Teaching
This term
Integrable field theories
Previous years |
|
---|---|
Integrability in the gauge gravity/duality | 2023 |
Integrable field theories | 2022 |
Conformal field theories | 2021 |
Integrable field theories | 2019 |
Integrable methods in the gauge/gravity duality | 2018 |
String theory | 2017 |
Conformal field theory | 2016 |
Integrable field theories | 2015 |
Integrable methods in the gauge/gravity duality II | 2013 |
Integrable methods in the gauge/gravity duality I | 2012 |
String theory I |
2011 |
Integrable field theories | 2010 |
Boundary field theories | 2009 |
Perturbed conformal field theories | 2006, 2008 |
Konform térelméletek | 2006, 2007 |
Mértékelméletek geometriai megalapozása | 2004 |
Differenciálgeometria módszerek a kvantummechanikában | 1998, 2000, 2002 |
Differenciálgeometria módszerek a mechanikában | 1997, 1999, 2001 |
Elméleti Fizika matematikusoknak | 1997-1999 |
Elméleti fizika és matematika gyakorlatok | 1991-1996 |
Integrable methods in the gauge/gravity duality I
Topics covered:
- superconformal algebra
- Green-Schwarz string as a coset model
- integrability of the classical superstring
- lightcone gauge fixing
- decompactification limit, perturbative S-matrix
- symmetries, exact S-matrix
Integrable methods in the gauge/gravity duality II
Topics covered:
- centrally extended su(2|2) algebra
- exact S-matrix, dispersion relation
- bound-states
- asymptotic Bethe Ansatz
- Luscher correction
- Thermodynamic Bethe Ansatz
Integrable field theories
The aim of the course is to introduce methods, used to solve classical and quantum integrable models, based on the example of the sine (sinh)-Gordon field theory.
- Classical integrable models: multiparticle solutions, time delays, conserved charges, integrability
- Quantum integrable models:
- Conformal quantization scheme: free boson CFT, its perturbations and their integrability
- Lagrangian quantization scheme: scattering matrix, its connection to correlators and its analytical structure
- Bootstrap quantization scheme: properties of the integrable S-matrix, Zamolodchikov-Fateev algebra, bootstrap program
- Quantization via lattice regularizations: inhomogenous XXZ model, its solution and double scaled limit
- Correlation functions from form factors: form factor bootstrap
- Quantum integrable models in finite volume: Bethe-Yang equations, Lüscher corrections, Thermodynamic Bethe Ansatz