Σ,

thus the condition (3) of Theorem 3.3.2. takes the form

0 = −2d
(
κT jiΣ + tj i

)
= −2κΞj ∧ Ti + 2κ

(
T eiω

j
e − T jeωei

)
∧ Σ− 2dtji. (3.3.8.)

Let {Dm
n} be the collection of fundamental vector fields associated to the Weyl basis of gl(m,R).

Recall [27] that {Dm
n} together with the standard horizontal vector fields {B(δa)} form a basis
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on L(M), dual to {ωab, θe}; and hence ωab(Dm
n) = δamδ

n
b and θe(Dm

n) = 0. Taking the interior

product of eq.(3.3.8.) first with Dm
n and with Dr

s and then contracting in j and r and in m and

s we obtain:

0 = (2−m)Ξe ∧ Σibeg
bn.

For m 6= 2 this implies the vanishing of the torsion. Substituting Ξe = 0 back to eq.(3.3.8.) and

using (3.1.10) we have

0 = 2
((
Rje − κT je

)
ωei − (Rei − κT ei)ωje

)
∧ Σ.

Taking its interior product with Dm
n and contracting in n and i:

Rj i −
1

m
Rδji = κ

(
T ji −

1

m
T kkδ

j
i

)
.

This equation can be rewritten in the following form:

Gj i − κT ji = −δji
( 1

2m
(m− 2)R+

κ

m
T kk

)
=: −δjiΛ.

But then, because of the contracted (second) Bianchi identity and the differential condition imposed

on Ti, Λ must be constant. ♥
In the rest of this paragraph we calculate the pull backs of condition (2) of Theorem 3.3.1.

and its contravariant and dual forms.

If σej i is defined by s∗(σj i) =: σej is
∗(Σe) then

s∗(dσj i) = dσej i ∧ s∗(Σe) + σej is
∗(dΣe) =

=
(
Eµe ∂µσ

ej
i + σej iω

k
ke

)
s∗(Σ).

(3.3.9.)

If s is a coordinate section then

s∗(dσj i) =
1√
| g |

∂e
(
κ
√
| g |Eσej i

)
s∗(Σ),

while for a rigid section it is

s∗(dσj i) = κ∇µ
(
AEσ

µα
βϑ

j
αE

β
i

)
s∗(Σ).

The pull back of tj i is

s∗(tj i) = s∗(θj) ∧ s∗(ti) + ωjrss
∗(θr) ∧ s∗(σsi) =

=
(
τ j i + ωjrsσ

rs
i

)
s∗(Σ).

(3.3.10.)

For coordinate section this is just

s∗(tj i) = κEt
j
is
∗(Σ),

i.e. Einstein’s pseudotensor again, while for a rigid section

s∗(tj i) =
(
κAEθ

α
βϑ

j
αE

β
i +

1

2
G∨βαµ∇µ

(
ϑjαE

β
i

))
s∗(Σ).
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Thus, observing that ∂µEσ
µα

β = ∂µEs
µα

β and aEσ
µα

β = aEs
µα
β , the pull backs of condition (2)

above along coordinate or rigid sections are the equations (2.3.8.) and (2.4.23.), respectively.

One can take the contravariant form of the spin form, σji := σj eg
ei, and its exterior derivative:

−dσji = κT ji + Θji, (3.3.11.)

where

Θji := tji +
(
ωie + ωei

)
∧ σje. (3.3.12.)

The pull back of Θji along a general section is

s∗(Θji) =
(
τ ji + ωjrsσ

rsi +
(
ωirsg

se + ωersg
si
)
σrje

)
s∗(Σ). (3.3.13.)

Thus for a coordinate section

s∗(Θji) = κEθ
jis∗(Σ),

while for a rigid section

s∗(Θji) = s∗(tje)η
ei =

=
(
κAEθ

αβϑjαϑ
i
β +

1

2
gβρG∨ραµ∇µ

(
ϑjαϑ

i
β

))
s∗(Σ).

The calculations show that the pull backs of eq.(3.3.11.) along coordinate or rigid sections are

eq.(2.3.15.) and (2.4.23.), respectively. Trivially, the pull backs of the antisymmetric part of

eq.(3.3.11.) are the Belinfante–Rosenfeld equations.

For the sake of completeness, finally, let us consider the dual form of the spin form:

σje2...em := θj ∧ ue2...em . (3.3.14.)

Then

−dσje2...em = κT je2...emΣ + Θj
e2...em , (3.3.15.)

where T je2...em := T jeεee2...em and

Θj
e2...em := Θjeεee2...em − ωkk ∧ σjeεee2...em . (3.3.16.)

The pull back of σje2...em along a coordinate section is

s∗(σj e2...em) = −1

2

1

(m− 1)!
∂f
(
| g | Gjref

)
εee2...emεrr2...rmdx

r2 ∧ ... ∧ dxrm ,

and hence

−s∗(dσj e2...em) =
1

2

1

m!
∂r∂s

(
| g | Gjres

)
εee2...emεl1...lmdx

l1 ∧ ... ∧ dxlm .

Therefore the pull back s∗(Θj
e2...em) must yield the Landau–Lifshitz pseudotensor again. In fact,

it is
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s∗(Θj
e2...em) = s∗(Θje)εee2...em − κΓkkrEσ

rjeεee2...ems
∗(Σ) =

= κLLt
jeεee2...ems

∗(Σ),

and therefore the pull back of eq.(3.3.15.) along a coordinate section is equivalent to

−κ∂µ
(
| g | Eσµαβ

)
=| g |

(
Gαβ + κLLt

αβ
)
.

Thus LLσ
µαβ := Eσ

µαβ plays the role of the spin pseudotensor in the Landau–Lifshitz case also.

Because of the symmetry of Gαβ and LLt
αβ , the algebraic Belinfante–Rosenfeld equation is simply

∂µ
(
| g | LLσµ[αβ]

)
= 0. The Belinfante–Rosenfeld combination of these pseudotensors is essentially

tensorial again:

| g | LLtαβ + ∂µ

(
| g |

(
LLσ

µ[αβ] + LLσ
α[βµ] + LLσ

β[αµ]
))

=

=| g | LLtαβ + ∂µ
(
| g | LLσµ(αβ)

)
=

= − 1

κ
| g | Gαβ .

The Noether pseudocurrent, associated to a vector field Kµ, is defined by

LLC
µ[K] : = LLt

µνKν +
(
LLσ

µ[αβ] + LLσ
α[βµ] + LLσ

β[αµ]
)
∂αKβ =

= LLt
µνKν + LLσ

µαβ∂αKβ =

= − 1

κ
GµνKν +

1

| g |∂α
(
| g | LLσµαβKβ

)
.

Then | g |
(
κLLC

µ[K] + GµνKν

)
is always pseudoconserved. However, if K is a Killing vector

of the geometry then, in general, it is not the sum of separately (pseudo)conserved matter and

gravitational pseudocurrents: We have only

0 = ∂µ

(
| g |

(
κLLC

µ[K] +GµνKν

))
=

=| g | 1

2
Gµν  LKgµν+

+ κ∂µ
(
| g | LLCµ[K]

)
+ | g | GµνKνΓρµρ,

and hence the gravitational Noether pseudocurrent is not pseudoconserved even for a Killing vector

K. For vector fields satisfying ∂(αKβ) = 0 the pseudocurrent | g |
(
κLLC

µ[K]+GµνKν

)
is the sum

of two separately pseudoconserved parts: the first, as we saw at the end of the previous paragraph,

is | g |
(
κLLt

µν+Gµν
)
Kν ; and the second is | g | LLσµαβ∂αKβ. However, ifKν generates coordinate

rotation then the second part is not zero, and, if we accepted the interpretation of LLσ
µαβ as the

spin pseudotensor of gravity in the Landau–Lifshitz formulation – which view would be supported

by the interpretation of σj i as the spin form and the fact that the relation between LLσ
µαβ and

LLt
αβ is the same that between e.g. Eσ

µαβ and Eθ
αβ –, the result would be rather surprising: the

orbital and spin angular momenta of gravity would be separately conserved.

This strange behaviour, together with others mentioned above and at the end of the previous

paragraph, supports our view that the proper energy-momentum and spin pseudotensors of gravity

are the canonical ones.

3.4. The Noether form on L(M)
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Let K be any vector field on M and {Ka} be the collection of functions on L(M) defined by

K: if w = (p, {Ea}) ∈ L(M) then let Ka(w) be the ath component of K in the basis {Ea} at

TpM . (In the language of Kobayashi and Nomizu [27] {Ka} is a zero form on L(M) of type(
Rm, GL(m,R)

)
.) Thus  LDmnKa = δnaKm, where Dm

n is the fundamental vector field on L(M)

associated to the element em
n of the Weyl basis of gl(m,R). K is a conformal Killing vector on

M iff  LB(δa)Kb +  LB(δb)Ka = Ωgab for some GL(m,R)-invariant function Ω on L(M); and K is a

Killing vector iff Ω = 0. Here {B(δa)} are the standard horizontal vector fields on L(M).

The gravitational Noether form, associated to K, is defined by

C[K] : = ΘaKa + dKa ∧ ua =

= ΘaKa +Keω
e
a ∧ ua +  LB(δa)Kbσ

ab.
(3.4.1.)

Then trivially

d
(
Kau

a
)

= C[K] + κT aKa, (3.4.2.)

and the pull back of C[K] along a general local section of L(M) is

s∗(C[K]) = s∗(Θa)Ka + s∗(dKa) ∧ s∗(ua) =

= s∗(Θa)Ka +Eµa∂µKbs
∗(σab).

(3.4.3.)

If s is a coordinate section then

s∗(C[K]) = κ
(
Eθ

µνKν + Eσ
µαβ∂αKβ

)
s∗(Σµ), (3.4.4.)

which is just the Noether pseudocurrent (2.3.17.) built up from the Einstein pseudotensors in

holonomic description. For a rigid section the pull back is

s∗(C[K]) = κ
(
aEθ

µνKν + aEσ
µαβ∂αKβ

)
s∗(Σµ) =

= κ
(
AEθ

µνKν + AEσ
µαβ∇αKβ

)
s∗(Σµ),

(3.4.5.)

the Noether current (2.4.17.), (2.4.26.). Thus although the pull backs of the Sparling type forms

ti, t
j
i and Θi, Θji along rigid sections are not exactly the tensors AEθ

j
i and AEθ

ji, respectively,

the pull backs of the Noether form are the Noether (pseudo)currents. The Noether form is there-

fore seems to be the geometric object on L(M) which, with appropriately chosen vector field K,

describes the momentum-angular momentum content of gravity.

A simple consequence of eq. (3.4.2.) is d
(
C[K] + κT aKa

)
= 0; and since

dC[K] = −κ
(
dKa ∧ T a +KadT

a
)

=

= −κ LB(δa)KbT
abΣ,

and the symmetry T ab = T (ab), implied by the symmetry of Einstein’s tensor in absence of torsion,

C[K] is closed for Killing vectors.

4. Summary and discussion

In the present paper the ”orthodox” pseudotensorial description of the gravitational linear and

angular momenta was reexamined. In the usual approach three difficulties are involved: (1) There
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is an ambiguity in the definition of the conserved quantities: one can add to them arbitrary curls,

and it does not seem to have a selection rule to rule out this ambiguity. With an appropriate

curl one can obtain the completely different energy-momentum expressions of Einstein, Bergmann,

Møller, Komar etc. (2) In contrast to the requirement of the principle of general covariance

the conserved quantities are in general not geometric objects. Although Komar’s expression is

tensorial, but at infinity for the Kerr spacetime it yields 2 a
m as the angular momentum/mass ratio

instead of the expected a
m [8]. In the ”m-legs” formalism of gravity the conserved quantities are

all SO(p, q)-gauge dependent. (3) The conserved quantities are associated to vector fields on the

spacetime manifold. Thus they are built up not only from the gravitational field variables, but

the actual vector field too. Therefore there are infinitely many conserved quantities even if the

superpotential is fixed. One wants to identify m of them as the linear, and 1
2m(m − 1) as the

angular momentum. However it is not a priori clear how to choose the corresponding vector fields

and what is the interpretation of the remaining infinite conserved quantities.

In the first part of this paper the first difficulty was tried to resolve. To choose from the

mathematically possible infinitely many conserved currents and pseudotensors we followed the

scenario of the Lagrangian theory of matter fields. However, at least in well known textbooks on

field theory, this formalism is available only for first order Lagrangians. Since we wanted to consider

not only first order, but second order Lagrangian too, first we had to generalize the formalism.

This has been done in paragraph 2.1.

In contrast to the canonical energy-momentum and spin tensors the symmetric energy-mom-

entum tensor has several attractive properties, e.g. gauge invariance, independence of total diver-

gences added to the Lagrangian, and its contraction with any Killing vector is conserved if the field

equations are satisfied. Thus the symmetric energy-momentum tensor seems to be better to de-

scribe the energy-momentum and angular momentum of fields. However, conceptually the notion

of energy, momentum and angular momentum is connected to the first Noether theorem. In fact,

this theorem, applied for the material action, gives us just the identity (2.1.10.) and predicts the

conservation of the Noether current (2.1.14.), provided K is a Killing vector and the field equations

are satisfied. On the other hand, the interpretation of the symmetric energy-momentum tensor

as the relativistic energy-momentum density of fields is possible only since it is the Belinfante–

Rosenfeld combination of the canonical tensors. One may say that this interpretation is a matter

of taste. However, this can be so until gravitation is taken into account. In fact, there is no

gravitational counterpart of the symmetric energy-momentum tensor of the matter fields, even in

principle, while one can apply the first Noether theorem for the total action and any vector field

and obtain conserved Noether currents. The symmetric energy-momentum tensor of the matter

fields is simply the ”source density of gravitation”.

Unfortunately, as we saw at the beginning of paragraph 2.2., we cannot introduce acceptable

tensorial energy momentum and angular momentum expressions for gravity, and hence, for lack

of better, we should use the so-called pseudotensorial quantities. Since we would like to have as

complete characterization of the energy, momentum and angular momentum properties of grav-

ity as it is possible, we had to consider the gravitational counterpart not only of the canonical

energy-momentum, but the spin tensor as well. These pseudotensors were defined for second order

Lagrangians in the rest of paragraph 2.2.

Paragraphs 2.3., 2.4. and 2.5. are systematic applications of the general Lagrangian scenario.

First the metric was chosen as the gravitational field variable and Einstein’s first order Lagrangian
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was considered. It was shown that the spin pseudotensor plays the role of a superpotential for

the energy-momentum pseudotensor and von Freud’s superpotential is distinguished among the

superpotentials by the Lagrangian formalism. The contravariant form of these pseudotensors were

defined and it was shown that they satisfy the Belinfante–Rosenfeld equations. Furthermore, their

Belinfante–Rosenfeld combination is just Einstein’s tensor. The Noether pseudocurrent, defined in

the standard way, was shown to give the angular momentum expression of Bergmann and Thomson

as a special case.

Then, instead of the metric, a rigid basis of 1-forms was chosen as the field variable. The spin

pseudotensor, apart from the factor
√
| g |, was shown to be tensorial, just minus the superpotential

of Goldberg. A tensorial canonical energy-momentum expression was found, such that these tensors

satisfy the tensorial Belinfante–Rosenfeld relations. The Noether current constructed from them

is also tensorial. However, they are not invariant with respect to local rigid rotations of the basis

1-forms.

Finally, Hilbert’s second order Lagrangian was considered. It was found that the canonical

energy-momentum pseudotensor is nothing but Møller’s energy-momentum pseudotensor, intro-

duced originally in a completely different way. The spin pseudotensor plays also the role of a

superpotential and distinguishes Møller’s superpotential. The results do not depend on whether

the field variable is the metric or a rigid basis of 1-forms. (In the previous two cases not only the

description, but the Lagrangian was different too.)

Now turn to the problem of the appearing contradiction to the principle of general covariance.

As is usually stated the principle of general covariance requires that the laws of Nature must have a

form containing only geometric objects. In the holonomic description the Noether pseudocurrents

are not tensorial objects, in contrast to the requirement of the principle of general covariance. Al-

though for first order Lagrangian and anholonomic description the Noether current is a true vector

field, but it depends on the basis 1-forms; i.e. it is O(p, q) -gauge dependent. The stronger form

of the principle of general covariance formulated e.g. in [1] does not allow this gauge dependence

either.

However, if the geometric objects in the principle of general covariance were not required to

be geometric objects on the spacetime manifold, but they were allowed to be geometric objects on

the manifold of frames of the spacetime; i.e. on the bundle of linear frames L(M) over M , and

if the previous coordinate and/or gauge dependent quantities and formulae could be reformulated

in terms e.g. of differential forms on L(M), then the contradiction with the principle of general

covariance would be resolved. This reformulation of the canonical pseudotensors for the first order

gravitational Lagrangian was done in the second part of this paper.

First we defined the Nester–Witten and Sparling forms on the bundle of linear frames (as

Frauendiener did in four dimensions [32]) in m dimensions (as Dubois-Violette and Madore did

on the bundle of orthonormal frames [31]), and then their contravariant and dual forms were

introduced. Frauendiener has shown that the pull back of Sparling’s form along a coordinate

section of L(M) is Einstein’s canonical energy-momentum pseudotensor, and the pull back of the

contravariant form of Sparling’s form was tried to identify as the Landau–Lifshitz pseudotensor

[32,33]. Here we showed that the pull back (along a coordinate section) of the contravariant

form of Sparling’s form is Bergmann’s pseudotensor, while the Landau–Lifshitz pseudotensor can

be recovered as the pull back of the dual form of Sparling’s form. The pull backs of Sparling’s

form and its contravariant form were calculated along rigid sections of L(M) too. It turned out
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that although the results are tensorial but neither the canonical energy-momentum tensor nor

its contravariant form is a simple pull back of some form of Sparling’s form. However, the pull

backs of the full Sparling equation (or its contravariant form) always yield the equations giving

the canonical energy-momentum tensors in terms of the corresponding superpotentials.

Then a gl(m,R)-valued (m − 1) form, the so-called spin form and its contravariant form

were defined. It is known that by means of Sparling’s form one can give necessary and sufficient

conditions for a metric connection being torsion free and solution of Einstein’s equations. It was

proved that similar equivalent characterization of Einstein’s theory is possible by means of the spin

form too. The pull back of the spin form and its covariant form along any section are shown to

be the corresponding canonical spin pseudotensor. Exterior differential equations for the various

forms of the spin form could be derived, the pull backs of whose antisymmetric part are always

the Belinfante–Rosenfeld equations for the (pseudo) tensors. Finally, for any vector field of the

spacetime an (m − 1) form, called the Noether form, was defined on L(M), whose pull backs are

always the corresponding Noether pseudocurrents.

The comparison of the apparently different and complicated pseudotensorial calculations with

the simple differential form approach suggests to consider the bundle of linear frames as more

natural arena to describe the gravitational (and, to retain the unity of physics, the physical)

phenomena than the spacetime itself. Although it has been shown only in the holonomic and

anholonomic descriptions that the pseudotensorial formulae and quantities can be recovered from

Sparling’s equation and differential forms on L(M), respectively, we interpret the spin form (it

is only a name here), the Sparling form and the Nester–Witten form as the spin and energy-

momentum form of gravity, and the superpotential for the energy-momentum form, respectively.

Accepting this interpretation and recalling that the Landau–Lifshitz pseudotensor is a pull

back of the dual form of Sparling’s form along a coordinate section, the pull back of the dual form

of the spin form would have to be interpreted as the spin pseudotensor in the Landau–Lifshitz

approach. (Since the Landau–Lifshitz energy-momentum pseudotensor is not a canonical pseu-

dotensor, one cannot use the Lagrangian scenario to construct the corresponding spin pseudoten-

sor.) However, it turned out that the orbital and spin parts of the total Landau–Lifshitz angular

momentum are separately conserved. This might suggest not to consider the Landau–Lifshitz

pseudotensors as the proper quantities describing the energy-momentum and angular momentum

properties of gravity.

Unfortunately, we could not recover Møller’s superpotential, pseudotensors and Noether pseu-

docurrent as pull backs of certain differential forms on L(M) such that, at the same time, the

pull backs of the exterior differential equations for them would be the familiar pseudotensorial

equations.

The reformulation of the pseudotensorial formalism in the coordinate free differential geometric

language does not mean, of course, that the notion of gravitational energy-momentum and angular

momentum became coordinate (gauge) independent. Mathematically this gauge dependence is

coded in the non horizontal character of the Nester-Witten, Sparling, spin and the Noether forms,

and hence their pull backs along local sections of L(M) will depend on the actual sections. (In the

language of [27] these forms are only pseudotensorial, but not tensorial.)

The gauge dependence of the Noether current is not a specific property of gravity, it is common

in non abelian gauge theories: In the gauge theory specified at the end of paragraph 2.1. the field

equation for the connection fields is
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−JµΓ = 2∇ν
( ∂Lc
∂FΓ

µν

)
+ 2

∂Lc
∂FΓ

µν

c∆ΓΠA
Π
ν ,

where JµΓ , the ”source density of the connection fields”, is defined as the functional derivative of

the particle action with respect to AΓ
µ. Denoting the second term on the right by jµΓ , the connection

field equation is equivalent to

JµΓ + jµΓ = −2∇ν
( ∂Lc
∂FΓ

µν

)
.

While JµΓ is gauge covariant, neither jµΓ nor the right hand side, the superpotential for the conserved

currents, is gauge covariant. This is the reason why jµΓ is sometimes called pseudocurrent. Since

it is proportional to the structure constant of G, it vanishes for abelian G.

If, however, the notion of gravitational energy-momentum and angular momentum is nec-

essarily gauge dependent, one may ask whether it is good for anything at all, and the problem

considered here is not only a rule how to split the gauge independent Einstein tensor into energy-

momentum and spin parts in a gauge dependent way. Isn’t it a pure gauge? It would be difficult to

avoid this question if we wanted to have only local, energy density-like quantities. However, if we

have a closed (m− 2) dimensional closed submanifold S in M then, in contrast to internal gauge

theories, S may be used to reduce the gauge freedom at the points of S. Thus although we use

the non-horizontal Nester–Witten form, the integral of its pull backs to S along the preferred local

sections may be well defined quasi local integrals. These quasi local integrals will be considered

elsewhere.

Finally, in this paper we did not deal with difficulty (3). The vector field K, if it was specified

at all, was defined by certain properties of the coordinate transformation it generated. It does

not seem to be possible to specify K geometrically within the framework considered here. Quasi

locally, however, there is a chance to define K to generate acceptable linear and angular momenta

of the matter + gravity system.
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