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Bulk theories

Integrability for bulk models
◮ Classical model with infinite set of local conserved charges =⇒ Classical Integrable Field

Theory
◮ If ∃L(z) Lax operator where dL(z) + L(z) ∧ L(z) = 0 ⇐⇒ E.O.M is satisfied =⇒

infinitely many conserved charges.
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◮ QFT with infinitely many local conserved charges =⇒
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Examples:

Classic.Int. Lax rep. Q.Int.
PCM ✓ ✓ ✓

Sn sigma model ✓ ✓ ✓

CPn sigma model ✓ ✓ ✗
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infinitely many conserved charges.
◮ QFT with infinitely many local conserved charges =⇒

(i) no particle creation/annihilation
(ii) The n-particle scattering factorizes into 2-particle scattering uniquely (Yang-Baxter

Equation)
◮ We can define IQFT with the quantum S-matrix bootstrap

Examples:

Classic.Int. Lax rep. Q.Int.
PCM ✓ ✓ ✓

Sn sigma model ✓ ✓ ✓

CPn sigma model ✓ ✓ ✗

Classical Integrable Field Theories

Quantum Integrable Models
Theories with Lax representation

?

? Anomalies?

Lagrangian?
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Bulk theories

Sigma models
◮ The field of the sigma model X : Σ→M where Σ is a 2 dimensional manifold e.g.

R2,R× S1,R× (−∞, 0],R× [0, π]

◮ The Lagrangian: L = 1
2
GMN (X)∂αXM∂αXN

Tamás Gombor Lax representations of sigma models on the half line 15. June 2018. 5 / 22



Bulk theories

Sigma models
◮ The field of the sigma model X : Σ→M where Σ is a 2 dimensional manifold e.g.

R2,R× S1,R× (−∞, 0],R× [0, π]

◮ The Lagrangian: L = 1
2
GMN (X)∂αXM∂αXN

Principal Chiral Fields: M = G and X(x) = g(x) ∈ G where G is a Lie group

◮ We can define two currents: JR = g−1dg and JL = gdg−1 =⇒ JL = −gJRg−1.

◮ These currents are Lie-algebra valued one-forms which satisfy the flatness condition:
dJL/R + JL/R ∧ JL/R = 0.
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◮ The Lagrangian is L = − 1
4
Tr
[

JL ∧ ∗JL
]

= − 1
4
Tr
[

JR ∧ ∗JR
]

.

◮ The E.O.M is d ∗ JL/R = 0.
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◮ These currents are Lie-algebra valued one-forms which satisfy the flatness condition:
dJL/R + JL/R ∧ JL/R = 0.

◮ The Lagrangian is L = − 1
4
Tr
[

JL ∧ ∗JL
]

= − 1
4
Tr
[

JR ∧ ∗JR
]

.

◮ The E.O.M is d ∗ JL/R = 0.

◮ The PCMs have GL ×GR global symmetry, the left/right group multiplication,
g(x)→ gLg(x) and g(x)→ g(x)gR.

◮ The transformation of the currents:

gL : JL → gLJ
Lg−1

L , JR → JR,

gR : JL → JL, JR → g−1
R JRgR.

◮ The JL/R are the Noether currents of the left/right group multiplication symmetry.
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Bulk theories

Lax representation of PCM
◮ The E.O.M and the flatness condition is equivalent to the flatness condition of the Lax

connection: dL(z) + L(z) ∧ L(z) = 0 where

L(z) =
1

1− z2
JR +

z

1− z2
∗ JR.
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−
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1

)

.

◮ It can be shown that the monodromy matrix is conserved: ∂0T (z) = 0 for all z =⇒
infinitely many conserved charges.

◮ The conserved charges are generated by expanding the monodromy matrix in z, for
instance at infinity:
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◮ These charges are non-local for r > 0 and the QR
0 is the Noether charge of the right

group multiplication. This infinite set of charges with the Poisson bracket as Lie bracket
form a Y(g) Yangian algebra.
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.

◮ These charges are non-local for r > 0 and the QR
0 is the Noether charge of the right

group multiplication. This infinite set of charges with the Poisson bracket as Lie bracket
form a Y(g) Yangian algebra.

◮ If we expand around z = 0 we get an other infinite set of conserved non-local charges
({QL

r }) which is an other Y(g) Yangian and the QL
0 is the Noether charge of the left

group multiplication therefore the PCMs have Y(g)L ⊕ Y(g)R symmetry.
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◮ These charges are non-local for r > 0 and the QR
0 is the Noether charge of the right

group multiplication. This infinite set of charges with the Poisson bracket as Lie bracket
form a Y(g) Yangian algebra.

◮ If we expand around z = 0 we get an other infinite set of conserved non-local charges
({QL

r }) which is an other Y(g) Yangian and the QL
0 is the Noether charge of the left

group multiplication therefore the PCMs have Y(g)L ⊕ Y(g)R symmetry.
◮ Local conserved quantities are generated by Taylor expansion at z = ±1.
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Theories with boundaries

Integrable theories at the half line (−∞, 0]

◮ At the boundary case we have a surface term: ∂αJα = 0 and Q =
∫ 0
−∞

J0dx1.

Q̇ = J1(0) =⇒ if J1(0) = ḟ then Q− f is conserved.
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◮ At the boundary case we have a surface term: ∂αJα = 0 and Q =
∫ 0
−∞

J0dx1.

Q̇ = J1(0) =⇒ if J1(0) = ḟ then Q− f is conserved.

◮ There are Lax representations also at boundary cases.

◮ The boundary monodromy matrix (double row monodromy matrix) contains the bulk
monodromy matrix and the reflection matrix.
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Theories with boundaries

Integrable theories at the half line (−∞, 0]

◮ At the boundary case we have a surface term: ∂αJα = 0 and Q =
∫ 0
−∞

J0dx1.

Q̇ = J1(0) =⇒ if J1(0) = ḟ then Q− f is conserved.

◮ There are Lax representations also at boundary cases.

◮ The boundary monodromy matrix (double row monodromy matrix) contains the bulk
monodromy matrix and the reflection matrix.

◮ Infinitely many conserved charge at the quantum level:
(i) no particle creation/annihilation at the boundary scattering
(ii) The n-particle scattering at the boundary factorizes into 1-particle boundary scattering

and 2-particle bulk scattering uniquely (boundary Yang-Baxter Equation)

◮ We can define boundary IQFT with the quantum R-matrix bootstrap.

R12 = S12R1S21R2 = R2S12R1S21
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Theories with boundaries

Symmetric spaces

◮ G and H < G are Lie groups.

◮ If ∃α ∈ Aut(G) where α2 = id and ∀h ∈ H α(h) = h then M = G/H is a symmetric
space.
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space.

◮ The α is also an automorphism of g and α(h) = h.

◮ There is a Z2 grading: g = h⊕ f where α(f) = −f therefore

[h, h] ⊂ h, [h, f] ⊂ f, [f, f] ⊂ h.
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◮ If ∃α ∈ Aut(G) where α2 = id and ∀h ∈ H α(h) = h then M = G/H is a symmetric
space.

◮ The α is also an automorphism of g and α(h) = h.

◮ There is a Z2 grading: g = h⊕ f where α(f) = −f therefore

[h, h] ⊂ h, [h, f] ⊂ f, [f, f] ⊂ h.

G SO(n+m) SO(2n) SU(n+m) SU(n) SU(2n)
H S(O(n) ×O(m)) U(n) S(U(n) ×U(m)) SO(n) Sp(n)

G Sp(n+m) Sp(n)
H Sp(n)× Sp(m) U(n)

Examples:
◮ Sn

≡ SO(n + 1)/SO(n)

◮ CPn

≡ SU(n + 1)/U(n)
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H S(O(n) ×O(m)) U(n) S(U(n) ×U(m)) SO(n) Sp(n)

G Sp(n+m) Sp(n)
H Sp(n)× Sp(m) U(n)

Examples:
◮ Sn

≡ SO(n + 1)/SO(n)

◮ CPn

≡ SU(n + 1)/U(n)

◮ For most of these cases α is an inner automorphism α(g) = UgU−1 where

Us =

(

In 0
0 −Im

)

, or Ua =

(

0 In

−In 0

)

.

◮ For SU(n)/SO(n) and SU(2n)/Sp(n) αs are outer automorphisms: α(g) = ḡ and
α(g) = UaḡU

−1
a .
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary

◮ g ∈ H < G =⇒ JR
0 ∈ h and g = h⊕ f.
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary

◮ g ∈ H < G =⇒ JR
0 ∈ h and g = h⊕ f.

◮ After varying the Lagrangian (g → g(1 + ǫ), ǫ(0) ∈ h) we get a surface term:
Tr[ǫJR

1 ] =⇒ JR
1 ∈ f.
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Tr[ǫJR

1 ] =⇒ JR
1 ∈ f.

◮ Quantum integrability ⇐⇒ g = h⊕ f is Z2 graded decomposition =⇒ each symmetric
space can be matched to an integrable BC.
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary

◮ g ∈ H < G =⇒ JR
0 ∈ h and g = h⊕ f.

◮ After varying the Lagrangian (g → g(1 + ǫ), ǫ(0) ∈ h) we get a surface term:
Tr[ǫJR

1 ] =⇒ JR
1 ∈ f.

◮ Quantum integrability ⇐⇒ g = h⊕ f is Z2 graded decomposition =⇒ each symmetric
space can be matched to an integrable BC.

◮ The residual symmetry is G×G→ H ×H.

Boundary Lagrangian

◮ Lb = 1
4
Tr[MJR

0 ] where M ∈ g.

◮ The boundary equation of motion: JR
1 = 1

2
[M,JR

0 ].
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Theories with boundaries

Boundary condition for PCMs

Restricted field at the boundary

◮ g ∈ H < G =⇒ JR
0 ∈ h and g = h⊕ f.

◮ After varying the Lagrangian (g → g(1 + ǫ), ǫ(0) ∈ h) we get a surface term:
Tr[ǫJR

1 ] =⇒ JR
1 ∈ f.

◮ Quantum integrability ⇐⇒ g = h⊕ f is Z2 graded decomposition =⇒ each symmetric
space can be matched to an integrable BC.

◮ The residual symmetry is G×G→ H ×H.

Boundary Lagrangian

◮ Lb = 1
4
Tr[MJR

0 ] where M ∈ g.

◮ The boundary equation of motion: JR
1 = 1

2
[M,JR

0 ].

◮ We have an Lie-algebra endomorphism: adM and we can denote h = Ker(adM ) and
f = Im(adM ). Therefore J1 ∈ f and the residual symmetry is G×G→ G×H.
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Theories with boundaries

Double row monodromy matrices

◮ We use the one and the double row monodromy matrix:

T (z) = P←−exp
(

−
∫ 0

−∞

L1(z)dx
1

)

Ω(z) = T (−z)−1κ(z)T (z)

◮ The time derivative of the double row monodromy matrix:

∂0Ω(z) = T (−z)−1
(

L0(−z, 0)κ(z) + κ̇(z)− κ(z)L0(z, 0)
)

T (z)
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(

−
∫ 0

−∞
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1

)

Ω(z) = T (−z)−1κ(z)T (z)

◮ The time derivative of the double row monodromy matrix:

∂0Ω(z) = T (−z)−1
(

L0(−z, 0)κ(z) + κ̇(z)− κ(z)L0(z, 0)
)

T (z)

◮ Therefore the monodromy matrix is time independent for all z if

κ(z)L0(z)− L0(−z)κ(z) = κ̇(z)

◮ This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL + L ∧ L = 0 is equivalent with the bulk EOM.
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◮ This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL + L ∧ L = 0 is equivalent with the bulk EOM.

Reflection matrices for PCM

◮ Ansatz: κ(z) = U where U is an constant group element.
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flatness condition dL + L ∧ L = 0 is equivalent with the bulk EOM.

Reflection matrices for PCM

◮ Ansatz: κ(z) = U where U is an constant group element.

◮ The reflection equation is equivalent with: JR
0 = UJR

0 U−1 and JR
1 = −UJR

1 U−1.
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◮ Therefore the monodromy matrix is time independent for all z if

κ(z)L0(z)− L0(−z)κ(z) = κ̇(z)

◮ This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL + L ∧ L = 0 is equivalent with the bulk EOM.

Reflection matrices for PCM

◮ Ansatz: κ(z) = U where U is an constant group element.

◮ The reflection equation is equivalent with: JR
0 = UJR

0 U−1 and JR
1 = −UJR

1 U−1.

◮ We have a Lie-algebra automorphism α(X) = UXU−1 and let h ⊂ g and f ⊂ g where
h = α(h) and f = −α(f) =⇒ JR

0 ∈ h and JR
1 ∈ f.
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Double row monodromy matrices

◮ We use the one and the double row monodromy matrix:

T (z) = P←−exp
(

−
∫ 0

−∞

L1(z)dx
1

)

Ω(z) = T (−z)−1κ(z)T (z)

◮ The time derivative of the double row monodromy matrix:

∂0Ω(z) = T (−z)−1
(

L0(−z, 0)κ(z) + κ̇(z)− κ(z)L0(z, 0)
)

T (z)

◮ Therefore the monodromy matrix is time independent for all z if

κ(z)L0(z)− L0(−z)κ(z) = κ̇(z)

◮ This equation (reflection equation) is equivalent to with the boundary EOM just like the
flatness condition dL + L ∧ L = 0 is equivalent with the bulk EOM.

Reflection matrices for PCM

◮ Ansatz: κ(z) = U where U is an constant group element.

◮ The reflection equation is equivalent with: JR
0 = UJR

0 U−1 and JR
1 = −UJR

1 U−1.

◮ We have a Lie-algebra automorphism α(X) = UXU−1 and let h ⊂ g and f ⊂ g where
h = α(h) and f = −α(f) =⇒ JR

0 ∈ h and JR
1 ∈ f.

◮ We must have dim(g) independent of the BC =⇒ dim(g) = dim(h) + dim(f) =⇒ g = h⊕ f
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Theories with boundaries

Quantum PCM

◮ All particles are bound states of ”elementary” particles. They are the defining
representation of the GL ×GR.
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Theories with boundaries

Quantum PCM

◮ All particles are bound states of ”elementary” particles. They are the defining
representation of the GL ×GR.

◮ The ”elementary” S-matrix is a (VL ⊗VR)⊗ (VL ⊗VR)→ (VL ⊗VR)⊗ (VL ⊗VR) matrix:

S̃(θ) = S̃0(θ)P23

[

SL(θ)⊗ SR(θ)
]

P23.

◮ The SL/R(θ) is a VL/R⊗VL/R → VL/R⊗VL/R matrix and P is the permutation matrix.
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]

P23.

◮ The SL/R(θ) is a VL/R⊗VL/R → VL/R⊗VL/R matrix and P is the permutation matrix.

◮ The S(θ) = SL(θ) = SR(θ) has symmetry G and it is a solution of the Yang-Baxter
equation.
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◮ The SL/R(θ) is a VL/R⊗VL/R → VL/R⊗VL/R matrix and P is the permutation matrix.

◮ The S(θ) = SL(θ) = SR(θ) has symmetry G and it is a solution of the Yang-Baxter
equation.

◮ The integrable quantum reflection matrices R̃ : (VL ⊗ VR)→ (VL ⊗ VR) are the solutions
of the boundary Yang-Baxter equation.

◮ If the R̃ matrix is factorized at the (VL ⊗ VR):

R̃(θ) = R̃0(θ)
[

RL(θ)⊗ RR(θ)
]

then the bYBE is also factorized (θij = θi − θj , ϑij = θi + θj):

S12(θ12)R
L/R
1 (θ1)S21(θ)(ϑ12)R

L/R
2 (θ2) = R

L/R
2 (θ2)S12(ϑ12)R

L/R
1 (θ1)S21(θ)(θ12)
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Quantum PCM

◮ All particles are bound states of ”elementary” particles. They are the defining
representation of the GL ×GR.

◮ The ”elementary” S-matrix is a (VL ⊗VR)⊗ (VL ⊗VR)→ (VL ⊗VR)⊗ (VL ⊗VR) matrix:

S̃(θ) = S̃0(θ)P23

[

SL(θ)⊗ SR(θ)
]

P23.

◮ The SL/R(θ) is a VL/R⊗VL/R → VL/R⊗VL/R matrix and P is the permutation matrix.

◮ The S(θ) = SL(θ) = SR(θ) has symmetry G and it is a solution of the Yang-Baxter
equation.

◮ The integrable quantum reflection matrices R̃ : (VL ⊗ VR)→ (VL ⊗ VR) are the solutions
of the boundary Yang-Baxter equation.

◮ If the R̃ matrix is factorized at the (VL ⊗ VR):

R̃(θ) = R̃0(θ)
[

RL(θ)⊗ RR(θ)
]

then the bYBE is also factorized (θij = θi − θj , ϑij = θi + θj):

S12(θ12)R
L/R
1 (θ1)S21(θ)(ϑ12)R

L/R
2 (θ2) = R

L/R
2 (θ2)S12(ϑ12)R

L/R
1 (θ1)S21(θ)(θ12)

◮ The solutions are classified and they depend on what is the residual symmetry algebra h.
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Theories with boundaries

g = su(n)

h = su(k)⊕ su(n− k)⊕u(1)

R ∼
(α+θ

α−θ
Ik 0

0 In−k

)

h = so(n)
This case belongs to a

representation
changing reflection

where a particle goes
to its anti-particle.

h = sp(n)
This case also belongs to a
representation changing

reflection.

R ∼
(

0 In/2

−In/2 0

)

.

g = so(n)

h = so(k)⊕ so(n− k)

R ∼
( c+θ

c−θ
Ik 0

0 In−k

)

h = so(2n− 1)⊕so(2)

R ∼





Aα(θ) Bα(θ) 0
−Bα(θ) Aα(θ) 0

0 0 In−2





h = su(n/2) ⊕ u(1)

R ∼
(

In/2 iαθIn/2

−iαθIn/2 In/2

)

g = sp(n)

h = so(k)⊕ so(n− k)

R ∼
( c+θ

c−θ
Ik 0

0 In−k

)

h = su(n/2) ⊕ u(1)

R ∼
(

In/2 iαθIn/2

−iαθIn/2 In/2

)
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O(n) sigma models

O(n) sigma models

◮ M = SO(n)/SO(n− 1) ≡ Sn−1 and X = n ∈ Rn where n · n = 1.

◮ The Lagrangian is L = 1
2
[∂αn · ∂α

n+ σ(n · n− 1)].

◮ The E.O.M is ∂2
n+ (∂αn · ∂α

n)n = 0.
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O(n) sigma models

◮ M = SO(n)/SO(n− 1) ≡ Sn−1 and X = n ∈ Rn where n · n = 1.

◮ The Lagrangian is L = 1
2
[∂αn · ∂α

n+ σ(n · n− 1)].

◮ The E.O.M is ∂2
n+ (∂αn · ∂α

n)n = 0.

Another usefull description:

◮ We can define an O(n) group element: h = I− 2n⊗ n which is satisfy hTh = I and
h = hT identities.

◮ Using this one can define a current: Ĵ = hdh which is the Noether current of the global
SO(n) symmetry.
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◮ The Lagrangian is L = 1
2
[∂αn · ∂α

n+ σ(n · n− 1)].

◮ The E.O.M is ∂2
n+ (∂αn · ∂α

n)n = 0.

Another usefull description:

◮ We can define an O(n) group element: h = I− 2n⊗ n which is satisfy hTh = I and
h = hT identities.

◮ Using this one can define a current: Ĵ = hdh which is the Noether current of the global
SO(n) symmetry.

◮ This Lax connection is very similar with the PCM but here the current is constrained.

L̃(z) =
1

1− z2
Ĵ +

z

1− z2
(∗Ĵ).
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◮ We can define an O(n) group element: h = I− 2n⊗ n which is satisfy hTh = I and
h = hT identities.

◮ Using this one can define a current: Ĵ = hdh which is the Noether current of the global
SO(n) symmetry.

◮ This Lax connection is very similar with the PCM but here the current is constrained.

L̃(z) =
1

1− z2
Ĵ +

z

1− z2
(∗Ĵ).

◮ The known κs are κ = diag(1, . . . , 1,−1, . . . ,−1) which have h = so(k)⊕ so(n− k)
residual symmetry and belong to the n ∈ Sk−1 BC (the Sk−1 has r = 1 radius).

Tamás Gombor Lax representations of sigma models on the half line15. June 2018. 14 / 22



O(n) sigma models

O(n) sigma models

◮ M = SO(n)/SO(n− 1) ≡ Sn−1 and X = n ∈ Rn where n · n = 1.

◮ The Lagrangian is L = 1
2
[∂αn · ∂α

n+ σ(n · n− 1)].

◮ The E.O.M is ∂2
n+ (∂αn · ∂α

n)n = 0.

Another usefull description:

◮ We can define an O(n) group element: h = I− 2n⊗ n which is satisfy hTh = I and
h = hT identities.
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L̃(z) =
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z
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(∗Ĵ).

◮ The known κs are κ = diag(1, . . . , 1,−1, . . . ,−1) which have h = so(k)⊕ so(n− k)
residual symmetry and belong to the n ∈ Sk−1 BC (the Sk−1 has r = 1 radius).

◮ From the bYBE the possible quantum reflections:

h = so(k)⊕ so(n− k)

R ∼
( c+θ

c−θ
Ik 0

0 In−k

)

h = so(2n− 1)⊕so(2)

R ∼





Aα(θ) Bα(θ) 0
−Bα(θ) Aα(θ) 0

0 0 In−2





h = su(n/2) ⊕ u(1)

R ∼
(

In/2 iαθIn/2

−iαθIn/2 In/2

)
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O(n) sigma models

Some comments on the quantum classification

◮ For all possible solutions G/H is a symmetric space.

◮ We can choose RL 6= RR reflection matrices which have HL ×HR residual symmetry
where HL 6= HR for PCMs and U(n/2) symmetric R-matrices for O(n) sigma models.

◮ The so far known integrable boundary conditions with Lax description have HL ×HR

symmetry where HL = HR for PCMs and O(k)×O(n− k) for O(n) sigma models.

◮ We can see from the classification that some Rs contain parameters. The residual
symmetries of these cases are not semi-simples.

◮ The known integrable boundary conditions with Lax representation do not have any
parameters.
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O(n) sigma models

Some comments on the quantum classification

◮ For all possible solutions G/H is a symmetric space.

◮ We can choose RL 6= RR reflection matrices which have HL ×HR residual symmetry
where HL 6= HR for PCMs and U(n/2) symmetric R-matrices for O(n) sigma models.

◮ The so far known integrable boundary conditions with Lax description have HL ×HR

symmetry where HL = HR for PCMs and O(k)×O(n− k) for O(n) sigma models.

◮ We can see from the classification that some Rs contain parameters. The residual
symmetries of these cases are not semi-simples.

◮ The known integrable boundary conditions with Lax representation do not have any
parameters.

Questions

◮ Are there Lax descriptions of the solutions with HL ×HR symmetries where HL 6= HR

for PCMs?

◮ Are there Lax descriptions of the solutions with U(n/2) symmetries for O(n) sigma
models?

◮ Are there Lax descriptions of the solutions which have free parameters?
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New boundary monodromy matrices

Outline

Bulk theories

Theories with boundaries

New boundary monodromy matrices
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New boundary monodromy matrices

The new κ(z) for PCMs
◮ The ansatz is the following:

κ(z) = k(z)
(

I+ zM + z2N
)

, where M ∈ g and k(z) ∈ R.

◮ The reflection equation is the following:

κ(z)L0(z) − L0(−z)κ(z) = κ̇(z) =⇒
(

I+ zM + z2N
)

(JR
0 − zJR

1 )− (JR
0 + zJR

1 )
(

I+ zM + z2N
)

= 0.
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κ(z) = k(z)
(

I+ zM + z2N
)

, where M ∈ g and k(z) ∈ R.

◮ The reflection equation is the following:

κ(z)L0(z) − L0(−z)κ(z) = κ̇(z) =⇒
(

I+ zM + z2N
)

(JR
0 − zJR

1 )− (JR
0 + zJR

1 )
(

I+ zM + z2N
)

= 0.

◮ Which leads to the following equation system:

z1 : [M,JR
0 ]− 2JR

1 = 0

z2 : [N,JR
0 ]− {M,JR

1 } = 0

z3 : {N, JR
1 } = 0
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1 )
(
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)

= 0.

◮ Which leads to the following equation system:

z1 : [M,JR
0 ]− 2JR

1 = 0

z2 : [N,JR
0 ]− {M,JR

1 } = 0

z3 : {N, JR
1 } = 0

◮ These three equations have to be equivalent with dim(g) independent boundary
conditions =⇒

2N −M2 ∼ I and N2 ∼ I.

Tamás Gombor Lax representations of sigma models on the half line15. June 2018. 17 / 22



New boundary monodromy matrices

The new κ(z) for PCMs
◮ The ansatz is the following:
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(JR
0 − zJR

1 )− (JR
0 + zJR

1 )
(

I+ zM + z2N
)

= 0.

◮ Which leads to the following equation system:

z1 : [M,JR
0 ]− 2JR

1 = 0

z2 : [N,JR
0 ]− {M,JR

1 } = 0

z3 : {N, JR
1 } = 0

◮ These three equations have to be equivalent with dim(g) independent boundary
conditions =⇒

2N −M2 ∼ I and N2 ∼ I.

◮ And the boundary condition is

JR
1 =

1

2
[M,JR

0 ] =⇒ {N,JR
1 } = 0.
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New boundary monodromy matrices

Some comments for these new κ(z)s
◮ If N 6= 0 then it defines an automorphism which leads to a Z2 graded decomposition:

g = h⊕ f.
◮ If N = 0 then M2 ∼ I so M defines the decomposition : g = h⊕ f.
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New boundary monodromy matrices

Some comments for these new κ(z)s
◮ If N 6= 0 then it defines an automorphism which leads to a Z2 graded decomposition:

g = h⊕ f.
◮ If N = 0 then M2 ∼ I so M defines the decomposition : g = h⊕ f.
◮ The BCs on h and f: Πh(J

R
1 ) = 0 and Πf(J

R
1 ) = β(Πf(J

R
0 )) where β : f→ f is an

invertible linear map.
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New boundary monodromy matrices

Some comments for these new κ(z)s
◮ If N 6= 0 then it defines an automorphism which leads to a Z2 graded decomposition:

g = h⊕ f.
◮ If N = 0 then M2 ∼ I so M defines the decomposition : g = h⊕ f.
◮ The BCs on h and f: Πh(J

R
1 ) = 0 and Πf(J

R
1 ) = β(Πf(J

R
0 )) where β : f→ f is an

invertible linear map.
◮ The M ∈ h and [M, h] = 0 therefore h has non-trivial center so it is not semi-simple:

h = u(1) ⊕ hs where u(1) is generated by M .
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Some comments for these new κ(z)s
◮ If N 6= 0 then it defines an automorphism which leads to a Z2 graded decomposition:

g = h⊕ f.
◮ If N = 0 then M2 ∼ I so M defines the decomposition : g = h⊕ f.
◮ The BCs on h and f: Πh(J

R
1 ) = 0 and Πf(J

R
1 ) = β(Πf(J

R
0 )) where β : f→ f is an

invertible linear map.
◮ The M ∈ h and [M, h] = 0 therefore h has non-trivial center so it is not semi-simple:

h = u(1) ⊕ hs where u(1) is generated by M .
◮ We have seen that this boundary condition belongs this boundary Lagrangian:

Lb =
1

4
Tr
[

MJR
0

]

.

◮ The model has G×H symmetry and one free parameter.
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invertible linear map.
◮ The M ∈ h and [M, h] = 0 therefore h has non-trivial center so it is not semi-simple:

h = u(1) ⊕ hs where u(1) is generated by M .
◮ We have seen that this boundary condition belongs this boundary Lagrangian:

Lb =
1

4
Tr
[

MJR
0

]

.

◮ The model has G×H symmetry and one free parameter.
◮ The right conserved charges are:

QR =

∫ 0

−∞

JR
0 dx1 =⇒ Q̇R = JR

1

∣

∣

∣

∣

x=0

=⇒ Πh(QR) is conserved.
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◮ We have seen that this boundary condition belongs this boundary Lagrangian:

Lb =
1

4
Tr
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MJR
0

]

.

◮ The model has G×H symmetry and one free parameter.
◮ The right conserved charges are:

QR =

∫ 0

−∞

JR
0 dx1 =⇒ Q̇R = JR

1

∣

∣

∣

∣

x=0

=⇒ Πh(QR) is conserved.

◮ The left conserved charges are (JL = −gJRg−1):

QL =

∫ 0

−∞

JL
0 −

1

2
gMg−1δ(x)dx =⇒

Q̇L =

(

JL
1 −

1

2
g[JR

0 ,M ]g−1

)∣

∣

∣

∣

x=0

=

(

−gJR
1 g−1 +

1

2
g[M,JR

0 ]g−1

) ∣

∣

∣

∣

x=0

= 0.
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New boundary monodromy matrices

The solutions

◮ g = su(n) and h = u(1) ⊕ su(m) ⊕ su(k) where n = m+ k.

M = i
2λ

k −m

(

−kIm×m Om×k

Ok×m mIk×k

)

, N = λ2 n

k −m

(

−Im×m Om×k

Ok×m Ik×k

)

,

κ(z) =

( 1+izλ
1−izλ

Im×m Om×k

Ok×m Ik×k

)

∈ U(n).

◮ g = so(2n) or g = sp(n) and h = u(1) ⊕ su(n)

M = λ

(

On×n −In×n

In×n On×n

)

.

Because of M2 = −λ2I than N = 0. The matrix κ is the following:

κ(z) =
1√

1 + λ2z2

(

On×n −λIn×n

λIn×n On×n

)

.

We can check that κ(z) ∈ SO(2n) and κ(z) ∈ Sp(n) too.
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New boundary monodromy matrices

The solutions

◮ g = so(n) and h = so(2) ⊕ so(n− 2)

M = 2λ















0 −1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .















, N = λ2















−1 0 0 0 · · ·
0 −1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .















,

κ(z) =















A(z) −B(z) 0 0 · · ·
B(z) A(z) 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
.
..

.

..
.
..

.

..
. . .















∈ SO(n),

where

A(z) =
1− λ2z2

1 + λ2z2
,

B(z) =
2λz

1 + λ2z2
.
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New boundary monodromy matrices

Equivalence between the O(4) sigma model and the SU(2) PCM
◮ Since SO(4) ∼= SU(2) × SU(2) the SU(2) principal and the SO(4) sigma models are

equivalent.
◮ Using gαα̇ = nαα̇ = σi

αα̇ni basis transformation −→ g ∈ SU(2).
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Ĵ1 =
1

2
[M + hMh, Ĵ0], Lb = −1
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Tr
[

MĴ0
]
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◮ The above BC and κ can be generalized for the SO(2N) sigma models with any N > 2
and the residual symmetry is U(N).
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Conclusions

Conclusions
◮ We have determined new κ matrices for the principal models whose residual symmetry is

G×H or H ×G.

◮ We have seen that if the center of the residual symmetry is one dimensional then the
boundary condition and the κ matrix contain one free parameter.

◮ The SO(4) ∼= SU(2)L × SU(2)R case can be used to determine the SU(2)L × U(1)R
symmetric κ matrices for SO(4) sigma models.

◮ This can be generalized for SO(2N) sigma models with U(N) symmetric boundary
condition which are also new solutions.

Open questions
◮ Are there Lax descriptions for cases when the residual symmetry is G×H but the H is

semi-simple?

◮ Are there Lax descriptions for general HL ×HR with two free parameters?
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