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Abstract: While the usual Wigner-Indni contraction
c — oo Of the Poincaré group yields the Galilei group,
another ¢ — 0 contraction yields the “Carroll group” of
Lévy-Leblond. Both boost-invariant theories are conve-
niently unified within the “Eisenhart-Duval’ framework.
Plane gravitational waves carry a non-trivially imple-
mented “distorted” Carroll symmetry with broken rota-
tions.
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Carroll group

) LewLeblond

constructed as novel type of contraction of Poincaré group

“Une nouvelle limite non-relativiste du group de Poincaré,”
Ann. Inst. H. Poincaré 3 (1965) 1

V. D. _ “On an Analogue of the Galileo

Group,” Il Nuovo Cimento 44 (1966) 512

no motion - physics - mathematical curiosity

"The Red Queen has to run faster and faster
in order to keep still where she is. That is

exactly what you all are doing!" T hrou g h the
Looking Glass and what Alice Found There (1871).
3




t=0 &

. ) . g . x
Fig. 1 : Galilean space-time, - described by ( ; )
Carries symmetric, contravariant non-negative [space-
co-] “metric” tensor “Y whose kernel is generated by

dt. Projects onto absolute time.
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Fig.2 : Carroll space-time, C described by i,: , 1S en-

dowed with vector £ which generates kernel of (singular)

[space-] “metric’ G = 615 dzdxb.



Carroll group _ ~

“Carrollian boosts”
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NB: In NR QM wave fct including a phase

factor,

. 1
V(2 t) = P30 be, 1)

infinitesimally (for ¢t = 0):

BY(x,0) = (-8 z)¥(x,0)

(3)

(4)



Fig.3 Carroll boost acts on flat Carroll space-time
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Carroll group represented by (d+ 2) x (d + 2)
matrices

R O c
—bT'Rr 1 ¥ (5)
O O 1

where R € O(d), b,c € R%, f € R. Acts on
£
S affinely by matrix action. Carroll Lie
1

0O v
Z=| -8 0 ¢ (6)
0 00

w € so(d), B,v € R% and ¢ € R acts on Carroll
Space-time as

0 0
X = (wéxB—l-’YA)&U—A‘l‘ (SO —BA-’JUA)&a (7)

where w € so(d), B,v € R%, and ¢ € R.

N.B. : Galilei Lie algebra _

0 0
X = (wé x4+ | At |+ ’YA)ax—A + € (8)

where w € so(d), 3,7 € R% and ¢ € R.



Unification: Bargmann manifolds

A Bargmann manifold* is
(i) a (d+ 2)-dim manif B
(ii) endowed with metric G of signature (d 4+ 1,1)

(iii) carries nowhere vanishing, complete, null
“vertical’ vector &, parallel-transported by Levi-
Civita connection, V.

L. P. Eisenhart, “Dynamical trajectories and geodesics’’,
Annals. Math. 30 591-606 (1928).

J. B. Kogut and D. E. Soper, “Quantum Electrodynam-
ics in the Infinite Momentum Frame,” Phys. Rev. D 1
(1970) 2901.

C. Duval, G. Burdet, H. P. Kunzle and M. Perrin,
“Bargmann Structures and Newton-Cartan Theory,”
Phys. Rev. D 31 (1985) 1841.

* Introduced by JDBNEN et al as geometrical
structure underlying 'Bargmann [= centrally
extended Galilei] group.
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Fig. 4 : Bargmann space : (d+1,1) dim manifold with

Lorentz metric & coordinates (x,t, s), endowed with co-

variantly constant null vector £ = 0.
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Flat Bargmann structure ~ Minkowski space :

xr

B = RIXRxR= t s, (9)
S

G = Sapgdr?dx® + 2dtds, (10)

§ = 0s. (11)

Both s & t light-cone (null), coords. t has
dimension of time, coordinate s has that of
action/mass.
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‘e Factoring out “vertical” translations along

¢, (d+1)-dim quotient acquires [Newton-Cartan|

structure

M t

Fig.5 : Bargmann projects to Galilean space-time.
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@ Restriction to t = const turns off dtds in
metric (10), leaving singular “metric” § 45 dz?dz?B

~ admits flat [CarfOllSErUCEUre embedded into
xr

Bargmann space C = 0

Fig.6 : t = const slice is “Carroll space-time” C embed-
ded into Bargmann space.
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Symmetries

£-preserving isometries of Bargmann :

R b 0 c
0 1 0 e

“=| -bTR —-1b2 1 7§ (12)
0 0 01

where R € O(d), b,c € R, and e, f € R form
centrally extended Galilei [= Bargmann] group

B8 = Barg(d + 1). Boost :

€T x + bt
t | — t (13)
S s—b-a:—l—%th

N.B. : lifting ordinary wave fct to equivariant
(= OsWV = imW) on B-space, Galilei boost ac-

tion (3) is Bargmann action. Affine action on
£

~ Bargmann algebra batg = barg(d + 1)

= »n o~

(wa P +6At+7A) L+ —-I-(so BAa:A)—

(14)
where w € so(d), B, v € R%, ¢, 0 € R.
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Seen before: restriction of Bargmann space to
t = 0 is Carroll manifold C left invariant by re-
striction of Bargmann action (14) withe = 0 ~
action of [€aff], embedded into Bargmann group,

R b 0O c

0 1 00

~b'R —1b? 1 f

0 0 01
(15)

where R € O(d), b,c € R?, f € R.

Infinitesimally:

(wB:vB+vA) —+ (o — maf“)— (16)

w € so(d), B, € Rd, ¢ € R (seen before).

N.B. : for t =ty Carroll boost acts as

v—)v—b.w—%bzto (17)
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Fig.7 Boost acting on flat Bargmann [= Minkowski]

Space
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Plane gravitational waves

In JERIRRESNE coordinates

ds® = dX? + 2dUdV — K(U, X)dU? (18)

U and V light-cone coords, X = (X1,X5) ~
transverse plane. Vacuum Einstein egn satis-
fied with

KU, X) = A(U)(X{ - X3) 4+ 2B(U) X1 X2.
(19)
Clue: (18) Bargmann space ~ anisotropic oscillator .

P. M. Zhang, P. A. Horvathy, K. Andrzejewski, J. Gonera

and P. Kosinski, “Newton-Hooke type symmetry of anisotropic
oscillators,” Ann. Phys. 333 (2013) 335 [arXiv:1207.2875
[hep-th]].

Isometries : Bondi et al 1959. 5-parameters.
1 ‘“vertical” translation 4+ 4 MYS T ERIOUS
(not written explicitely). Torre 2006 Gen. Rel.
Grav. 38 (2006) 653 : isometries Oy +

Si(U)0; + S;(U)X; 0y (20)

where §; is solution of Sturm-Liouville egn

S; = K;;(U) S, (21)

(...that we can't solve in general ...)
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Souriau 1973 M bih s ¥ ! metric in BJR
(Baldwin-Jeffery-Rosen) coords :

ds® = a;;(u) dz'dr! + 2dudv. (22)

Isometries : © — u, completed with

x — x+ H(u)b 4+ c, (23a)

v%v—b-m—%b-H(u)b—l—f (23b)

where H = (H;;) is 2 x 2 matrix

H(u) = /u?;a,_l(w)dw. (24)

c € R? ~ transverse-space transl, f ~ null
translat along v coord.
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Group composition law: that of | Carroll group

with no rotations. b € R? generates Carroll
boost, implemented as in (23).

Flat case: a;; = ¢, =
19 19

H(u) = (u —ug)Id (25)

choosing ug = 0

r — x + ub, (26a)
U — U, (26b)
v—>v—b-w—%b2u (260)

Galilei boosts lifted to flat Bargmann space.

(See again at the end)
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Relation with Brinkmann-coords 7

1. Given B-profile K(U), solve Sturm-Liouville

Pr; = Kgp Prj (27)

for U-dept 2 x 2 matrix Py;(U) .

2. Putting
X'=P 2! U=u (28a)
1 da;: . .
0y0) = PPy, Vimo— s i
(28b)

allows to present metric (18) in BJR form

ds® = a;;(u) dz'dz! + 2dudv

cf. (22) provided also PtP = PTP.

Quadratic “scalar potential” in B, K;; X' X/ dU?
in (18), traded for “time” -dependent” trans-
verse metric a;;(u) (while leaving U = u
unchanged).
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EXAMPLES

0. Restriction of flat Minkowski space

dr? 4 2dt ds

tot = 0 is Carroll manifold, upon which restric-
tion e = 0 of Bargmann group acts consistently
with Carroll action.
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Linearly polarized “sudden burst” ~ Gaussian
profile (~ anisotropic oscillator with time-dependent

frequency)
2

e

N

Kii(u)X'XI = ((X1)2 - (X2)2). (29)

Fig.8 “Time"” evolution of wave for “sudden burst” with

Gaussian profile A(u) = exp[—u?].

Sandwich wave: K(u) # 0 only in “wave zone"
U, < U < Uf. Assumption : metric Minkowski
in “before-zone” U < U; and flat in “after-
zone” Ur < U.
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Impulsive wave :
AU) =2k46(U) (30)

k € R. Wave zone suppressed, U; = Uy = 0.
SL egn. (27) solved by

Plu) =14 u6(u)co (31)

where 6(u) Heaviside, c¢g = 3a(04) initial “speed”
of transverse metric. Can be chosen cg =
kdiag(1,—-1).

[ (o]
o

[u—y

-3

=)
it TSI NPRUN TR
L

. _05.
Fig.9. Numerical solution of S-L eqn (27) for profile
Ax(U) = (M y/7) e MU shows that components of diag-
onal matrix P\(U) approach, for large X\, those of impul-
sive wave [in dashed black].

1 for u <0,

(14 wecg)? for u> 0. (32)

a(u) = {
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More generally

A\(U) = LB_AQUQ.

N (33)

Squeezing Gaussians to Dirac ¢ by letting A —
oo, components of Py(u) and of transverse met-
ric ay(u) = P{ (u)Py\(u) tend to those of impul-
sive wave.

=]
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Fig.10. Squeezing Gaussians A, to Dirac 6, transverse
metrics a)(u) (in red and blue) tend to that of impul-
sive wave in BJR coordinates, depicted in dashed black

lines.
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Carroll boost for impulsive GW
Boost implemented as ¢ — = + H(u)b, v —
v—b-z—2ib-H(u)b cf. (23). For impulsive

H() = uP 1w (34)

P = { ! “=9 35

diag(1 +u/2,1 —u/2) u>0

_u
H = diag(H4,H_) = ( Ifu/2 ) w> 0.

1—u/2
(36)
Boost with b = (b4,b_) implemented as,

u

— b 37a

r1 — x1 + 1 /2 + (37a)
u

— b_ 37b

Ty = a2+ o e (37b)

v —v— (r1b4 + x2b_) —

1 u 2 u 2
- (1 Fu2 T 10 b‘) (37¢)
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Fig.11 Boost acts on impulsive space-time according to
x — x+Hb,v - v—b-x—ib-H(u)b. H=diag(Hy, H )
but components differ considerably from usual Galilei

implementation Hgy = uwld.
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Polarized oscillating GW with
Gaussian envelope

In Brinkmann (B) coordinates (X,U, V) profile
of plane GW given by symmetric & traceless
2 X 2 matrix H(U) = HZ](U>

5;;dX"dX7 4+ 2dUdV + H;;(U)X'X7dU?, (38a)
Hi;(U)X'X? = (38b)
LA (X2 = (X2)?) +B(U) X1 X2

A & B(U) amplitudes of 4+ and x polarization
states.

(geodesic) egns motion

dQ—X—H(U)X—O H(U)z%( A Bw)),

dU? B(U) -A
(39a)
d°V  1dA /, 1 5 pdXt 5dX?
- ((XH? - (X X — X
dU2 44U (( )7 = (X9 >+A dU dU
1dB 1.5 rdXt 1dX2
S X'X 4+ B(X = 0.
o + ( w T

(39b)
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Circularly Polarized Waves

o If A(U) =0 or B(U) = 0, wave linearly po-
larized.

e [PoOlarized waves approximating the sandwich
by Gaussian,

AU) = Ag \% e U cos(wl), (40a)
BU) = Bo%e_)‘QUQ sin(wU).  (40b)

choose Ag = Bp.
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Profile of circularly polarized sandwich waves for large
/ small \. For A\ — oo Gaussian profile approximates
polarized impulsive wave; for A\ — 0 becomes weak but

wide. (Note different scales).

Numerically calculated trajectories and veloci-
ties hint at following behavior:
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e In |large-A| regime Gaussian thin & high, mo-
tion roughly along straight lines with constant
velocity, except in short (~ O(1/X) transitory
“inside” region, where trajectory sharply bent,
velocity changes rapidly from zero to non-zero
value — reminiscent of motion in impulsive

WaVe.

3 n
A0 = 20, BO:ZO,w=£,¢=E, A=20

3 n
A0 =20, BO:ZO,w:E,qb:E, A=20

X X

Trajectories / velocities after passage of circularly po-
larized Gaussian sandwich wave (40) in [impulsive limit
A — oo. blue and red colors refer to transverse com-
ponents X' and X?. Trajectory bent in (narrow) inside
zone & then escapes with non-vanishing constant veloc-

ity in flat after-zone.
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e In - regime profile wide & low, with

many oscillations in inside zone. Apart of fine
“denting”’, motion ‘reasonably regular” in in-
side zone. Effect of “denting” important when
velocity is plotted. Trajectories suffer weak ro-

tation.

3 o
A0=20,B0=20, w= E, i E, A=0.01

3 F 3
A0=20,B0=20, w = E, $p= E, A=0.01

XX

—200

dx! dx?
dU’ dU
0.04

N

’MHI"”

Trajectories / velocities for - describing particle

motion in wide but weak circularly polarized Gaussian

sandwich GW (40). blue and red colors refer to trans-

verse components X1 and X2. Particle initially at rest

has complicated motion in inside zone however escapes

with non-zero constant velocity in flat after-zone.
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In outside zones, U < U; & U > Ur, everything
smoothes out for both regimes: the trajectory

(just like on the linearly polarized case) follows
straight lines with constant velocity.

LLarge and small-\ regimes differ in inside zone:
motion in after zone always simple.
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boost implemented

C=1, o= V2
ox!, 6x>

6

Fig.12 Boost acts on polarized oscillating GW with Gaus-
sian envelope according to

x—x+ Hb,v—v—b-z—1b - H(ub

Components differ considerably from Galilei implemen-
tation H = uld.
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