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1. The sine-Gordon model on the full line

The sine-Gordon model:

utt − uxx + sin(u) = 0 .

Finiteness of total energy

E [u] = 1
2

∫ ∞
−∞

u2
t + u2

x + 1− cos(u) dx

⇒ u2
t , u2

x and 1− cos(u) to tend to zero as x → ±∞ (cf. Wojtek’s talk)

1− cos(u): ⇒ u(±∞) ∈ 2πZ

Initial conditions such that u(−∞, 0) 6= u(+∞, 0) lead to topological
solitons or kinks.



If u is viewed as an angular variable with period 2π, they owe their
stability to a non-trivial winding of u as x varies from −∞ to +∞:

These can be placed in sequence along the line, made to move, and
scatter against each other. The integrabilty of the sine-Gordon equation
means that the time-evolution of solutions is surprisingly simple. In
particular the kinks and their reversely-wound friends called antikinks
preserve their shapes when they scatter - they are true (integrable)
solitons. There are also infinitely long-lived kink-antikink bound states
called breathers, so the space of states is rather rich.



A mechanical model for the scattering of sine-Gordon kinks:



A mechanical model for the scattering of sine-Gordon kinks (2018
version):



A mechanical model for the scattering of sine-Gordon kinks (2018
version):



2. The half-line problem

What about on a half-line, −∞ < x ≤ 0?

To make the initial value problem well-posed, a boundary condition needs
to be imposed at x = 0. An interesting question: can this be done in
such a way that the half-line theory is still integrable?

For the cases with no additional boundary degrees of freedom, the full
two-parameter set of boundary conditions compatible with integrability
was found by Ghoshal and Zamolodchikov (1994):[

ux + 4K sin

(
u − û

2

)]∣∣∣∣
x=0

= 0

where K , û ∈ R. (See also MacIntyre (1995).)

The special cases of Dirichlet (u|x=0 = 0) and Neumann (ux |x=0 = 0)
were already known to be integrable. GZ found their more-general set by
a consideration of the lowest-spin extra sine-Gordon conserved charge.

The conservation laws constrain scattering off the boundary to be as
simple as in the full-line theory: kinks and antikinks reflect perfectly, as
either kinks or antikinks:



Sine-Gordon boundary scattering: u|x=0 = 0 (Dirichlet):

antikink → antikink



Sine-Gordon boundary scattering: ux |x=0 = 0 (Neumann):

antikink → kink



. . . but the real world is not integrable!

Imposing non-integrable boundary conditions while leaving the bulk
unchanged would be a ‘minimal’ way to break integrability (just at one
point – what harm could that possibly do?).

A natural choice which also interpolates between Dirichlet and Neumann
is the (homogeneous) Robin condition.

Instead of the û = 0 GZ condition[
ux + 4K sin

(u
2

)]∣∣∣
x=0

= 0,

we linearise and impose the Robin condition

[ux + 2ku]|x=0 = 0.

k →∞ is Dirichlet; k = 0 is Neumann. Away from these limits, the
Robin boundary does not interact nicely with the higher sG conserved
charges and boundary scattering becomes much more complicated.



Sine-Gordon boundary scattering (1/5): (ux + u)|x=0 = 0, v0 = 0.95

k = 0.5 (nearly Dirichlet): antikink → ?



Sine-Gordon boundary scattering (2/5): (ux + 0.26 u)|x=0 = 0, v0 = 0.95

k = 0.13: antikink → ?



Sine-Gordon boundary scattering (3/5): (ux + 0.2 u)|x=0 = 0, v0 = 0.95

k = 0.1: antikink → ?



Sine-Gordon boundary scattering (4/5): (ux + 0.132 u)|x=0 = 0, v0 = 0.95

k = 0.066: antikink → ?



Sine-Gordon boundary scattering (5/5): (ux + 0.1 u)|x=0 = 0, v0 = 0.95

k = 0.05 (nearly Neumann): antikink → ?



These plots were all for one specific initial velocity, v0 = 0.95. What
about the overall picture for general k and v0?



Robin boundary scattering: phase diagram
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A snapshot of ul , the late-time field
value at x = 0 for the scattering of an
initial sine-Gordon antikink with veloc-
ity v0 and on a Robin boundary with
parameter k .

Roughly speaking:

Emitted kink ⇒ ul ≈ 4π (red);
Emitted antikink ⇒ ul ≈ 0 (blue);
Neither/both⇒ ul ≈ 2π (light green).

The blur near the top left hides even
more complexity. . .



Robin boundary scattering: zoomed-in phase diagram

0.050 0.055 0.060 0.065 0.070
k

0.875

0.880

0.885

0.890

0.895

0.900

v 0

2

0

2

4

6

8

10

12

14

Fi
e
ld

A zoomed-in snapshot near the top left
of the previous slide.

Dark blue bands correspond an an-
tikink being emitted; in light green ar-
eas breathers, or maybe kink-antikink
pairs, are emitted. In between these
areas are indeterminate regions where
a very slight change in the initial pa-
rameters can cause an antikink to be
produced or not.



Questions

• How to disentangle the general final state? What is its soliton content?

• More generally, what is the reason for the complicated, almost fractal,
structures observed in some parts of the phase diagram?

For the first question, the ‘direct’ part of the inverse scattering method
allowed us (PED + Robert Parini) to make progress (later, if time).

For the second, it turns out that despite being bulk-integrable, the story
is particularly complicated for sine-Gordon due to the variety of stable
excitations in the bulk theory – not just kinks and antikinks, but also
breathers. So I’ll illustrate the basic mechanisms first via in-some-senses
simpler examples where bulk integrability is also lost: the φ4 theory and
some generalisations, which are of independent interest (coming next).



3. First warmup: φ4 kinks and resonant scattering

Switch attention to a scalar field φ(x , t) with energy and Lagrangian
densities E = T + V and L = T − V, where

T = 1
2φ

2
t and V = 1

2φ
2
x + 1

2 (φ2 − 1)2 .

and equation of motion φtt − φxx + 2φ(φ2 − 1) = 0.

• Total energy = E [φ] =
∫∞
−∞ E dx = 1

2

∫∞
−∞ φ2

t + φ2
x + (φ2 − 1)2 dx .

• For E [φ] to be finite, φ2
t , φ2

x and (φ2 − 1)2 must tend to zero as
x → ±∞.

(φ2 − 1)2 :

• Hence instead of the infinitely many vacua of sine-Gordon, the theory
has just two, φ = ±1, and finite energy ⇒ φ(±∞) ∈ {±1}.



The minimal energy configurations with φ(−∞) 6= φ(∞) are the
topological solitons of the model, the (static) kinks and antikinks

φK (x) = tanh(x − x0) , φK̄ (x) = − tanh(x − x1)

with energy densities localised near to x = x0 or x = x1:

E [φK ] = sech4(x − x0) , E [φK̄ ] = sech4(x − x1)

The kink and antikink have rest mass 4/3, and attract each other with
an asymptotic force F ∼ 32e−2R , where R = |x1 − x0|.



If a K and K̄ are oppositely-boosted and scattered, then for large enough
initial velocities they bounce off each other. However, the theory is not
integrable, and so some energy is lost from the translational modes in the
process. . .



φ4 kink scattering: vi = 0.27



If the initial velocity is reduced below some critical value vc , one would
expect there to be so little energy left in the translational modes after the
collision that the kink and antikink can no longer overcome the attractive
force between them and separate, and are instead trapped:



φ4 kink scattering: vi =��0.27 0.24



However there is a surprise waiting if the velocity is reduced further:



φ4 kink scattering: vi =��0.27 ��0.24 0.225



Thus there is at least one ‘escape window’: a range of velocities below
the first trapping velocity vc within which the kink and antikink are again
able to separate.

This was first observed in the 1970s by, among others, Ablowitz, Kruskal
and Ladik. A theoretical explanation was found by Campbell and
collaborators in the 1980s and elaborated by many others since; see for
example Goodman and Haberman (2005).

The full picture is surprisingly rich. There is an initial sequence of
‘two-bounce’ windows:



φ4 kink scattering: the first windows

(From Goodman and Haberman, 2005)



However at the edges of each of these windows there are sequences of
further ‘baby windows’:



φ4 kink scattering: baby windows

(From Goodman and Haberman, 2005)



Inside these windows the kinks bounce three times before re-separating:



Inside a three-bounce window: vi = 0.24385



. . . and then at the edges of each three-bounce window there are
sequences of four-bounce windows, and so on.



Theoretical treatment

The key point is that the φ4 kink has an internal ‘wobble’ mode.

Take a small oscillation about a single kink φK (x) = tanh(x):

φ(x , t) = φK (x) + η(x , t)

The e.o.m. for φ, φtt − φxx + 2φ(φ2 − 1) = 0, implies for (small) η

ηtt − ηxx + (6φ2
K − 2)η = 0

or, if η(x , t) = e iωtχ(x),

− d2

dx2
χ− 6 sech2(x)χ = (ω2 − 4)χ

an eigenvalue problem with two eigenvalues (‘bound states’), ω = 0,
√

3.

The first is the translational mode; the second is the wobble (absent for
sine-Gordon kinks) with period 2π/

√
3 ≈ 3.63.

This wobble seen if we start from a distorted kink. . .



The basic φ4 kink wobble:

(φ(x , 0) = tanh(x) + A0 tanh(x)/cosh(x), φt(x , 0) = 0)



. . . and it is also excited in kink-antikink scattering: (vi = 0.27 again)



Most of the lost translational energy has been ‘parked’ in the wobble
mode.

For initial velocities v just below vc , the kink and antikink separate after
collision but do not quite have the necessary escape velocity to overcome
the attractive force between them.

However if on recollision the situation is an approximate time-reversal of
the initial impact, then the energy stored in the wobbles can be returned
to the translational modes and escape is possible at the second attempt.

Note we do not need to solve for the nonlinear dynamics of the collision
to see that this must work – the argument only uses time-reversal
invariance of the equations of motion.

This might happen after one, two or more periods of the internal mode.
It might also happen only after two recollisions, or three, and so on,
explaining the nested structure of escape windows.

A more quantitative theory can be developed from these ideas but the
correctness of the scenario can be seen on re-examining the two-bounce
movie. . .



Two-bounce scattering revisited:



Key features:

To generate the ’fractal’ structures we needed

I An attractive force putting the kink and antikink at risk of mutual
capture;

I A ’battery’: an energy storage mechanism with some periodicity
(here, the wobble of the kink) so that this energy could be returned
after an integer number of periods, perhaps after multiple
recollisions.

This turns out to be rather a general mechanism, observed in many
nonintegrable theories. In some cases the energy may be stored between
the kink and antikink rather than on each one separately (first example:
φ6 theory), or in a quasinormal mode (a leaky battery). It can also be
seen when firing kinks at boundaries. . .



4. Second warmup: φ4 kinks hitting boundaries

Now put the φ4 theory on a half line −∞ < x < 0, with a boundary
magnetic field H placed at x = 0, so the energy is now

E [φ] =

∫ 0

−∞

1
2φ

2
t + 1

2φ
2
x + 1

2 (φ2 − 1)2 dx − H φ(0, t)

Boundary condition: φx |x=0 = H

Boundary energy: − Hφ(0, t)

Static kink and antikink solutions on full line are as before:

φK (x) = tanh(x − x0) , φK̄ (x) = − tanh(x − x0)

On a half line, use these to find the ground state by adjusting x0 so that
the boundary condition is satisfied at x = 0. Note: can also use singular
solutions ± coth(x − x0) so long as the singularity is behind the boundary.



Static solutions for 0 < H < 1
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φ2(0) =
√

1−H

φ1(0) = −
√

1−H

φ3(0) =
√

1+H

φ1 = tanh(x−X0) ; φ2 = tanh(x+X0) ; X0 = cosh−1(1/
√
|H|)

φ3 = − coth(x−X1) ; φ4 = − coth(x+X1) ; X1 = sinh−1(1/
√
|H|)

φ3 is absolutely stable, φ1 is metastable, and φ2 is unstable.

In fact φ2 is a saddle point between φ1 and φ3; at H = 1, φ1 merges with φ2

and the metastable state disappears from the spectrum.

(For −1 < H < 0, repeat the above with φ→ −φ.)



Energies

For these static solutions adapt the Bogomolnyi trick:

E [φ] = 1
2

∫ 0

−∞

(
(φx)2 + (φ2 − 1)2

)
dx − Hφ|x=0

= 1
2

∫ 0

−∞

(
φx ± (φ2 − 1)

)2
dx ∓

[
1
3φ

3 − φ
]0
−∞ − Hφ|x=0

The integrated term on last line vanishes for kink/antikink profiles and
the remainder rearranges to give

E [φ2] = 2
3 + 2

3 (1−H)3/2

E [φ1] = 2
3 −

2
3 (1−H)3/2

E [φ3] = 2
3 −

2
3 (1+H)3/2

matching the earlier statement that φ1 is metastable (a local minimum of
the energy), φ3 is absolutely stable (the global minimum) and φ2 is
unstable (a saddle point lying between φ1 and φ3).



Forces and scattering

At t = 0 we fire a single antikink, located at x0 < 0, at the boundary,
with a velocity vi .

For H > 0 the initial boundary profile is φ1, while for H < 0 it is −φ3.

At t ≈ |x0|/vi the antikink will hit the wall; but what happens next?

For H = 0 the Neumann boundary condition φx |x=0 = 0 can be reflected
onto the full line, so an antikink incident on the H = 0 boundary is
trapped or reflected from that boundary with exactly the same ‘phase
diagram’ as for full-line kink-antikink scattering.

For H 6= 0 the picture distorts. An antikink at x0 < 0 experiences an
asymptotic force

F ∼ 32

(
1

4
H + e2x0

)
e2x0

(To calculate F , use a modified method of images to fit the boundary condition

with a full line antikink/(singular) kink solution, and then the bulk force law.)

For H < 0, F is repulsive at large distances, unlike for the bulk kink and
antikink. This means that for small enough initial velocities scattering is
almost perfectly elastic as the antikink stays far from the wall. . .



φ4 boundary scattering: H = −0.5 and vi = 0.2:



Critical velocity for H < 0

The initial energy is the sum of the energies of the moving antikink
(which has rest mass 4/3) and the static H < 0 boundary, which is −φ3:

Ei (vi ) = 4
3 (1− v2

i )−1/2 + 2
3 −

2
3 (1−H)3/2

The critical velocity vcr is when the final state is ‘at the top of the hill’ at
the −φ2 saddle point, with Ei (vcr ) = E [−φ2]:

H = −0.4
vi = vcr (H) = 0.3332 . . .

Solving for vcr ,

vcr (H) =

√
1− 4

(
(1+H)3/2 + (1−H)3/2

)−2

For vi > vcr (H), the incoming antikink overcomes the energy barrier,
nonlinear effects begin, and life gets complicated again. . .



φ4 boundary scattering: escape windows
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φ4 boundary scattering: the phase diagram
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Slow-then fast boundary decay

One further feature of the boundary φ4 theory: for 0 < H < 1 there is an
oscillating boundary mode. Its H-dependent small-amplitude frequency
ωB can be found by linearising about the static solution.

For H small, 2ωB > 2, the lowest frequency for bulk radiation, and the
second harmonic of the boundary mode can couple to bulk radiative
modes, causing it to decay relatively rapidly.

For larger values of H, ωB is reduced, and for H ' 0.925, 2ωB < 2 and it
is only the third harmonic of the boundary oscillation that can couple to
the bulk radiation, resulting in a much slower decay rate.

More interestingly, if one considers larger amplitudes at fixed H,
nonlinear effects become relevant (cf. Peter F’s talk), and the boundary
mode frequency ωB is also reduced (just like a real pendulum).

Suitably tuning H one can find a situation where a large-amplitude
boundary mode has a decay channel forbidden to it, which only opens up
once sufficient radiation has been emitted. This ‘slow-then-fast’ decay is
illustrated in the following movie. . .



φ4 boundary theory: slow-then-fast decay of the boundary mode



5. Back to boundary sine-Gordon

Reminder: in the bulk, utt − uxx + sin(u) = 0 .
Since this model is bulk integrable,
(a) kinks and antikinks scatter with no loss of velocity; and
(b) kink-antikink bound states live forever, forming a further class of

‘immortal’ excitations: the breathers. Here’s a moving one:



Now put the model on a half-line, x < 0, and break integrability by
imposing a Robin boundary condition at x = 0.
The new setup:

utt − uxx + sin(u) = 0 (x < 0);

ux + 2ku = 0 (x = 0).

As before, we fire a kink or antikink at the boundary, and ask about what
comes back.

If we wait long enough, all excitations will be far from the boundary,
where integrability still holds. There is some sort of ‘asymptotic
integrability’ at work, whereby integrability is only broken for a finite
amount of time. This makes the model more interesting to study, but
also adds greatly to the possible complexity of the final state, which
might contain not only kinks and antikinks but also breathers.

But, it would be tedious to wait long enough for all the solitons and
breathers to separate out. Fortunately we don’t need to – once
everything is far from the boundary (but still tangled up) we can use
full-line integrabilty to extract the kink/antikink/breather content from
the numerical data by computer.



Extracting the soliton content on a full line

. . . use ideas from inverse scattering theory. . .

The x part of the full-line Lax pair is(
ψ1

ψ2

)
x

=

(
− i(φx+φt)

4 λ− e−iφ

16λ
e iφ

16λ − λ
i(φx+φt)

4

)(
ψ1

ψ2

)
An eigenfunction decaying at x → ±∞ ⇒ an eigenvalue λ ∈ C.

Eigenvalues are either on the positive imaginary axis (kinks or antikinks),
or in symmetrically-placed pairs (λn,−λ∗n) (breathers).

Their velocities and (in the case of breathers) frequencies are

v =
1− 16 |λn|2

1 + 16 |λn|2
, ω =

Re[λn]

|λn|
,

and their energies are

Esoliton =
1

|λn|
+ 16 |λn| , Ebreather = 2 Im[λn]

(
1

|λn|2
+ 16

)
.



Application to the boundary problem

Wait until all excitations have departed from the boundary region, and
then patch boundary solution onto full line and compute scattering data
to find soliton content of final state:
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Application to the boundary problem (continued)
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Implement this numerically by searching for zeros of the Wronskian
W (λ) = Det(ψ+, ψ−) where ψ± decay as x → ±∞ to find. . .



Robin boundary scattering: final state soliton content
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Note the match with the earlier snapshot!



The zoomed-in phase diagram again
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The zoomed-in snapshot shows the
late-time values of the field at x = 0
for the shaded area on the previous
slide. Dark blue bands correspond an
antikink being emitted; in light green
areas only breathers are emitted.

Sections taken at fixed k exhibit v0-
dependent windows, similar to those
seen in the φ4 theory.



Robin boundary scattering: the resonance mechanism

The key feature behind
the ‘chaotic’ structure:
even though the sG kink
has no wobble mode, the
breather does oscillate,
and in some regimes it
is both produced in the
initial boundary collision,
and also attracted back to
the boundary afterwards.
This is enough to get a
resonance mechanism to
work.

(Plots shown are for k =
0.058.)



This picture can be backed up by a variety of analytical results, such as
calculations of the kink-boundary and breather-boundary forces:

• For an antikink located at x0 < 0, park an image kink at x1 > 0 to
form a full-line configuration

u(x) = 4 arctan
(
e−(x−x0)

)
+ 4 arctan

(
e(x−x1)

)
For |x0| and |x1| both large the Robin boundary condition
(ux + 2ku)|x=0 = 0 becomes

4(−ex0 + e−x1 ) + 8k(ex0 + e−x1 ) = 0 .

Solving for e−x1 and computing the force as for φ4 yields

F = 32 e−(x1−x0) = 32
1−2k

1+2k
e2x0 .

For k > 1/2 an image antikink should be used instead, but the final
formula is unchanged, with the force now repulsive instead of attractive.



In the integrable Neumann and Dirichlet limits k = 0 and k →∞ this
result matches the asymptotic behaviour of the corresponding exact
solutions; it also agrees well at intermediate points, including the ‘critical’
value kc = 1/2 at which the predicted force vanishes.
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• For breathers the situation is more complicated as we don’t have a
static solution around which to expand.

The integrable Dirichlet and Neumann limits can be modelled on the full
line by adding a symmetrically-placed image breather, exactly in phase
with the ‘real’ breather for the Neumann boundary, and exactly out of
phase for Dirichlet.

From the relevant exact two-breather solutions on the full line, it is
known that two in-phase breathers feel an attractive force while two
out-of-phase breathers experience a repulsive force. Hence a stationary
breather is attracted by the k = 0 (Neumann) boundary, while for k =∞
(Dirichlet) it is repelled.

Numerically we found that the general Robin boundary interpolates
between these two limits with a breather-frequency dependent critical
velocity at which the force vanishes tending to the value kc = 1/2 from
below as the frequency tends to zero. Recently there’s been some
analytic progress on this issue (nice idea by Peter Bowcock).
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Trajectories of an initially-static breather with frequency 0.6 near to a Robin

boundary. (Coloured lines: numercial solutions; Dashed lines: exact trajectories

for the Dirichlet (top) and Neumann (bottom) limits.)

These results go most of the way to justifying the claimed resonance
mechanism. However a fuller treatment would need some quantitative
understanding of the initial bounce, which is still lacking. . .



6. Conclusions
I Classical boundary scattering in sine-Gordon is surprisingly rich once

integrability is broken at the boundary.

I Many features of the ‘phase diagram’ still to be understood. Would
like to develop an effective collective-coordinate description – this is
hard as the boundary collision tends to excite many other modes, but
at least while everything is far from boundary integrability may help.

I So far integrability was used rather stupidly, just to disentangle the
final state. Is there more that can be done? (Maybe the so-called
Fokas method can be applied.)

I It is natural to ask about the quantum theory, since the space of
asymptotic in and out states should be the same as in the integrable
case - this looks to be the ideal half-way-house to a full study of
integrability breaking in QFT, where perhaps tools from quantum
integrability can be used to study its breakdown.

I Finally, resonant scattering makes the final state extremely sensitive
to initial conditions and poses many numerical challenges. It would
be great to implement more-advanced schemes for the boundary
problem. . .
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