Plane Waves as Tractor Beams

arXiv:1303.3237, Phys. Rev. D88 125007

Árpád Lukács

Collaborators: Péter Forgács, Tomasz Romańczukiewicz

Wigner RCP RMKI, Budapest, Hungary

SZTE Elméleti Fizikai Tanszék Szemináriuma 2015. December 3.

Outline

Introduction

- What is negative radiation pressure?
- NRP on kinks
- Other approaches

2 NRP in two channel scattering

- 1d
- Examples
- Force in 2d scattering
- 3 Applications
 - Neutron scattering on XY model vortices

4 Conclusions

Radiation pressure

Scattering of light: the pressure acting on a platelet

$$P=(1+R^2-T^2)W,$$

 $W = \epsilon_0 E_0^2/2$

Can the pressure be negative?

What objects can be pulled towards the radiation source? Unitarity (conservation of energy): $R^2 + T^2 = 1$, $P = 2WR^2 > 0$. How can *P* be negative?

NRP on kinks

Kinks in the ϕ^4 theory

- linearized perturbations: scattering reflectionless
- nonlinearities generate higher harmonics

(Video: Tomasz Romańczukiewicz)

- More momentum in the forward direction → NRP (Romańczukiewicz 2004, Forgács, Lukács and Romańczukiewicz 2007.)
- It should be possible with 2 channels, different momenta

Other approaches

Gain media (Mizraki and Fainman, 2010)

Other approaches

Gain media (Mizraki and Fainman, 2010)

Structured beams (Sukhov and Dogariu, 2011)

Other approaches

Gain media (Mizraki and Fainman, 2010)

Structured beams (Sukhov and Dogariu, 2011)

Negative ε, μ (Veselago 1967)

Two channel scattering in 1d

Plane waves as tractor beams in unitary scattering

- Two kinds of waves (channels) i = 1, 2
- momentum P_i
- channel 1 incoming wave

$$\rho = |A_1|^2 \left[P_1(1+|R_{11}|^2-|T_{11}|^2) + P_2(|R_{21}|^2-|T_{21}|^2) \right] \,,$$

where R_{ij} and T_{ij} : reflection and transmission coefficient, channel $i \rightarrow j$.

• energy flux *S_i*; energy conservation

$$\sum_{i} S_{i}(|R_{ij}|^{2} + |T_{ij}|^{2}) = S_{j}.$$

- one channel: no NRP, $p = 2|A|^2 P_1 |R|^2 > 0$.
- NRP expected: $P_2 > P_1$ and large T_{21} .

Birefringent media

Anisotropic dielectric tensor

 $\varepsilon = \text{diag}(\varepsilon_x, \varepsilon_y, \varepsilon_z)$

Two types of wave: polarizations Wave propagation in the *z* direction

- Two modes: the x and y polarizations, assume $n_x < n_y$
- Momentum flux of plane waves $P_i = \varepsilon_i/2$
- Energy fluxes $S_i = \sqrt{\varepsilon_i/\mu}/2$

Pressure

$$\frac{p_z}{|E_{x0}|^2} = P_x(1+|R_{xx}|^2-|T_{xx}|^2)+P_y(|R_{yx}|^2-|T_{yx}|^2),$$

where T_{ij} transmission, R_{ij} reflection, channel $j \rightarrow i$

Energy conservation: $\sum_{i} S_i(|R_{ij}|^2 + |T_{ij}|^2) = S_j$.

Force formula

Scatterer

Plane of thickness *L*, same material, rotated by ϑ

Neglect multiple surface interactions

$$p_z = \epsilon_0 |E_{x0}|^2 \left(P_0 + P_1 \cos \frac{n_y - n_x}{c} \omega L \right)$$

Examples 2d

small angle

$$P_0 = \theta^2 (n_x - n_y) (4n_x^2 + 3n_x n_y + n_y^2) / 4n_y$$

$$P_1 = -\theta^2 (n_x - n_y) (n_x + n_y)^2 / 2 / n_y$$

Tractor beam: $n_x < n_y$

•
$$n_{x,y} = n \pm \delta n$$
: $P_0 = -P_1 = -2n\delta n\theta^2$

• At 45°:
$$P_0 = -P_1 = -n\delta n/2$$

Macroscopic example

Dielectric

$$n_x = 3, \quad n_y = 6$$

Incoming wave: 1 kW/cm² at $\omega = 1$ GHz

Pressure

 $P_0 = -1.08, P_1 = 1.99$, avg. pressure $P_z = -0.072$ Pa

Radiation pressure at total reflection: 0.6 Pa Accuracy: exact value -0.053 Pa

This is a macroscopic effect.

An optical example

Dielectric

Liquid crystal 5CB, at 25 °C, $\lambda = 5893$ Å : $n_x = 1.53$, $n_y = 1.72$

Scatterer: rotated birefringent platelet E.g., L = 0.1 mm, $\theta = \pi/4$

Pressure

- x polarization $p_z = -5.52 \times 10^{-13} \text{Pa} (\text{m/V})^2 |E_0|^2$
- y polarization $p_z = 7.48 \times 10^{-13} \text{Pa} (\text{m/V})^2 |E_0|^2$

Accuracy: -4.95×10^{-13} Pa (m/V)² $|E_0|^2$ and 8.14 × 10⁻¹³Pa (m/V)² $|E_0|^2$ A few percents of radiation pressure on a totally reflecting mirror!

Force in 2d scattering

Scattering in 2d, rotational invariance

- Partial wave expansion (Fourier trf. in ϑ)
- S-matrix elements S_{ℓ} : $n \times n$ matrix (n: channels)
- S_{ℓ} unitary (conservation of energy)

Momentum balance: force master formula

$$F = F_x + iF_y = -4\sum_{\ell} \left\{ A^{\dagger} S_{\ell+1}^{\dagger} K S_{\ell} A - A^{\dagger} K A \right\} \,,$$

 $A = (A_1, \ldots, A_n)^T$ amplitude, $K = \text{diag}(k_1, \ldots, k_n)$ wave numbers

Force in 2d scattering

Scattering in 2d, rotational invariance

- Partial wave expansion (Fourier trf. in ϑ)
- S-matrix elements S_{ℓ} : $n \times n$ matrix (n: channels)
- S_{ℓ} unitary (conservation of energy)

Momentum balance: force master formula

$$F = F_x + iF_y = -4\sum_{\ell} \left\{ A^{\dagger} S_{\ell+1}^{\dagger} K S_{\ell} A - A^{\dagger} K A \right\} \,,$$

 $A = (A_1, ..., A_n)^T$ amplitude, $K = \text{diag}(k_1, ..., k_n)$ wave numbers A consequence of unitarity:

$$\operatorname{\mathsf{Re}}|A_a|^2k_a(1-S^*_{aa,\ell+1}S_{aa\ell})>0$$

one channel radiation pressure positive

NRP: $k_b > k_a$ necessary

Scattering on vortices

- Two types of wave (particle species/spin/etc.)
- Neglect vortex core
 - $r
 ightarrow\infty$ asymptotic form of A
 - \rightarrow a two channel Aharonov-Bohm scattering problem

$$\left(\nabla + i\mathbf{A}\frac{\sigma_2}{2}\right)^2 \rho - \mathcal{K}^2 \rho = \mathbf{0} \,, \quad \sigma_2 = \begin{pmatrix} & -i \\ i & \end{pmatrix} \,,$$

where

- $\mathbf{A} = \mathbf{e}_{\vartheta}/r$
- $\rho = (u, d)$, u: heavy and d light mode
- fermionic bdry cond. $\rho(r, \vartheta + 2\pi) = -\rho(r, \vartheta)$

Scattering on vortices

- Two types of wave (particle species/spin/etc.)
- Neglect vortex core
 - $r
 ightarrow \infty$ asymptotic form of A
 - \rightarrow a two channel Aharonov-Bohm scattering problem

$$\left(\nabla + i\mathbf{A}\frac{\sigma_2}{2}\right)^2 \rho - \mathcal{K}^2 \rho = \mathbf{0}, \quad \sigma_2 = \begin{pmatrix} & -i \\ i & \end{pmatrix},$$

where

•
$$\mathbf{A} = \mathbf{e}_{\vartheta}/r$$

- $\rho = (u, d)$, u: heavy and d light mode
- fermionic bdry cond. $\rho(r, \vartheta + 2\pi) = -\rho(r, \vartheta)$

Solution: partial waves, radial eq. numerically

- NRP for large rane of parameters
- Cross section \gg geometric, 1/k
- $1/sin\vartheta/2$ in scattering amplitude
- Large cross section from one channel to another

2ch Applications Conclusions Backup slides

Scattering off cosmic strings

Inside a cosmic string: GUT Higgs zero, flux of broken gauge field Cosmic string catalyzed baryon number violation:

 $B + \text{string} \rightarrow \ell + \text{string}$

Scattering off cosmic strings

Inside a cosmic string: GUT Higgs zero, flux of broken gauge field Cosmic string catalyzed baryon number violation:

 $B + \text{string} \rightarrow \ell + \text{string}$

A simplified description:

- Neglect spin degrees of freedom
- 2 channel Aharonov–Bohm scattering
 - 1 heavy baryon, 1 light lepton, mass ratio 1.5 : 2.

Scattering off cosmic strings

Inside a cosmic string: GUT Higgs zero, flux of broken gauge field Cosmic string catalyzed baryon number violation:

 $B + \text{string} \rightarrow \ell + \text{string}$

- A simplified description:
 - Neglect spin degrees of freedom
 - 2 channel Aharonov–Bohm scattering
 - 1 heavy baryon, 1 light lepton, mass ratio 1.5 : 2.
 - Large cross section: cosmic string catalyzed baryon number violation
 - Force: string friction (moving in a plasma)
 - Decoupled approximation

$$F_i = -4n_i v (1 - \exp(2\pi i \nu_i \Phi))$$

 n_i density, ν_i coupling to the X-boson

- only valid for light modes, heavy modes give negative contribution
- at *v* = 0.65

$$F_x^u = -6.09|A|^2$$
, $F_x^d = 7.44|A|^2$.

• scattering energy $m_i/\sqrt{1-v^2}$

Force: x

x component

< • • • • •

2

э

Force: y

y component

< • > < • >

2

3

Neutron scattering: XY model vortices I

XY model

rotators (spins) in a plane, with nearest neighbor interaction

Magnetic vortex: singularity of magnetization M

gM energy difference between parallel and antiparallel spin neutrons

Diagonalize Hamiltonian locally

- 2 modes, $\hbar^2/2/m(k_d^2 k_u^2) = gM$
- small momentum transfer

Measurable manifestation of the same phenomenon as NRP

- Large cross sections, 1/k (A-B)
- Large spin-flip cross section $E = 4.1 \times 10^{-5}$ eV (45 Å neutrons), $\sigma_{du} = 1.19 \times 10^{-4}$ m
- Can be calculated perturbatively

Conclusions

- Many approaches to tractor beams (e.g., structured beams)
- Multi-channel scattering, $k_i \neq k_j$ fairly general
- One-dimensional examples:
 - polarizations of EM waves
 - higher harmonics (kink)
- Two dimensions
 - Cosmic strings: baryon decay
 - Magnetic XY-vortex

Conclusions

- Many approaches to tractor beams (e.g., structured beams)
- Multi-channel scattering, $k_i \neq k_j$ fairly general
- One-dimensional examples:
 - polarizations of EM waves
 - higher harmonics (kink)
- Two dimensions
 - Cosmic strings: baryon decay
 - Magnetic XY-vortex

THANK YOU FOR YOUR ATTENTION!

Cosmic strings

- Classical field theoretical solution
- Thin, elongated object
- String core: a zero of a Higgs field
- Energy density localized in the core

Important parameter: string tension

$$\mu = E/L$$

- Electroweak string: $G\mu \approx 10^{-32}$ (μ : 10 mg/Solar diam)
- GUT string: $G\mu \approx 10^{-6}$ (μ : Solar mass/Solar diam)

Cosmic strings are high energy localized objects that provide a link between astrophysics and particle physics.

Physics of cosmic strings

- Formation: during phase transitions
- Evolution of a string network
 - Friction dominated era: scattering of particles
 - Scaling v ~ 0.65
 - collisions, interlinking
 - radiation (e.g. at cusps formed in collisions)
 - string tension contracts loops
 - expansion: the network becomes more diluted
- Signatures of cosmic strings
 - Scattering of material off strings: structure formation: galaxies, voids, filaments (fractal dimension)
 - Contribution to CMB anisotropy: best fit with GUT strings $G\mu = (2.04 \pm 0.13) \times 10^{-6}$, Contribution to multipole $\ell = 10: f_{10} = 0.11 \pm 0.05$ (Hindmarsh et al., 2007, 2008)
 - Gravitational lensing
 - Gravitational radiation

Artificial gauge potential

Diagonalize locally the Hamiltonian

$$U^{\dagger}(V-\omega)U=K$$

 $K = \operatorname{diag}(k_1, \ldots, k_n)$

kinetic term:

$$U^{\dagger}\partial_{i}U =
abla + U^{\dagger}(\partial_{i}U) =
abla - iA_{i}$$

- A : artificial gauge potential
- $U = U(\vartheta)$: Aharonov-Bohm form

$$\mathbf{A} = \frac{\mathbf{A}_{\vartheta}}{r} \mathbf{e}_{\vartheta} \,,$$

where $A_{\vartheta} = U^{\dagger} \partial U / \partial \vartheta$

Scalar perturbations of the global vortex

One massive, one Goldstone (massless) mode

Perturbations of the superfluid vortex

Asymptotics: $H_{\nu}(\omega r/2)$, $K_{i\eta}(2r)$, one channel

Aharonov–Bohm scattering I

The Aharonov–Bohm effect: Motion of a charged particle in a region with $\mathbf{B} = 0$ Double slit expreriment: Scattering:

- Both experiments show flux dependence
- Holonomy is also physical not just field strength $\mathbb{P}e^{i\int \mathbf{A}d\mathbf{r}}$
- Reaction force (deflected beam): Force acting on the scatterer

Aharonov–Bohm scattering II

Schrödinger-equation

$$-i\dot{\psi}=(\nabla-i\mathbf{A})^{2}\psi,$$

with electromagnetic vector potential

$$\mathbf{A}(r,artheta,z)=rac{A_0}{r}\mathbf{e}_artheta$$
 .

 $2\pi A_0$ flux; outside **B** = 0. Fixed energy: $\psi(\mathbf{r}, t) = e^{-i\omega t}\psi(\mathbf{r})$. Scattering asymptotics (?)

$$\psi \sim \mathrm{e}^{ikx} + \frac{f(\vartheta)}{\sqrt{r}}\mathrm{e}^{ikr}$$

Cross sections: $d\sigma/d\vartheta = |f(\vartheta)|^2$ Scattering amplitude: $f(\vartheta) \sim \frac{\sin \pi A_0}{2\pi} \frac{1}{\sin(\vartheta/2)}$. Intro 2ch Applications Conclusions Backup slides

Physics of cosmic strings

Aharonov–Bohm scattering III

Partial waves: $s_{\ell} \propto J_{|\ell-A_0|}$ (note index shift wrt plane wave) Effect of scattering in the outgoing wave: phase shift δ_{ℓ} , $S_{\ell} = \exp(2i\delta_{\ell})$ $(J_{\nu}(z) \sim \cos(z - \nu\pi/2 - \pi/4)/\sqrt{2\pi z})$

$$\ell \ge 0 : \ \delta_{\ell} = \frac{A_0 \pi}{2} \,, \quad \ell \le -1 \,: \ \delta_{\ell} = \pi \ell - \frac{A_0 \pi}{2}$$

thus

$$\begin{split} F_x &= -|\phi_0|^2 4k \sum_{\ell=-\infty}^{\infty} \left\{ \cos\left[2(\delta_\ell - \delta_{\ell-1})\right] - 1 \right\} \\ &= -|\phi_0|^2 4k \left(\cos(2\pi A_0) - 1\right) \approx 16 |\phi_0|^2 \pi^2 A_0^2 k , \\ F_y &= -|\phi_0|^2 4k \sum_{\ell=-\infty}^{\infty} \sin\left[2(\delta_\ell - \delta_{\ell-1})\right] = |\phi_0|^2 4k \sin(2\pi A_0) \approx 8 |\phi_0|^2 \pi A_0 k . \end{split}$$

Analog problem: force acting on a superfluid vortex (GPe)

Aharonov–Bohm scattering IV

lordanskii force controversy C. Wexler, D.J. Thouless, Phys. Rev. B58 R8897-R8900 (1998):

$$f(-\vartheta) = f(\vartheta) \quad \Rightarrow \quad F_y = 0$$

A.L. Shelankov Europhys. Lett. 43 (1998) 623 M.V. Berry J. Phys. A: Math. Gen. 32 (1999) 5627: scattering asymptotics does not hold in forward direction

$$\psi(\mathbf{r},t) = \mathrm{e}^{-i(\omega t - kx)}\phi(\mathbf{r})$$

and for $y \ll \sqrt{x}$

$$\phi(x > 0, y) \sim \cos(A_0\pi) - \frac{2i^{1/2}}{\sqrt{\pi}}\sin(A_0\pi)\sqrt{\frac{k}{2}}\frac{y}{\sqrt{x}}$$

transversal force F_v from this region (although not F_x)

References I

- Forgács, P., Lukács, Á., Romańczukiewicz, T., Plane waves as tractor beams Phys. Rev. D88, 125007.
- Péter Forgács, Árpád Lukács, and Tomasz Romańczukiewicz, Negative radiation pressure exerted on kinks Phys. Rev. **D77**, 125012 (2008).
- T. Romańczukiewicz, Negative radiation pressure in case of two interacting fieldsActa. Phys. Polonica B39 (2008) 3449-3462.
- A. Mizrahi, and Y. Fainman, Negative radiation pressure on gain medium structures Opt. Lett. 35 3405 (2010); K.J. Webb and Shivanand, Negative electromagnetic plane-wave force in gain media Phys. Rev. E84, 057602 (2011).
- A. Dogariu, S. Sukhov, and J.J. Sáenz Optically induced 'negative forces' Nat. Pho. 7, 24 (2012);

References II

- S. Sukhov and A. Dogariu, On the concept ot "tractor beams" Opt. Lett. 35 3847 (2010); S. Sukhov and A. Dogariu, Negative Nonconservative Forces: Optical "Tractor Beams" for Arbitrary Objects Phys. Rev. Lett. 107, 203602 (2011); O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, Experimental demonstration of optical transport, sorting and self-arrangement using a 'tractor beam' Nat. Pho. 7, 123 (2013).
- F. Capolino, Theory and phenomena of metamaterials, (CRC Press, Boca Raton London New York, 2009).
- V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ϵ and μ Sov. Phys. Usp. **10** 509 (1968).
- P.P. Karat and N.V. Madhusudana, *Elastic and optical properties* of some 4'-n-Alkyl-CyanobiphenylsMol. Cryst. Lig. Cryst.36 51-64 (1976).

References III

- A.L. Shelankov, *Magnetic force exerted by the Aharonov–Bohm lineEurophys. Lett.* **43** (6) pp. 623-628 (1998).
- A. Vilenkin and E.P.S. Shellard, *Cosmic strings and other topological defects*, (Cambridge University Press, Cambridge, 1994).
- M.G. Ahlford, F. Wilczek, Aharonov–Bohm Interaction of Cosmic Strings with Matter Phys. Rev. Letters 62, 1071 (1989);
 M.G. Ahlford, J. March-Russell, and F. Wilczek, Enhanced baryon number violation due to cosmic strings Nucl. Phys. B328 (1989) 140-158; A.C. Davis and A.P. Martin, Global strings and the Aharonov–Bohm effect Nucl. Phys. B419 (1994) 341-351;
 L. Perivolaropoulos, A. Matheson, A.-C. Davis, and
 R.H. Brandenberger, Nonabelian Aharonov–Bohm baryon decayPhys. Lett. B245 (1990) 556-560. W.B. Perkins,
 L. Perivolaropoulos, A.-C. Davis, R.H. Brandenberger and

References IV

A. Matheson, Scattering of fermions from a cosmic stringNucl. Phys. B353 (1990) 237-270:

- T.-P. Cheng and L.-F. Li, Gauge theory of elementary particle physics, (Clarendon Press, Oxford, 1988); R.N. Mohapatra, Unification and Supersymmetry, (Springer-Verlag, New York, 2003).
- J. March-Russell, J. Preskill, and F. Wilczek, Internal frame dragging and a global analog of the Aharonov–Bohm effect Phys. Rev. Letters 68, 2567 (1992).