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Recall:
N=4 SYM is a (super)conformal field theory

We want to determine        for all (local, 
gauge-invariant, single-trace) operators, for all 

�(�)
�

SU(2) subsector:

Problem: to determine eigenvectors & eigenvalues

Solved exactly! [Bethe 31]

quantum
spin chain
Hamiltonian

� =
�

8⇡2
H , H =

LX

l=1

(1� Pl,l+1)

trX(x)MZ(x)L�M + . . .

In planar limit, has 1 free parameter �

1-loop (weak coupling) dilatation operator for scalars in

Sunday, May 26, 2013



Approach used by Bethe is now known as 
“coordinate” Bethe ansatz

A different approach was developed later, called
Quantum Inverse Scattering Method (QISM) 

& “algebraic” Bethe ansatz

Each approach has its advantages/disadvantages

It is essential to learn both for AdS/CFT!

(also for applications in 
statistical mechanics, condensed matter,...)

[Yang, Gaudin, Baxter, Zamolodchikov2, Faddeev, Kulish, Sklyanin, ...]
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Plan: quantum integrability “toolkit”

quantum spin chains

quantum inverse scattering method

algebraic Bethe ansatz

Yang-Baxter equations

analytical Bethe ansatz
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Quantum spin chains
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Example: system of L fixed particles with spin 1/2

For L>1, need tensor product

L=1: The Hilbert space is

The observables are the Pauli matrices

For vectors:

⇥� = (�x,�y,�z)

V = C2

with elements x =

�
x1

x2

⇥
, xi � C

2 dims

�
x1

x2

⇥
�

�
y1
y2

⇥
=

⇤

⌥⌥⇧

x1y1
x1y2
x2y1
x2y2

⌅

��⌃
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Permutation matrix

P12

⇤�
x1

x2

⇥
�

�
y1
y2

⇥⌅
=

�
y1
y2

⇥
�

�
x1

x2

⇥

P12 �

�

⇧⇧⇤

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⇥

⌃⌃⌅

check:

✓

�

⇧⇧⇤

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⇥

⌃⌃⌅

�

⇧⇧⇤

x1y1
x1y2
x2y1
x2y2

⇥

⌃⌃⌅ =

�

⇧⇧⇤

x1y1
x2y1
x1y2
x2y2

⇥

⌃⌃⌅
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Tensor product of matrices:

.

�
x11 x12

x21 x22

⇥
�
�

y11 y12
y21 y22

⇥
=

⇤

⌥⌥⇧

x11y11 x11y12 x12y11 x12y12
x11y21 x11y22 x12y21 x12y22
x21y11 x21y12 x22y11 x22y12
x21y21 x21y22 x22y21 x22y22

⌅

��⌃
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L=2: The Hilbert space is 

The observables are

⇥�1 ⇥ ⇥� � I , ⇥�2 ⇥ I � ⇥�

Related by permutation matrix

⇥�2 = P12 ⇥�1 P12

⇥�1 = P12 ⇥�2 P12

V � V 22 dims

I =

�
1 0
0 1

⇥

Subscript denotes the vector space on which the 
operator acts nontrivially!

1 2
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general L:

The observables are

The Hilbert space is V � · · ·� V

⇥�n = I � · · · I � ⇥� � I � · · ·� I

1 n L

Hamiltonian?  Many possibilities! We consider here

PBCs
“Heisenberg (XXX) quantum spin chain”

1-dim model of ferromagnetism

1-loop mixing matrix in SU(2) subsector of N=4 SYM

2L dims

n = 1, . . . , L

⇥�L+1 � ⇥�1

H =
1

2

LX

n=1

(I � ~�n · ~�n+1) =
LX

n=1

(I � Pn,n+1)
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Basic problem: H|�� = E|��

H is 2L x 2L matrix �
Brute-force diagonalization is not an option for L > 10

~
Fortunately, as we shall see, this model is integrable; 

so there ARE other options!

Hint of integrability: H commutes with

There is a beautiful, systematic way of 
constructing such conserved quantities & solving 

(*)

(*)
To explain, we must digress...

L�

n=1

⇥�n · (⇥�n+1 � ⇥�n+2)
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Yang-Baxter equation 
(YBE)
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Consider  “R-matrix”:

u: “spectral parameter”

[eventually, parameter of the generating function 
for conserved quantities]

We regard R(u) as an operator on V � V

Let’s now use R(u) to construct operators on V � V � V

R(u) ⇥ uI � I + iP =

�

⇧⇧⇤

u+ i
u i
i u

u+ i

⇥

⌃⌃⌅ =

�

⇧⇧⇤

a
b c
c b

a

⇥

⌃⌃⌅

a = u+ i , b = u , c = i
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Operators on             :V � V � V

1 2 3

R12(u) ⇥ R(u)� I =

⇤

⌥⌥⇧

a
b c
c b

a

⌅

��⌃�
�

1 0
0 1

⇥
=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

a
a

b c
b c

c b
c b

a
a

⌅

����������⌃

R23(u) ⇥ I �R(u) =

�
1 0
0 1

⇥
�

⇤

⌥⌥⇧

a
b c
c b

a

⌅

��⌃ =

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

a
b c
c b

a
a

b c
c b

a

⌅

����������⌃
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P23 ⇥ I � P =

�
1 0
0 1

⇥
�

⇤

⌥⌥⇧

1
1

1
1

⌅

��⌃ =

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

1
1

1
1

1
1

1
1

⌅

����������⌃

R13(u) � P23 R12(u) P23

R13(u) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

a
b c

a
b c

c b
a

c b
a

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅
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Can now easily check that

R12(u� u�) R13(u) R23(u
�) = R23(u

�) R13(u) R12(u� u�)

This is the famous YBE!

i

j
=

1
2

3 2
3

1
Rij(u) �

u

u

u

u�
u�

u� u�

u� u�

We are considering here just the simplest, 
SU(2)-invariant, solution [g � g ,R(u)] = 0 , g ⇥ SU(2)

Can regard as an equation to be solved for R(u)
Many families of solutions known
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Answer: As we shall now see, 
for each regular             solution of YBE,

we can construct a local integrable spin chain!
(R(0) � P)

Question: Why should we care about this? 
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Quantum Inverse 
Scattering Method

(QISM)
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Basic idea:  Use R-matrix to construct the Hamiltonian 
and higher local conserved quantities

key step: introduce an additional copy of vector space V
“auxiliary” space

1 L0

V � V � · · ·� V

“monodromy matrix”

�
1L

0
· · ·u

T0(u) � R0L(u) · · ·R01(u)
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“Fundamental Relation” (FR):

Proof (L=2):

All spaces different

YBE

YBE

All spaces different

LHS = R00�(u� u�) R02(u) R01(u) R0�2(u
�) R0�1(u

�)

= R00�(u� u�) R02(u) R0�2(u
�) R01(u) R0�1(u

�)

= R0�2(u
�) R0�1(u

�) R02(u) R01(u) R00�(u� u�) = RHS

R00�(u� u�) T0(u) T0�(u
�) = T0�(u

�) T0(u) R00�(u� u�)

= R0�2(u
�) R02(u) R00�(u� u�) R01(u) R0�1(u

�)

= R0�2(u
�) R02(u) R0�1(u

�) R01(u) R00�(u� u�)
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Graphical proof:

L 1

· · ·

=

0

0’
L 1

· · ·
0

0’

R00�(u� u�) T0(u) T0�(u
�) = T0�(u

�) T0(u) R00�u� u�)

u u

u�

u�
u� u�

u� u�
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“transfer matrix”

Acts on V � · · ·� V (same as spin-chain Hamiltonian!)

1 L

1-parameter family of commuting operators:

Proof: FR

cyclic property of trace

trace

[t(u) , t(u�)] = 0

t(u) = tr0 T0(u)

R00�(u� u�) T0(u) T0�(u
�) = T0�(u

�) T0(u) R00�(u� u�)

tr00� R00�(u� u⇥) T0(u) T0�(u
⇥) R00�(u� u⇥)�1 = tr00� T0�(u

⇥) T0(u)

tr00� T0(u) T0�(u
�) = tr00� T0�(u

�) T0(u)

t(u) t(u�) = t(u�) t(u)
Sunday, May 26, 2013



The transfer matrix is a generating function 
for local conserved quantities:

Can show that     is the Heisenberg Hamiltonian,
is the next conserved charge, etc. 

H1

H2

Infinitely many conserved commuting local quantities  
integrable!

Starting from other regular R-matrices, obtain 
corresponding local integrable spin-chain Hamiltonians  

[t(u) , t(u�)] = 0 � [Hn, Hm] = 0

ln t(u) =
1X

n=0

un

n!
Hn
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t(0) = iLU , U = P12P23 · · · PL�1,L

U: 1-site shift operator

U = eiP P: “momentum”

H0 = ln t(0) ⇠ P

interpretation of H0

UAnU
† = An+1
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[t(u) , t(u�)] = 0

�

If we can determine       , 
then we can get eigenvalues     of all charges     : Hn

⇤(u)

t(u)|⇤i = ⇤(u)|⇤i

hn =
dn

dun
ln⇤(u)

���
u=0

hn

there exist eigenstates of transfer matrix   
that do not depend on spectral parameter

eigenvalues of conserved charges
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Algebraic Bethe ansatz
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So now we know that the Heisenberg model is integrable. 

Answer: Yes! 

we can construct the eigenstates!  (~ harmonic oscillator)

Acting with them on the vacuum state

all spins up

We shall now identify certain creation operators.

Question: But are we any closer to solving the model? 

|0⇤ ⇥
�
1

0

⇥
� · · ·�

�
1

0

⇥

⇧ ⌅⇤ ⌃
L

(i.e., finding eigenstates & eigenvalues of transfer matrix) 
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Recall that the monodromy matrix acts on

1 L0

V � V � · · ·� V

act on
V � · · ·� V

1 L

Set

creation annihilation

Assume that the eigenstates of      are given by

T0(u) =

�
A(u) B(u)
C(u) D(u)

⇥ A(u), . . . , D(u)

t(u) = tr0 T0(u) = A(u) +D(u)

B(u)|0⇥ �= 0 C(u)|0� = 0

t(u)

|u1 , . . . , uM ⇥ � B(u1) · · ·B(uM ) |0⇥
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FR      commutation relations: �

To compute eigenvalues, must move    

past each of the B’s

Using only first terms, get

t(u) = A(u) +D(u)

A(u) B(u�) =

�
u� u� � i

u� u�

⇥
B(u�) A(u)� i

u� u�B(u) A(u�)

D(u) B(u�) =

�
u� u� + i

u� u�

⇥
B(u�) D(u)� i

u� u�B(u) D(u�)

A(u)|u1 , . . . , uM ⇥ =
M⇤

k=1

�
u� uk � i

u� uk

⇥
B(u1) · · ·B(uM ) A(u)|0⇥⌃ ⇧⌅ ⌥

(u+i)L|0�

D(u)|u1 , . . . , uM ⇥ =
M⇤

k=1

�
u� uk + i

u� uk

⇥
B(u1) · · ·B(uM ) D(u)|0⇥⌃ ⇧⌅ ⌥

uL|0�
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�

So far, are arbitrary.

t(u)|u1 , . . . , uM � = �(u)|u1 , . . . , uM �+ “unwanted”

�(u) = (u+ i)L
M⇤

k=1

�
u� uk � i

u� uk

⇥
+ uL

M⇤

k=1

�
u� uk + i

u� uk

⇥

{u1 , . . . , uM}

{u1 , . . . , uM}
�
uj + i

uj

⇥L

=
M⇤

k=1
k �=j

uj � uk + i

uj � uk � i
, j = 1 , · · · ,M

uj ⇤⇥ uj �
i

2

�
uj +

i
2

uj � i
2

⇥L

=
M⇤

k=1
k �=j

uj � uk + i

uj � uk � i
, j = 1 , · · · ,M

Can show that the “unwanted” terms cancel 
if                 satisfy the “Bethe equations” (BEs):
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In principle, can solve BEs for 
& therefore obtain transfer matrix eigenvalues

�

{u1 , . . . , uM}

�(u)

H � d

du
ln t(u)

���
u=0

E ⇠ d

du
ln⇤(u)

���
u=0

=
MX

k=1

1

u2
k + 1

4

P ⇠ ln t(0)

�

P ⇠ ln⇤(0) =
1

i

MX

k=1

ln

 
uk + i

2

uk � i
2

!
(mod 2⇡)

{u1 , . . . , uM}Note: must be distinct
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su(2) symmetry:

can simultaneously diagonalize�

⇥S =
1

2

L�

n=1

⇥�n

�
�S, t(u)

⇥
= 0

t(u), �S2, Sz

~S2|u1 , . . . , uM i = s(s+ 1)|u1 , . . . , uM i

Sz|u1 , . . . , uM i = m|u1 , . . . , uM i

Bethe states are su(2) highest-weight states:

�
s = m =

L

2
�M Sz|0� = L

2
|0�

s � 0 � M � L

2

[Sz , B(u)] = �B(u)

S+|u1 , . . . , uM i = 0

The lower-weight states can be obtained by acting with S-
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Example: L=4 � M = 0, 1, 2

Matches with direct diagonalization of H

P E s degeneracy (2s+1)

0 - 0 0 2 5

1 1/2 2 1 3

1 -1/2 2 1 3

1 0 4 1 3

2 i/2,-i/2 2 0 1

2 0 6 0 11/(2
⇥
3),�1/(2

⇥
3)

M

✓

Hypothesis: For any L, Bethe ansatz gives complete set 
of (highest-weight) states

total: 16 = 24

M � L

2

s =
L

2
�M = 2�M

✓

{uk}

⇡
⇡

⇡/2

�⇡/2
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R-matrix S-matrixversus

XXX: 4 x 4 matrix
SU(2)-invariant

phase
U(1)-invariant

Gives higher 
conserved charges;

integrability is manifest

Has symmetry of
Hamiltonian

Has symmetry of
vacuum

Sunday, May 26, 2013



Analytical Bethe ansatz
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Fact: Λ(u) are polynomials in u, of degree L

Proof: Recall

�
t(u) =

LX

n=0

tnu
n tn: u-independent matrices

[t(u) , t(u�)] = 0 � [tn , tm] = 0
can diagonalize
simultaneously!

tn|⇤i = ⇤n|⇤i

⇤(u) =
LX

n=0

⇤nu
n polynomial in u, of degree L

�

Corollary: Λ(u) are regular (no poles) for finite u

t(u) = tr0 R0L(u) · · ·R01(u) , R(u) = uI + iP
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Vacuum eigenvalue:

Assume general eigenvalue is “dressed” vacuum eigenvalue:

⇤(0)(u) = (u+ i)L + uL

t(u)|0i = ⇤(0)(u)|0i

⇤(u) = (u+ i)L
Q(u� i)

Q(u)
+ uLQ(u+ i)

Q(u)

zeros     still to be determined

�(u) must not have pole at �
Bethe equations!

Q(u) =
MY

j=1

(u� uj) uj

(uj + i)LQ(uj � i) + uL
j Q(uj + i) = 0

uj

Useful short-cut for finding Λ(u) & BE: [Reshetikhin, ...]
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Assumed only simple poles  - i.e., distinct Bethe roots

Higher-order poles      additional equations�
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Epilogue
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Returning to N=4 SYM...

In SU(2) subsector

� =
�

8⇡2

MX

k=1

1

u2
k + 1

4

�
uj +

i
2

uj � i
2

⇥L

=
M⇤

k=1
k �=j

uj � uk + i

uj � uk � i
, j = 1 , · · · ,M

1-loop anomalous dimensions:

cyclicity � P =
1

i

MX

k=1

ln

 
uk + i

2

uk � i
2

!
= 0

trX(x)MZ(x)L�M + . . .

Sunday, May 26, 2013



Example: L=4 

P E s degeneracy (2s+1)

0 - 0 0 2 5

1 1/2 2 1 3

1 -1/2 2 1 3

1 0 4 1 3

2 i/2,-i/2 2 0 1

2 0 6 0 11/(2
⇥
3),�1/(2

⇥
3)

M {uk}

⇡
⇡

⇡/2

�⇡/2
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Returning to N=4 SYM...

In SU(2) subsector

� =
�

8⇡2

MX

k=1

1

u2
k + 1

4

�
uj +

i
2

uj � i
2

⇥L

=
M⇤

k=1
k �=j

uj � uk + i

uj � uk � i
, j = 1 , · · · ,M

1-loop anomalous dimensions:

cyclicity � P =
1

i

MX

k=1

ln

 
uk + i

2

uk � i
2

!
= 0

higher loops?

Many questions remain:
other operators? Stay tuned!

trX(x)MZ(x)L�M + . . .
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