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Bulk theories

Integrability for bulk models

» Classical model with infinite set of local conserved charges = Classical Integrable Field
Theory

» If 3L(z) Lax operator where dL(z) 4+ L(z) A L(z) = 0 <= E.O.M is satisfied =—
infinitely many conserved charges.
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(ii) The n-particle scattering factorizes into 2-particle scattering uniquely (Yang-Baxter
Equation)
» We can define IQFT with the quantum S-matrix bootstrap

Tamas Gombor Lax representations of sigma models on the half line 15. June 2018. 4 /22



Bulk theories

Integrability for bulk models

» Classical model with infinite set of local conserved charges = Classical Integrable Field
Theory
» If 3L(z) Lax operator where dL(z) 4+ L(z) A L(z) = 0 <= E.O.M is satisfied =—
infinitely many conserved charges.
» QFT with infinitely many local conserved charges —
(i) no particle creation/annihilation
(ii) The n-particle scattering factorizes into 2-particle scattering uniquely (Yang-Baxter

Equation)
» We can define IQFT with the quantum S-matrix bootstrap
Examples:
Classic.Int. | Lax rep. | Q.Int.
PCM v v v
S™ sigma model v v v
CP" sigma model v v X

Tamas Gombor Lax representations of sigma models on the half line 15. June 2018. 4 /22



Bulk theories

Integrability for bulk models

» Classical model with infinite set of local conserved charges = Classical Integrable Field
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» If 3L(z) Lax operator where dL(z) 4+ L(z) A L(z) = 0 <= E.O.M is satisfied =—
infinitely many conserved charges.
» QFT with infinitely many local conserved charges —
(i) no particle creation/annihilation
(ii) The n-particle scattering factorizes into 2-particle scattering uniquely (Yang-Baxter

Equation)
» We can define IQFT with the quantum S-matrix bootstrap
Examples:
Classic.Int. | Lax rep. | Q.Int.
PCM v v v
S™ sigma model v v v
CP" sigma model v X
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Bulk theories

Sigma models

> The field of the sigma model X : ¥ — M where ¥ is a 2 dimensional manifold e.g.
R2,R x SR x (—o0,0],R x [0, 7]

» The Lagrangian: £ = %GMN (X)a XMar XN
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Bulk theories

Sigma models

> The field of the sigma model X : ¥ — M where ¥ is a 2 dimensional manifold e.g.
R R x ST, R x (—00,0],R x [0, 7]

» The Lagrangian: £ = %GMN (X)a XMar XN
Principal Chiral Fields: M = G and X (z) = ¢(2) € G where ( is a Lic group

» We can define two currents: J% = g~ 'dg and J& = gdg~! = JF' = —¢Jf%; .

» These currents are Lie-algebra valued one-forms which satisfy the flatness condition:

dJb/ R JE/T A JE/R =,
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> The field of the sigma model X : ¥ — M where ¥ is a 2 dimensional manifold e.g.
R R x ST, R x (—00,0],R x [0, 7]

» The Lagrangian: £ = %GMN (X)a XMar XN
Principal Chiral Fields: M = G and X (z) = ¢(2) € G where ( is a Lic group

» We can define two currents: J© = g~ 'dg and J¥ = gdg~! = J' = —gJFy |,

» These currents are Lie-algebra valued one-forms which satisfy the flatness condition:

dJb/ R JE/T A JE/R =,
The Lagrangian is £ = —%T&" [JL A *JL] = —%Tr [JR A *JR].
The E.O.M is d x JL/E = 0.

v

v

Tamas Gombor Lax representations of sigma models on the half line 15. June 2018.

-

/ 22



Bulk theories

Sigma models

>

>

The field of the sigma model X : ¥ — M where ¥ is a 2 dimensional manifold e.g.
R2,R x SR x (—o0,0],R x [0, 7]

The Lagrangian: £ = %GMN (X)Ba XMoo XN

Principal Chiral Fields: M = G and X (z) = g(x) € G where ( is a Lie group

>

>

We can define two currents: J® = g~ 'dg and J* = gdg~! = JF' = —¢JFy L.

These currents are Lie-algebra valued one-forms which satisfy the flatness condition:

dJL/ B 4 JE/ B A JE/B =0,
The Lagrangian is £ = —3Tr [JF A xJE] = =1 Tr [J8 A «JF].
The E.O.M is d x JE/F = 0.

» The PCMs have G, x G global symmetry, the left/right group multiplication,

g(z) = grg(z) and g(x) = g(z)gRr-

The transformation of the currents:
gL : b= g3k, IR
JR : gt L f//gJJR.(//u"

The JZ/F are the Noether currents of the left /right group multiplication symmetry.
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Bulk theories

Lax representation of PCM

» The E.O.M and the flatness condition is equivalent to the flatness condition of the Lax
connection: dL(z) + L(z) A L(z) = 0 where

JRy _E R,

L = —_—
(2) 1— 22 1—22
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Bulk theories

Lax representation of PCM

» The E.O.M and the flatness condition is equivalent to the flatness condition of the Lax
connection: dL(z) + L(z) A L(z) = 0 where

1 z
L(z) = TR = s JR,
) 1—22 + 1—22
» We can define the monodromy matrix
oo}
T(z) = P&p (—/ Ll(z)dzl) )
— o0
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Bulk theories

Lax representation of PCM
» The E.O.M and the flatness condition is equivalent to the flatness condition of the Lax
connection: dL(z) + L(z) A L(z) = 0 where
z

1
L(z) = JE4 24 gk,
(2) 1—22 +1—z2*

» We can define the monodromy matrix
oo}
T(z) = P& (—/ L1(z)dx1) .
— o0

» It can be shown that the monodromy matrix is conserved: 9yT(z) = 0 for all z =
infinitely many conserved charges.

> The conserved charges are generated by expanding the monodromy matrix in z, for

instance at infinity:
o e ~1 r+1 I
T(z) = exp Z 7 Q-
r=0
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Bulk theories

Lax representation of PCM

» The E.O.M and the flatness condition is equivalent to the flatness condition of the Lax
connection: dL(z) + L(z) A L(z) = 0 where

1 z
L(z) = I+ * I
) 1— 22 1—22
» We can define the monodromy matrix
oo
T(2) = P&p (—/ L1(z)dx1) .
— 00

» It can be shown that the monodromy matrix is conserved: 9yT(z) = 0 for all z =
infinitely many conserved charges.

» The conserved charges are generated by expanding the monodromy matrix in z, for

instance at infinity:
. N A= N
1'(z) = exp Z > Q-
r=0

» These charges are non-local for r > 0 and the Qg is the Noether charge of the right
group multiplication. This infinite set of charges with the Poisson bracket as Lie bracket
form a Y(g) Yangian algebra.
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We can define the monodromy matrix
oo
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It can be shown that the monodromy matrix is conserved: 9pT(z) = 0 for all z =
infinitely many conserved charges.

The conserved charges are generated by expanding the monodromy matrix in z, for

instance at infinity:
. N A= N
1'(z) = exp Z > Q-
r=0

These charges are non-local for » > 0 and the Qg is the Noether charge of the right
group multiplication. This infinite set of charges with the Poisson bracket as Lie bracket
form a Y(g) Yangian algebra.

If we expand around z = 0 we get an other infinite set of conserved non-local charges
({QL}) which is an other Y(g) Yangian and the QF is the Noether charge of the left
group multiplication therefore the PCMs have YV(g)r @ Y(g)r symmetry.
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Bulk theories

Lax representation of PCM

>

The E.O.M and the flatness condition is equivalent to the flatness condition of the Lax
connection: dL(z) + L(z) A L(z) = 0 where

1 z
L(z) = I+ * I
) 1— 22 1—22
We can define the monodromy matrix
oo
T(z) = Pé&p (—/ L](z)dml) .
— 00

It can be shown that the monodromy matrix is conserved: 9pT(z) = 0 for all z =
infinitely many conserved charges.

The conserved charges are generated by expanding the monodromy matrix in z, for

instance at infinity:
. N A= N
1'(z) = exp Z > Q-
r=0

These charges are non-local for » > 0 and the Qg is the Noether charge of the right
group multiplication. This infinite set of charges with the Poisson bracket as Lie bracket
form a Y(g) Yangian algebra.

If we expand around z = 0 we get an other infinite set of conserved non-local charges
({QL}) which is an other Y(g) Yangian and the QF is the Noether charge of the left
group multiplication therefore the PCMs have Y(g)1, @ Y(g) r symmetry.

Local conserved quantities are generated by Taylor expansion at z = +1.
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Theories with boundaries

Integrable theories at the half line (—oo, 0]

» At the boundary case we have a surface term: 9o J% =0 and Q = f_ooo Jodxt.
Q = J1(0) = if J1(0) = f then Q — f is conserved.
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Theories with boundaries

Integrable theories at the half line (—oo, 0]

» At the boundary case we have a surface term: 9o J* =0 and Q = f_ooo Jodz!.
Q = J1(0) = if J1(0) = f then Q — f is conserved.
» There are Lax representations also at boundary cases.

» The boundary monodromy matrix (double row monodromy matrix) contains the bulk
monodromy matrix and the reflection matrix.
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Theories with boundaries

Integrable theories at the half line (—oo, 0]

» At the boundary case we have a surface term: 9o J* =0 and Q = f_ooo Jodz!.
Q = J1(0) = if J1(0) = f then Q — f is conserved.

» There are Lax representations also at boundary cases.

» The boundary monodromy matrix (double row monodromy matrix) contains the bulk
monodromy matrix and the reflection matrix.

» Infinitely many conserved charge at the quantum level:

(i) no particle creation/annihilation at the boundary scattering
(ii) The n-particle scattering at the boundary factorizes into 1-particle boundary scattering
and 2-particle bulk scattering uniquely (boundary Yang-Baxter Equation)

» We can define boundary IQFT with the quantum R-matrix bootstrap.

Ri2 = S12R1521 R = R2S12R1521
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Theories with boundaries

Symmetric spaces

» G and H < G are Lie groups.

> If 3o € Aut(G) where o” = id and Vh € H a(h) = h then M = G/H is a symmetric
space.
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Theories with boundaries

Symmetric spaces

» G and H < G are Lie groups.

> If 3o € Aut(G) where o” = id and Vh € H a(h) = h then M = G/H is a symmetric
space.

» The « is also an automorphism of g and «a(h) = b.

» There is a 7> grading: g = h @ § where a(f) = —f therefore

[h,b] C b, [h, 1] C ¥, [f,f] Cb.
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Theories with boundaries

Symmetric spaces

» G and H < G are Lie groups.

> If 3o € Aut(G) where
space.

» The « is also an automorphism of g and «a(h) = b.

and Vh € H a(h) = h then M = G/H is a symmetric

> There is a : g =h®f where a(f) = —f therefore
[b,6] C b, b1 CH 7,11 C b.
G SO(n 4+ m) SO(2n) SU(n +m) SU(n) | SU(2n)
H || S(O(n) x O(m)) U(n) S(U(n) x U(m)) | SO(n) | Sp(n)
Examples:
G Sp(n + m) Sp(n) o
H || Sp(n) x Sp(m) | U(n) > S§" =80(n +1)/80(n)

Tamas Gombor

> CP™ = SU(n + 1)/U(n)
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Theories with boundaries

Symmetric spaces

» G and H < G are Lie groups.
> If 3o € Aut(G) where and Vh € H a(h) = h then M = G/H is a symmetric
space.

» The « is also an automorphism of g and «(h) =

> There is a : g =h®f where aff) —f therefore
[b;b] C b, 0,11 C i, Ch
G SO(n 4+ m) SO(2n) SU(n +m) SU(n) | SU(2n)
H || S(O(n) x O(m)) U(n) S(U(n) x U(m)) | SO(n) Sp(n)
Examples:
G Sp(n + m) Sp(n) n
H || Sp(n) x Sp(m) | U(n) > S§" =80(n +1)/80(n)
> CP"™ = SU(n +1)/U(n)
» For most of these cases «a is an alg) = UgU™! where
I, 0 (0 I,
US*(O —Hm)’ or Ua*(—]ln O)'
» For SU(n) /SO(ln ) and SU(2n)/Sp(n) as are : a(g) =g and
a(g) = UagUq
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary
»geH<G=Jllchandg=hDF.
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary

»geH<G=Jllchandg=hDF.

» After varying the Lagrangian (g — g(1 + ¢€), €(0) € ) we get a surface term:
TrleJf] = JF € 1.
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Restricted field at the boundary

»geH<G=Jllchandg=hDF.

» After varying the Lagrangian (g — g(1 + ¢€), €(0) € ) we get a surface term:
TrleJf] = JF € 1.

> Quantum integrability <= g = h @ f is Zo graded decomposition = each symmetric
space can be matched to an integrable BC.
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary

»geH<G=Jllchandg=hDF.
» After varying the Lagrangian (g — g(1 + ¢€), €(0) € ) we get a surface term:
TrleJf] = JF € 1.
> Quantum integrability <= g = h @ f is Zo graded decomposition = each symmetric
space can be matched to an integrable BC.
The residual symmetry is G X G — H x H.

v
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary

»geH<G=Jllchandg=hDF.

» After varying the Lagrangian (g — g(1 + ¢€), €(0) € ) we get a surface term:
TrleJf] = JF € 1.

> Quantum integrability <= g = h @ f is Zo graded decomposition = each symmetric
space can be matched to an integrable BC.

» The residual symmetry is G Xx G — H x H.

Boundary Lagrangian
> Ly = $Tx[M J}] where M € g.
» The boundary equation of motion: Jf‘c =

3 [, I8
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary

»geH<G=Jllchandg=hDF.

» After varying the Lagrangian (g — g(1 + ¢€), €(0) € ) we get a surface term:
TrleJf] = JF € 1.

> Quantum integrability <= g = h @ f is Zo graded decomposition = each symmetric
space can be matched to an integrable BC.

» The residual symmetry is G Xx G — H x H.

Boundary Lagrangian
> Ly = $Tx[M J}] where M € g.
» The boundary equation of motion: Jf‘c = %[M, J§]

» We have an Lie-algebra endomorphism: adjy; and we can denote h = Ker(adys) and
f =Im(adps). Therefore J; € f and the residual symmetry is G x G — G x H.
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Theories with boundaries

Double row monodromy matrices

» We use the one and the double row monodromy matrix:

T(z) = P&p (—/ﬁO

]

Ll(z)dxl) Qz) = T(—2)"tk(2)T(2)
» The time derivative of the double row monodromy matrix:

0z) = T(=2)"" (Lo(=2,0)r(2) + (2) — K(2) Lo(=,0)) T()
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Theories with boundaries

Double row monodromy matrices

» We use the one and the double row monodromy matrix:

T(z) = P&p (—/ﬁO

]

Ll(z)dxl) Qz) = T(—2)"tk(2)T(2)
» The time derivative of the double row monodromy matrix:

Q(z) = T(—2)" (Lo(—z,O)n(z) T i(z) - n(z)Lo(z,O))T(z)
» Therefore the monodromy matrix is time independent for all = if

w(2)Lo(2) — Lo(—2)k(2) = &(2)

» This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL. + L A L = 0 is equivalent with the bulk EOM.
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Double row monodromy matrices

» We use the one and the double row monodromy matrix:

T(z) = P&p (—/ﬁO

]

Ll(z)dxl) Qz) = T(—2)"tk(2)T(2)
» The time derivative of the double row monodromy matrix:

Q(z) = T(—2)" (Lo(—z,O)n(z) T i(z) - n(z)Lo(z,O))T(z)
» Therefore the monodromy matrix is time independent for all = if

w(2)Lo(2) — Lo(—2)k(2) = &(2)

» This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL. + L A L = 0 is equivalent with the bulk EOM.

Reflection matrices for PCM

» Ansatz: ~«(z) = [/ where U is an constant group element.
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Theories with boundaries

Double row monodromy matrices

» We use the one and the double row monodromy matrix:

T(z) = P&p (—/ﬁO

oo

Ll(z)dxl) Qz) = T(=2)" k()T (2)
» The time derivative of the double row monodromy matrix:

Q(z) = T(—2)" (Lo(—z,O)n(z) T i(z) - n(z)Lo(z,O))T(z)
» Therefore the monodromy matrix is time independent for all = if

w(2)Lo(2) — Lo(—2)k(2) = &(2)

» This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL 4+ L A L = 0 is equivalent with the bulk EOM.

Reflection matrices for PCM

» Ansatz: x(z) = U where U is an constant group element.
» The reflection equation is equivalent with: J(If = UJ(I)QU’l and Jf% = —UJlRU’l.
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Theories with boundaries

Double row monodromy matrices

» We use the one and the double row monodromy matrix:

T(z) = P&p (—/ﬁO

]

Ll(z)dxl) Qz) = T(—2)"tk(2)T(2)
» The time derivative of the double row monodromy matrix:

Q(z) = T(—2)" (Lo(—z,O)n(z) T i(z) - n(z)Lo(z,O))T(z)
» Therefore the monodromy matrix is time independent for all = if

w(2)Lo(2) — Lo(—2)k(2) = &(2)

» This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL. + L A L = 0 is equivalent with the bulk EOM.
Reflection matrices for PCM
» Ansatz: ~«(z) = [/ where U is an constant group element.
» The reflection equation is equivalent with: J[If = UJ[I)QU*l and Jf% = —UJlRU’l.

» We have a Lie-algebra automorphism «(X) = UXU~! and let h C g and f C g where
h=c(h) and f = —a(f) = JI € hand JI €F.
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Theories with boundaries

Double row monodromy matrices

» We use the one and the double row monodromy matrix:

T(z) = P&p (—/ﬁO

]

Ll(z)dxl) Qz) = T(—2)"tk(2)T(2)
» The time derivative of the double row monodromy matrix:

Q(z) = T(—2)" (Lo(—z,O)n(z) T i(z) - n(z)Lo(z,O))T(z)
» Therefore the monodromy matrix is time independent for all = if

w(2)Lo(2) — Lo(—2)k(2) = &(2)

» This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL. + L A L = 0 is equivalent with the bulk EOM.

Reflection matrices for PCM

» Ansatz: ~«(z) = [/ where U is an constant group element.

» The reflection equation is equivalent with: J[If = UJ[I)QU*l and Jf% = —UJlRU’l.

» We have a Lie-algebra automorphism «(X) = UXU~! and let h C g and f C g where
h=c(h) and f = —a(f) = JI € hand JI €F.
We must have dim(g) independent of the BC = dim(g) = dim(h) +dim(f) = g=bPf

v
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Theories with boundaries
Quantum PCM

» All particles are bound states of "elementary” particles. They are the defining
representation of the Gy, x Gg.
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Theories with boundaries
Quantum PCM

» All particles are bound states of "elementary” particles. They are the defining
representation of the Gy, x Gg.
» The elementary” S-matrix is a (VL  VR) ® (VL ® Vg) — (VL ® Vr) ® (VL ® Vi) matrix:
3(0) = So(0)Pas [S*(0) © SR (0)] Paa.

» The SL/E(6) is a Vi rR® VL r — VL R ® VL g matrix and P is the permutation matrix.
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» All particles are bound states of "elementary” particles. They are the defining
representation of the Gy, x Gg.

» The elementary” S-matrix is a (VL  VR) ® (VL ® Vg) — (VL ® Vr) ® (VL ® Vi) matrix:
3(0) = So(0)Pas [S*(0) © SR (0)] Paa.

» The SL/E(6) is a Vi rR® VL r — VL R ® VL g matrix and P is the permutation matrix.

» The S(0) = SE(0) = SE(0) has symmetry G and it is a solution of the Yang-Baxter
equation.
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Theories with boundaries
Quantum PCM

» All particles are bound states of "elementary” particles. They are the defining
representation of the Gy, x Gg.

» The elementary” S-matrix is a (VL  VR) ® (VL ® Vg) — (VL ® Vr) ® (VL ® Vi) matrix:
3(0) = So(0)Pas [S*(0) © SR (0)] Paa.

» The SL/E(6) is a Vi rR® VL r — VL R ® VL g matrix and P is the permutation matrix.

» The S(0) = SE(0) = SE(0) has symmetry G and it is a solution of the Yang-Baxter
equation.

» The integrable quantum reflection matrices R : (Vi ® Vg) — (VL ® Vg) are the solutions
of the boundary Yang-Baxter equation.

» If the R matrix is factorized at the (Vi ® Vg):
R(0) = Ro(0) [R"(60) @ R (0)]
then the bYBE is also factorized (8;; = 0; — 65, 955 = 0; + 6;):

S12(612) Ry’ (61)521(0) (912) Ry * (62) = Ry (62)S12(912) Ry’ (61) 521 (6) (612)
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representation of the Gy, x Gg.

» The elementary” S-matrix is a (VL  VR) ® (VL ® Vg) — (VL ® Vr) ® (VL ® Vi) matrix:
3(0) = So(0)Pas [S*(0) © SR (0)] Paa.

» The SL/E(6) is a Vi rR® VL r — VL R ® VL g matrix and P is the permutation matrix.

» The S(0) = SE(0) = SE(0) has symmetry G and it is a solution of the Yang-Baxter
equation.

» The integrable quantum reflection matrices R : (Vi ® Vg) — (VL ® Vg) are the solutions
of the boundary Yang-Baxter equation.

» If the R matrix is factorized at the (Vi ® Vg):
R(0) = Ro(0) [R"(60) @ R (0)]
then the bYBE is also factorized (8;; = 0; — 65, 955 = 0; + 6;):
S12(012) Ry ™ (01)S21(0) (912) Ry 7 (62) = Ry/ T (62)S12 (912) Ry T (01)521.(0) (612)

> The solutions are classified and they depend on what is the residual symmetry algebra b.
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Theories with boundaries

g = su(n)
h = su(k) @ su(n — k)du(l) h = so(n)
This case belongs to a
representation

changing reflection
where a particle goes
to its anti-particle.

b =sp(n)
This case also belongs to a
representation changing
reflection.

0 I
R~ "/2) .
(—Hn/z 0

g =so(n)
h =so(k) P so(n — k) h =s0(2n — 1)Pso(2)
e PR Aa(0)  Ba(6) 0
Re (B0 0) ke (DB Ao o
0 0  Ino

b = su(n/2) ®u(l)

g=sp(n)

h =so(k) B so(n — k)

R~ oI, 0
0 In—k

h =su(n/2) du(l)

o

—i0fl,, )

Hn/2

Tamas Gombor

Lax representations of sigma models on the half linel5. June 2018.

13 / 22



O(n) sigma models

O(n) sigma models

» M =80(n)/SO(n—1)=5"""!and X =n € R"® where n-n = 1.
» The Lagrangian is £ = % [Oan-0%n+o(n-n—1).
» The E.O.M is 8%n + (9an - 3%n)n = 0.
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O(n) sigma models

O(n) sigma models

» M =80(n)/SO(n—1)=5"""!and X =n € R"® where n-n = 1.

» The Lagrangian is £ = % [Oan-0%n+o(n-n—1).

» The E.O.M is 8%n + (9an - 3%n)n = 0.

Another usefull description:

> We can define an O(n) group clement: 7 =1 — 2n ¢ n which is satisfy hTh =1 and
I = h'" identities.

» Using this one can define a current: J = hdh which is the Noether current of the global
SO(n) symmetry.
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O(n) sigma models
O(n) sigma models

» M =80(n)/SO(n—1)=5"""!and X =n € R"® where n-n = 1.
» The Lagrangian is £ = % [Oan-0%n+o(n-n—1).
» The E.O.M is 8%n + (9an - 3%n)n = 0.

Another usefull description:

> We can define an O(n) group clement: 7 =1 — 2n ¢ n which is satisfy hTh =1 and
h = h" identities.

» Using this one can define a current: J = hdh which is the Noether current of the global
SO(n) symmetry.

» This Lax connection is very similar with the PCM but here the current is constrained.

- 1 . z o
L(z) = —— -~ .
)=t =z
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O(n) sigma models

O(n) sigma models

>

>

>

M =80(n)/SO(n—-1)=5""1!and X =n € R” where n-n = 1.
The Lagrangian is £ = % [Oan-0%n+o(n-n—1).
The E.O.M is 8%n + (9an - 8%n)n = 0.

Another usefull description:

>

We can define an O(n) group clement: /1 =1 — 2n @ n which is satisfy hTh =1 and

h = h" identities.

Using this one can define a current: J = hdh which is the Noether current of the global
SO(n) symmetry.

This Lax connection is very similar with the PCM but here the current is constrained.
- 1 & z s
L(z)= ——=J4+ ——=(xJ).
)=t =z
The known ks are » = diag(1l, ..., L, —1,..., —1) which have h = so(k) @ so(n — k)

residual symmetry and belong to the n € S¥~1 BC (the S*¥~1 has 7 = 1 radius).
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O(n) sigma models

O(n) sigma models

» M =80(n)/SO(n—1)=5"""!and X =n € R"® where n-n = 1.

» The Lagrangian is £ = % [Oan-0%n+o(n-n—1).

» The E.O.M is 8°n + (8an - 9%n)n = 0.

Another usefull description:

» We can define an O(n) group element: 7 = [ — 2n @ n which is satisfy hTh = I and
h = h" identities.

» Using this one can define a current: J = hdh which is the Noether current of the global
SO(n) symmetry.

» This Lax connection is very similar with the PCM but here the current is constrained.

- 1 . z b
L(z) = ——=J 4+ ——=(xJ).
)=t =z
» The known ks are » = diag(l, ..., 1, —1,..., —1) which have h = so(k) @ so(n — k)

residual symmetry and belong to the n € S¥~1 BC (the S*¥~1 has 7 = 1 radius).
> From the bYBE the possible quantum reflections:

h =so(k) ®so(n — k) h =s0(2n — 1)Pso(2) h =su(n/2) ®u(l)
R~ Ztg ]Ik 0 A(x (‘9) Bu (‘9) 0 R~ Hn/g i”"QHn/Q
0 L_r R~ | =Ba(8) Aa(9) 0 —iafl, L, /o
0 0 n—2
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O(n) sigma models

Some comments on the quantum classification

» For all possible solutions G/H is a symmetric space.

» We can choose RL # RE reflection matrices which have Hy, x Hp residual symmetry
where Hj, # Hp for PCMs and U(n/2) symmetric R-matrices for O(n) sigma models.

» The so far known integrable boundary conditions with Lax description have Hy, x Hgr
symmetry where Hy, = Hp for PCMs and O(k) x O(n — k) for O(n) sigma models.

» We can see from the classification that some Rs contain parameters. The residual
symmetries of these cases are not semi-simples.

» The known integrable boundary conditions with Lax representation do not have any
parameters.
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O(n) sigma models

Some comments on the quantum classification

» For all possible solutions G/H is a symmetric space.

» We can choose RL # RE reflection matrices which have Hy, x Hp residual symmetry
where Hj, # Hp for PCMs and U(n/2) symmetric R-matrices for O(n) sigma models.

» The so far known integrable boundary conditions with Lax description have Hy, x Hgr
symmetry where Hy, = Hp for PCMs and O(k) x O(n — k) for O(n) sigma models.

» We can see from the classification that some Rs contain parameters. The residual
symmetries of these cases are not semi-simples.

» The known integrable boundary conditions with Lax representation do not have any
parameters.

Questions

» Are there Lax descriptions of the solutions with Hy x Hg symmetries where I # Hp
for PCMs?

> Are there Lax descriptions of the solutions with U(n/2) symmetries for O(n) sigma
models?

> Are there Lax descriptions of the solutions which have free parameters?
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New boundary monodromy matrices

Outline

New boundary monodromy matrices
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New boundary monodromy matrices

The new £(z) for PCMs

» The ansatz is the following:
Kk(2) = k(z) (I+2M + 2°N) , where M € g and k(z) € R.
» The reflection equation is the following;:

k(z)Lo(z) — Lo(—2)k(2) = k(z) =
(I+ 2M + 22N) (J§ — 2J) — (JF + 2Jf) (I + 2M + 22N) = 0.
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New boundary monodromy matrices

The new £(z) for PCMs

» The ansatz is the following:
k(2) = k(z) I+ zM + 2°N) , where M € g and k(z) € R.
» The reflection equation is the following:
Kk(z)Lo(z) — Lo(—2)k(z) = R(2) =
(I+ 2M + 22N) (J§ — 2J) — (JF + 2Jf) (I + 2M + 22N) = 0.

» Which leads to the following equation system:

Pl (M, JE —27F =0
22 N, JE — (M, T} =0
PR {N,JE} =0
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New boundary monodromy matrices

The new £(z) for PCMs

» The ansatz is the following:
k(2) = k(z) I+ zM + 2°N) , where M € g and k(z) € R.
» The reflection equation is the following:
Kk(z)Lo(z) — Lo(—2)k(z) = R(2) =
(I+ 2M + 22N) (J§ — 2J) — (JF + 2Jf) (I + 2M + 22N) = 0.

» Which leads to the following equation system:

Pl (M, JE —27F =0
22 N, JE — (M, T} =0
PR {N,JE} =0

» These three equations have to be equivalent with dim(g) independent boundary
conditions =

2N — M? ~ 1 and N2~ L
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New boundary monodromy matrices

The new £(z) for PCMs

» The ansatz is the following:

k(2) = k(z) I+ zM + 2°N) , where M € g and k(z) € R.

v

The reflection equation is the following:

k(z)Lo(z) — Lo(—2)k(2) = k(z) =
(I+ 2M + 22N) (J§ — 2J) — (JF + 2Jf) (I + 2M + 22N) = 0.

» Which leads to the following equation system:
Pl (M, JE —27F =0
22 N, JE — (M, T} =0
PR {N,JE} =0

v

These three equations have to be equivalent with dim(g) independent boundary
conditions =

2N — M? ~ 1 and N2~ L
» And the boundary condition is
1
Jﬁ:i[M7J§] = {N,J{'y = 0.
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New boundary monodromy matrices

Some comments for these new k(z)s

> If N # 0 then it defines an automorphism which leads to a 7> graded decomposition:
g=h®f
» If N =0 then M2 ~ I so M defines the decomposition : g =5 @ §.
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New boundary monodromy matrices

Some comments for these new k(z)s

> If N # 0 then it defines an automorphism which leads to a 7> graded decomposition:
g=haf

» If N =0 then M2 ~ I so M defines the decomposition : g =5 @ §.

» The BCs on h and §: 11 (J) = 0 and II;(Jf) = B(I1;(J{?)) where 3 : | — f is an

invertible linear map.
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New boundary monodromy matrices

Some comments for these new k(z)s

> If N # 0 then it defines an automorphism which leads to a 7> graded decomposition:
g=haf

» If N =0 then M2 ~ I so M defines the decomposition : g =5 @ §.

» The BCs on h and §: 11 (J) = 0 and II;(Jf) = B(I1;(J{?)) where 3 : | — f is an
invertible linear map.

» The M & hand [M, h] = 0 therefore h has non-trivial center so it is not semi-simple:
h =u(l) ® hs where u(1) is generated by M.
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New boundary monodromy matrices

Some comments for these new k(z)s

>

If N # 0 then it defines an automorphism which leads to a 7> graded decomposition:

g=hDf

» If N =0 then M2 ~ I so M defines the decomposition : g =5 @ §.

The BCs on §) and f: I (J{) = 0 and I;(JE) = BIL;(JE)) where 8 : | — | is an

invertible linear map.

The M & and [V, [ = 0 therefore h has non-trivial center so it is not semi-simple:

h =u(l) ® hs where u(1) is generated by M.

We have seen that this boundary condition belongs this boundary Lagrangian:
m:%ﬂpuﬂ.

The model has G X H symmetry and one free parameter.
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New boundary monodromy matrices

Some comments for these new k(z)s

> If N # 0 then it defines an automorphism which leads to a 7> graded decomposition:
g=haf

» If N =0 then M2 ~ I so M defines the decomposition : g =5 @ §.

» The BCs on h and §: 11 (J) = 0 and II;(Jf) = B(I1;(J{?)) where 3 : | — f is an
invertible linear map.

» The M < ) and [, ] = 0 therefore hh has non-trivial center so it is not semi-simple:
h =u(l) ® hs where u(1) is generated by M.

» We have seen that this boundary condition belongs this boundary Lagrangian:

1
m:—%pﬂﬂ.
4
» The model has G X H symmetry and one free parameter.
» The right conserved charges are:

0
Qr= / J§dx1 = Q@r= Jf"‘ = II;(QR) is conserved.

— 00

=0
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New boundary monodromy matrices

Some comments for these new k(z)s

> If N # 0 then it defines an automorphism which leads to a 7> graded decomposition:
g=haf

» If N =0 then M2 ~ I so M defines the decomposition : g =5 @ §.

» The BCs on h and §: 11 (J) = 0 and II;(Jf) = B(I1;(J{?)) where 3 : | — f is an
invertible linear map.

» The M & hand [M, h] = 0 therefore h has non-trivial center so it is not semi-simple:
h =u(l) ® hs where u(1) is generated by M.

» We have seen that this boundary condition belongs this boundary Lagrangian:

m:%%@wﬁ]

» The model has G X H symmetry and one free parameter.
» The right conserved charges are:

0
Qr= / Jé:"‘dxl = Q@r= Jf"‘ = II;(QR) is conserved.
—o00

=0

» The left conserved charges are (JF = —gJBg—1):

0 1
Qr :/ JOL — —gMgflé(x)dx =
s 2

=0.

: 1
Qu = (J% - 910", M]g*l)
=0

1
= (—ng‘g’l + 9IM, Jé?‘]g’l)

=0
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New boundary monodromy matrices

The solutions

» g=su(n) and h = u(l) ® su(m) & su(k) where n = m + k.

2N (Kl (0) k) 5 n (_11 x ©) k)
M: mXm m X , N:)\ mXm mX ,
i—m ( Opxm  mlgxk k—m \ Okxm  Ipxk

14iz)
() = (1_;;11me @mxk> € U(n).
Ok xm T o

> g=s0(2n) or g =sp(n) and h = u(1) & su(n)

M=)\ (Onxn _ann> .

ann ©n><n

Because of M2 = —X2[ than N = 0. The matrix & is the following:

n(z) _ 1 Onxn _)\ann
B m >\]In><n @an '
We can check that k(z) € SO(2n) and k(z) € Sp(n) too.
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New boundary monodromy matrices

The solutions

> g=so0(n) and h = s0(2) & so(n — 2)

0 -1 0 0 -1 0 0 O

1 0 0 O 0O -1 0 0

_ 0o 0 0 O _ 2] O 0o 1 0

M =2 0 0 0 O ’ N=2 0 0 0 1 ’
A(z) —B(z) 0 0
B(z) A(z) 0 0
_ 0 0 1 0
wz) =1 4 0 0 1 € S0(n),
where
1—A222
Alz) = ———,
(2) 1+ 2222
2Az

B(z) = ———.
(2) 14+ X222
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New boundary monodromy matrices

Equivalence between the O(4) sigma model and the SU(2) PCM

> Since SO(4) =2 SU(2) x SU(2) the SU(2) principal and the SO(4) sigma models are
equivalent.

» Using g.o = o = o', . n; basis transformation — g € SU(2).

1
ad
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New boundary monodromy matrices

Equivalence between the O(4) sigma model and the SU(2) PCM

> Since SO(4) =2 SU(2) x SU(2) the SU(2) principal and the SO(4) sigma models are
equivalent.
> Using g4 = naa = 0., n; basis transformation — g € SU(2).

» With /1> = goo the h in the new basis /1 = /o @ hLP and J = JE @ T+ T JE.
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New boundary monodromy matrices

Equivalence between the O(4) sigma model and the SU(2) PC M
> Since SO(4) =2 SU(2) x SU(2) the SU(2) principal and the SO(4) sigma models are
equivalent.
» Using 9. = 7o = o, n; basis transformation — g € SU(2).
» With /15 = goo the h in the new basis /1 = /o /I!P and J=Jl @T1+I1® JE.
> The connection of the Lax connections:

L3OW () = LV (2) @ 14+ 1@ LE(2) = TSOW (2) = TE (2) @ TE(2).

» If K5O{) is factorized in the new basis then:
KSOW (2) = kl(2) ® KT(2).
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New boundary monodromy matrices

Equivalence between the O(4) sigma model and the SU(2) PCM

> Since SO(4) =2 SU(2) x SU(2) the SU(2) principal and the SO(4) sigma models are
equivalent.
» Using 9. = 7o = o, n; basis transformation — g € SU(2).
» With /1> = goo the h in the new basis /1 = /o @ hLP and J = JE @ T+ T JE.
» The connection of the Lax connections:
L3OW () = LV (2) @ 14+ 1@ LE(2) = TSOW (2) = TE (2) @ TE(2).
> If k5O s factorized in the new basis then:
kSO (2) = kL (2) @ KT (2).
» For the g = su(2) model there is only one type of :

kB (2) ~ (I +2MR), where Mg € su(2).
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New boundary monodromy matrices

Equivalence between the O(4) sigma model and the SU(2) PCM

> Since SO(4) =2 SU(2) x SU(2) the SU(2) principal and the SO(4) sigma models are
equivalent.
> Using goa = naa = o), n; basis transformation — g € SU(2).

» With /15 = goo the h in the new basis /1 — /o @ /)7 and J = JL @ 1+ 1@ JA.
» The connection of the Lax connections:
L3OW () = LV (2) @ 14+ 1@ LE(2) = TSOW (2) = TE (2) @ TE(2).
> If k5O s factorized in the new basis then:
kSO (2) = kI (2) ® KB (2).
» For the g = su(2) model there is only one type of :

kB (2) ~ (I +2MR), where Mg € su(2).

» Using the inversion property «” () = gr''(1/2)g" we get
1 - 1 1
KSOM (2) ~ (112 + ;gMRgT) ® (I2 + 2Mp) =14 + zM + ~hMh + 5 1M, h MR},

where M =12 ® 1\7IR.
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New boundary monodromy matrices

Equivalence between the O(4) sigma model and the SU(2) PCM

> Since SO(4) =2 SU(2) x SU(2) the SU(2) principal and the SO(4) sigma models are
equivalent.
> Using goa = naa = o), n; basis transformation — g € SU(2).
» With /1> = goo the h in the new basis /1 = /o @ hLP and J = JE @ T+ T JE.
> The connection of the Lax connections:
L3OW () = LV (2) @ 14+ 1@ LE(2) = TSOW (2) = TE (2) @ TE(2).

» If K5O{) is factorized in the new basis then:

kSO (2) = kL (2) @ KT (2).

» For the g = su(2) model there is only one type of :
kB (2) ~ (I +2MR), where Mg € su(2).
» Using the inversion property «” () = gr''(1/2)g" we get

1 — 1 1
KSOM (2) ~ (112 + ;gMRgT) ® (I2 + 2Mp) =14 + zM + ~hMh + 5 1M, h MR},

where M =12 ® 1\7IR.
» The BC and the boundary Lagrangian are the following:

o 1 s 1 o
Jy = S[M + hMh, Jo], Ly=—Tr [MJO] .
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New boundary monodromy matrices

Equivalence between the O(4) sigma model and the SU(2) PCM

>

» Using g.o = naa =0

Since SO(4) = SU(2) x SU(2) the SU(2) principal and the SO(4) sigma models are
equivalent.
! .n; basis transformation — g € SU(2).

With /15 = goo the h in the new basis /1 = /o @ hLP and J = JE @ T+ T JE.
The connection of the Lax connections:

L3OW () = LV (2) @ 14+ 1@ LE(2) = TSOW (2) = TE (2) @ TE(2).

If k5O is factorized in the new basis then:
1SOM@) (2) = kL (2) @ kB (2).

For the g = su(2) model there is only one type of :
kB (2) ~ (I +2MR), where Mg € su(2).
Using the inversion property «’(2) = grn'*(1/2)g" we get

1 — 1 1
KSOM (2) ~ (112 + ;gMRgT) ® (I2 + 2Mp) =14 + zM + ~hMh + 5 1M, h MR},

where M =12 ® 1\7IR.
The BC and the boundary Lagrangian are the following:

o 1 s 1 ~
Jy = S[M + hMh, Jo], Ly=—Tr [MJO] .

The above BC and k can be generalized for the SO(2N) sigma models with any N > 2
and the residual symmetry is U(N).
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Conclusions

Conclusions

» We have determined new x matrices for the principal models whose residual symmetry is
G x Hor HxG.

> We have seen that if the center of the residual symmetry is one dimensional then the
boundary condition and the x matrix contain one free parameter.

» The SO(4) =2 SU(2)r, x SU(2)g case can be used to determine the SU(2)r, x U(1)gr
symmetric x matrices for SO(4) sigma models.

» This can be generalized for SO(2N) sigma models with U(N) symmetric boundary
condition which are also new solutions.

Open questions

» Are there Lax descriptions for cases when the residual symmetry is G X H but the H is
semi-simple?

> Are there Lax descriptions for general H; x Hp with two free parameters?
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