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An integrable discontinuity -

Start with a single selected point on the x-axis, say xo, and denote the field to
the left (x < xo) by u, and to the right (x > xp) by v:

u(x,t) Xo v(x,t)
Field equations in separated domains:

ou . , , ’
2= X<X, Pv=—ZL, x>x, F =070 c=1

a2,
Tu=—%3u ’ v

e How can the fields u, v be ‘sewn’ together at xo?

o If the wave equations are nonlinear but ‘integrable’ are there sewing
conditions that preserve the integrability?

- Not so easy: see, for example
- sine-Gordon, KdV, nonlinear Schrédinger, affine Toda field theories ...



e A simple example (d-impurity)
U(xo,t) = v(xo, 1), Ux(Xo, 1) — vx(Xo, 1) = 2Au(Xo, 1),

with linear wave equations for u and v.

o Typically, there is reflection and transmission:
U= et (eikx + Re—/’kx) L v= e—itheikx7 W= K2

with )
)\e2rkx0 T ik

A=—% > Tk

e There is a distinguished point - translation symmetry is lost and momentum
is not conserved while total energy is preserved including a contribution from
the impurity.

e Could an alternative type of defect also compensate for momentum and
other conservation laws?

e Could it carry its own degree of freedom?

e Could the wave speed be different on the two halflines?



e Consider the field contributions to energy-momentum:
Xo oo
p* :/ ax T%(u) +/ dx T (v), 8,T"* =0
— 00 X0
where the components of T"#(u) are (similarly with v)

]
TO = (u? + uf) FU T =T =y, T =

5 (u,2+uf)—U

N =

Using the field equations, can we arrange

ol

X=Xp
with the right hand side depending only on the fields at x = xp?
If so, P* + D" is conserved with D" being the defect contribution.

e It turns out that only a few possible sewing conditions (and bulk potentials
U, V) are permitted for this to work.



e Consider the field contribution to energy and calculate

Clid
ot

Choosing sewing conditions of the form

= [uxtt]x, — [Vx Vi

ux = v+ X(u,v), vvx =ur+ Y(u,v), at X =Xxo

we find .
% =uX—-wY.
This is a total time derivative if
_ o, o
Tou’ T ov
for some D°. Then
P _ o
at — dt’

- Expected anyway since time translation remains good.



On the other hand, for momentum

aP' U+ U Vit Vg
Xo X0
X2 Y2 dD' (u, v)
{7V1X+Utyf > +va} ==

X0

This is a total time derivative provided the first piece is a perfect differential
and the second piece vanishes. Thus

__op°_op' \,_oD" oD
© Qu 9v’ 9v  du’
In other words the fields at the defect should satisfy:

PD°  9PD° A <8D°)2 1 (aDO
2

2
e~ a2 2\ ou aT) = U = Vw).



Highly constraining - just a few possible combinations for U, V, D° ...
e sine-Gordon, Liouville, massless free, or, massive free.
o For example, if U(u) = m?u?/2, V(v) = m?v?/2, D° turns out to be

DP(uv) = T+ v+ o (u—v),

4
and o is a free parameter.

In the free case (m # 0), with a wave incident from the left half-line

U= ( /kx+Re ikx) 7rwt7 Te/kx 7Iw! w2 _ k2+m27
we find:
. . . 0— 7
R_0 T:_(I‘w—msmhn):_ismh(Tn—’?) e
’ (ik + mcoshn) sinh(ng"—f—’%)’

e By design, conserves energy/momentum (no dependence on xo).

e No bound state (provided 7 is real).



sine-Gordon -

Choosing u, v to be sine-Gordon fields (and scaling the coupling and mass
parameters to unity), the allowed possibilities are:

where ¢ is a constant, to find

D°(u,v) = -2 (acos u;— 4 + 0 'cos u- V>7

—sinu,
—sin v,
v si + Vv ,15. u—v
t — o sin — 0o n
2 2’
. u+v 1. uUu—-v
Ut + o sin — o0 sin .
2 2

e The final two are a Backlund transformation ‘frozen’ at xo.

e The defect could be anywhere - essentially topological

e Higher spin charges, via an adapted Lax pair, are also conserved.



e Liouville is a possibility and can be connected by a defect to a massless
free field.

o Note: the Tzitzéica (aka BD, MZS, aéz) affine Toda) potential
U(u) = e +2e7"/2

is not possible here.

e There is a Lagrangian description of this type of defect (type I):

uvy — urv

g:()(—x+Xo)ﬁ(U)+5(X_X°)< 2

= D°(u,v)) + 0(x = X0)£(V)



Solitons and defects -
The sine-Gordon model has solitons and antisolitons.
Consider a soliton incident from x < 0 (putting xo = 0).

It will not be possible to satisfy the sewing conditions (in general, for all times)
unless a similar soliton emerges into the region x > 0:

i 1+ iE

. iu/2 __
x<0: e =1
‘ 1+ izE

. iv/2
x>0: e = 1 LE

E = e¥tbtre. a=cosh0, b= —sinhd, 0>0

where z is to be determined. It is also useful to set o = e~ ".
e To find....



n—=0
= h
Z = cot ( 5 ) 0>0

Remarks:
e 1) < 0 implies z < 0; ie the soliton emerges as a (shifted) anti-soliton.

- the final state will contain a discontinuity of magnitude 4 at x = 0.

e 1) = 6 implies z = co and there is no emerging soliton.
- the energy-momentum of the soliton is captured by the ‘defect’.

- the topological charge is also captured by a discontinuity 2.

e 7> 0 implies z > 0; ie the soliton is shifted but retains its character.

e Limit of a more general finite gap’ solution of sine-Gordon?
- see



Solutions of sine-Gordon in terms of generalised theta functions - see for
example - are defined over Riemann sufaces
of genus g:

0(z,B)= > e2"B"M2 7 €Y Re(B) <0
nez9
An example - for g = 1 these are the Jacobi theta functions:

0(2) = —dalz 4 im). Da(2)= 3 ef(rd)eord)

93(2) = 0(z,B), 9a(z) = 0(z + im, B)

In terms of these the two solutions to left and right of the defect are:

g2 ﬁs(z). v/ _ 193(Z+A). S X cosh @ — tsinh 6 2
194(2) : 194(2 + A) ’ 193(0)194(0)
Then, A is determined via the sewing conditions and given by

o _ ;01(8)
T 9a(A)

— tanh (%) , B— —o0.

The previous result is obtained in the single soliton limit.



Modifying a defect (type II) -

Consider two relativistic field theories with fields v and v, and add a new

degree of freedom \(¢) at the defect location (xo = 0):

L= 0(—x)Ly + 0(x)Ly + 5(x) ((u —V)x - D°(\u, v))

Then the usual Euler-Lagrange equations lead to
e equations of motion:

ou

2 —_———
ou= 90

e defect conditions at x =0

x>0

Uv=M—-0D5  wvi=x+D% (u—v)=-D%

¢ Note: the quantity \ is conjugate to the discontinuity v — v at the defect

location.



As before, consider momentum

’ 0 oo
P :7/ dxu[uxf/ ax Vivy,
—o00 0

and seek a functional D'(u, v, \) such that P} = —D;.
As before, implies constraints on U, V, D'.
Putting g = (u—v)/2, p=(u+ v)/2 these are:
Dy=-D, DY=-Dj
implying
D°=fp+Xq) +g(p—Xq) D' =fp+Xq)—9(P-Aq)
and 2(D8D} — D3DL) = U(u) ~ V(v)

e Powerful constraint on f, g since A\ does not enter the right side
- what is the general solution? - EC, Zambon, in preparation



Note:
o Now possible to choose f, g for potentials U, V any one of sine-Gordon,
Liouville, Tzitzéica, or free massive or massless.

o Are there other, non-integrable, possibilities that could support a defect of
this kind? Suspect not....

e In sine-Gordon the type-Il defect has two free parameters
- in a sense it is two ‘fused’ type-l defects -

e Other affine Toda field theories?
- aE‘”: (Cr(71)a dr(72+)1)a agi)a dr(71) -
- needs unifying idea?

e Open question: what about (gg), df’)), (ff)., eéz)), eé”., e%”, eg” ?



For example, dﬁ” is not a straightforward generalisation - it mixes type | and
type Il.
The defect part of the Lagrangian is given by

4
Lp = Z UkVie + X2 (U2 — o)t + 2Xs(us — v3)t — (D + D)
K=

and
2(U(U) - V(V)) = DP1 DQ1 + DQ2DX2 - DMD% + D%DM - DMDGS + DP4DG4

Gk = (Uk — Vi) /2, prx = (Uk + v)/2,

with the set of relevant roots given in terms of the orthonormal vectors
ex, k=1,2,3,4by

Qp = —€1 — 62, 1 = €1 — €2, p = €2 — €3, A3 = €3 — 64, (4 = €3 + €4,

so that « is the central dot in the d") root diagram.



Defects in quantum field theory

e Expect Soliton-defect scattering - pure transmission compatible with the
bulk S-matrix

o Expect Topological charge will be preserved but may be exchanged with
the defect

o Expect For each type of defect there may be several types of
transmission matrix (eg in sine-Gordon expect two different transmission
matrices since the topological charge on a defect can only change by +2
as a soliton/anti-soliton passes).

- Generally, expect transmission matrices to be labelled by weight lattices.

e Expect Not all transmission matrices need be unitary (eg in sine-Gordon
one is a ‘resonance’ of the other)

¢ Questions Relationship between different types of defect; assemblies of
defects, defect-defect scattering; fusing defects; ...



A transmission matrix is intrinsically infinite-dimensional:

T20,m), ata=b+p

where «, 3 and a, b are defect and particle (eg soliton) labels respectively
(typically they will be sets of weights); and 7 is a collection of defect
parameters.

Schematically:

e




Schematic compatibility relation - Delfino, Mussardo, Simonetti (1994)

Il
-

5%(0) T3 (02)T53 (05) = To (06) T3 (02)SEa(©)

With © = 6, — 6, and sums over the ‘internal’ indices 3, ¢, d.

e For sine-Gordon one solution was provided by - Konik, LeClair (1999)



Zamolodchikov’s sine-Gordon soliton-soliton S-matrix - reminder

A 0 0 O
0 C B 0
Sacg(e):p(e) 0 B C 0
0 0 0 A
where ]
axz X1 X1 Xo
AO)="=- — BO)=—-=,0C0O©)=qg— —
(€)=~ o BO) =31~ 0@ =a- ¢
Xa:eﬁ/eia:1327@:91_925q:eiﬁ’y7’y:%_17
and
T+ 2r—y-2) .
p(©) = BT ]Jm@ymm_@
R(O) = F(2ky + 2)F(1 + 2ky + 2)

M@kt 1) T £ @k+ )52 2= /™



Useful to define the variable Q = &*~ /%" — ./ —g.
o K-L solutions have the form

Oa 55 q71/26'y(97n) 55*2
T;f(ﬁ) = f(q, x) ( q /2 e0=) 5p+2 Q s’

where f(q, x) is not uniquely determined but, for a unitary transmission
matrix, should satisfy

?(q,x) = f(qaqx)
fla0lga) = (1+7077)

e A ‘minimal’ solution has the following form

1

gim(1+7)/4 r(x)

aX) = T Teaw 7(x)°

where it is convenient to put y = iy(6 — n)/27 and

ﬁ T(ky+1/4 =y ((k+1)y+3/4—y)

r(x) = . Fr((k+1/2)y+1/4—y)r((k+1/2)y+3/4—y)



p Q- 5£ 71/267(077;) 6372
T;;(@) = f(q7 X) ( q71/2 eﬁ/(97n) 63+2 d Q« 63

Remarks (supposing 6 > 0) -
Tempting to suppose 7 (possibly renormalized) is the same parameter as in
the type I classical model.
e 1 < 0 - the off-diagonal entries dominate;
e 0 >n > 0 - the off-diagonal entries dominate;

e 1 > 0 > 0 - the diagonal entries dominate.

e Similar features to the classical soliton-defect scattering.

e The different behaviour of solitons versus anti-solitons (diagonal terms) is a
direct consequence of the defect term in the Lagrangian proportional to

5(x — xo)(uve — vuy)/2



e 0 = n is not special (neither is y = —1/4) but there is a simple pole nearby
aty =1/4:

iT

0=n———nap—=>0

2y

This pole is like a resonance, with complex energy,
E = ms cosh 6 = ms(cosh n cos(m/2v) — isinhnsin(w/27))

and a ‘width’ proportional to sin(7/2v) (— 0, as 8 — 0).

e The Zamolodchikov S-matrix has ‘breather’ poles corresponding to
soliton-anti-soliton bound states at

©=ir(1—n/y), n=1,2, ..., Nnax;

use the bootstrap to define the transmission factors for breathers and find for
the lightest breather: _
_sinh (452 — i)

sinh (52 + &)
- Compare the free massive scalar field defect, mentioned earlier.

T(0) =



Type Il transmission matrix for sine-Gordon -

There is another, more general, set of solutions to the quadratic relations for
the transmission matrix:

(a+on + a_o—a XZ)(S;E X(b+QO’ 4 b_ Q—(})(SS—Z
p(X) fe? —a B+2 @ 2 —a B
x(ct Q¥4+ c-Q %) 6, (drQ*x*+d-Q %) d5,
where x = 7",
The free constants satisfy the two constraints
ardis —byrcyr =0
These and p(x)are constrained further by crossing and unitarity.

e For a range of parameters this describes a type Il defect.

e Witha_ =d. =0and by =c_ =0or b_ = c; =0 (after a similarity
transformation), reduces to the type | solution.

e For another choice of parameters reduces to a direct sum of the
Zamolodchikov S-matrix and two infinite dimensional pieces.



Changing boundaries - the sine-Gordon model

Start with a single selected point on the x-axis, say xo = 0, and denote the
field to the left (x < 0) by u:

u(x,t) Xo
e The sine-Gordon model with a general (two-parameter) integrable
boundary condition was analyzed by

e ...and sine-Gordon model with dynamical boundary was considered by

o A defect (or several defects) can be placed in front of the boundary and
generate a new boundary (as seen from x < 0); for the sinh-Gordon
example, see



But...

e The defect will introduce dependence on topological charge in the modified
reflection matrix.

e Generally, the boundary should be considered as carrying topological
charge, which may change as a soliton reflects.

e Ansatz
RbB(G) — r+(a,x)5£ S+(O[,X) 6(672
ao s_(a,x) 0272 r_(a,x)d8
e Boundary Yang-Baxter equation
RIZ(02) Sh5(0+)Ry4(06) SEF(O-) = SP2(©-)Rpa(65)S57(0+) RS (8a),

With © = (0 + 02) and ©_ = (0, — 0a).



e Ghoshal-Zamolodchikov solution reformulated

bB gy _ (nXx+r2/x)65 ko (x*—1/x%) 6572
Faalf) =o(®) ( b (x?—=1/x?) 65" (rx+r/x)0]
and lo = ko, rnr=1.

e General solution

ri(a, x) ( —1/x (raq X — r4q‘”‘1/x) +rnx+r/x,

‘)

r( (x2 —1/x ) ( oty r3q“_1/x> + X + 1 /X,
‘)
‘)

(x2 1/x%) (ko + kig® + keq™ ),
)= (X = 1/%°) (b + ha* + g ™),
kily = =12, koh = —12, kilo+ QPkoly = qrars, kol + GPkolo = qri1s.
o A defect placed in front of a boundary generalises R according to
RILEO) = TE(O)RIL(O)TRZ(6)
where T(0) = T-1(—0).



Begin with an R matrix corresponding to a Dirichlet boundary condition,

©98 (rx +x7"r ") 58 0
A ca(0) = o(0) ( 0 (rx= "4 xr=1) 68

o TWROT,is equivalent to the general solution given above when Tj is the
general type Il transmission matrix;

o TR T, equivalent to the G-Z solution when T; is restricted to the type |
(Konik-LeClair) transmission matrix.

e |s there a Lagrangian description of the generalised boundary condition
corresponding to the general solution? For example
La(u,\) = 0(—x) Lsg + 6(X)(urt — B(u, \)),
with
B(u,\) = &"/*(u) + e *?g(u),

and
f(u)g(u) = hi "/ + h_e™/? +-2(e" + &™) + hy



Changing the wave speeds
e Wave speeds cy, ¢, in two domains, c is a reference speed.

1 2
L) =5 (u,2 - cfuf) + % (cos Butt — 1)
u

e Can arrange a defect to compensate energy without constraint, as before,
and an adjusted momentum

C "XO C gee}
s uruydx + —~ / ViV dx.
c Jy

—0o0

e Requires
cul va+1aD° cuv. Coy 1000\
= /v = - AL J
umx Cu c, ou’ " cv ¢, v’
c
My ="My, 25 = 25



e The rapidity 0 of a soliton remains the same across a defect

- Its speed changes from ¢, tanh 6 to ¢, tanh 6

- The soliton is delayed, or advanced

- As before, in suitable circumstances a soliton can flip to an anti-soliton
e Incorporate into ‘sine-Gordon’ networks (sine-Gordon on a graph)

- For a set of consistent vertex conditions see

- See also
e Long term goal is to control solitons and make use of them.

- What is the analogue of Kirchhoff’s laws; see
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