Symmetries and degeneracies of spin chains

Rafael Nepomechie Physics Department University of Miami

"Palla Fest" Eötvös Loránd University, Budapest June 2018

Available online at www.sciencedirect.com

RECEIVED: May 22, 2012 ACCEPTED: August 6, 2012 PUBLISHED: August 29, 2012

Nuclear Physics B 714 [FS] (2005) 307-335

NLIE for hole excited states in the sine-Gordon model with two boundaries

Changrim Ahn^a, Zoltán Bajnok^b, Rafael I. Nepomechie^c, László Palla^d, Gábor Takács^b

 ^a Department of Physics, Ewha Womans University, Seoul 120-750, South Korea
 ^b Theoretical Physics Research Group of the Hungarian Academy of Sciences, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
 ^c Physics Department, P.O. Box 248046, University of Miami, Coral Gables, FL 33124, USA
 ^d Institute for Theoretical Physics, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

Received 14 January 2005; accepted 8 March 2005

Available online 29 March 2005

Y-system for Y = 0 brane in planar AdS/CFT

Zoltán Bajnok,^{*a,b*} Rafael I. Nepomechie,^{*c*} László Palla^{*d*} and Ryo Suzuki^{*e*}

^a Theoretical Physics Research Group, Hungarian Academy of Sciences, 1117 Budapest, Pázmány s. 1/A Hungary
^b Institute for Advanced Studies, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
^c Physics Department, University of Miami, P.O. Box 248046, Coral Gables, FL 33124, U.S.A.
^d Institute for Theoretical Physics, Roland Eötvös University, 1117 Budapest, Pázmány s. 1/A Hungary
^e Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht, The Netherlands
E-mail: bajnok@elte.hu, nepomechie@physics.miami.edu, palla@ludens.elte.hu, R.Suzuki@uu.nl

Gabor & Zoli

Published for SISSA by 🖄 Springer

RECEIVED: December 20, 2013 ACCEPTED: February 9, 2014 PUBLISHED: March 11, 2014

common threads: integrability & boundaries

The spectrum of tachyons in AdS/CFT

Zoltán Bajnok, ^a Nadav Drukker, ^b Árpád Hegedűs, ^a Rafael I. Nepomechie, ^c László Palla, ^d Christoph Sieg ^e and Ryo Suzuki ^f	С Н
^a MTA Lendület Holographic QFT Group, Wigner Research Centre,	i T
H-1525 Budapest 114, P.O.B. 49, Hungary	
^b Department of Mathematics, King's College,	10
The Strand, WC2R 2LS, London, U.K.	\bigcirc
^c Physics Department, P.O. Box 248046, University of Miami,	(,)
Coral Gables, FL 33124, U.S.A.	00
^d Institute for Theoretical Physics, Roland Eötvös University,	
1117 Budapest, Pázmány s. 1/A Hungary	\sim
^e Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,	\bigcirc
IDIC Have Tom Crofon Windhard 6 10/00 Donlin Commany	\bigcirc

Pohang 2008

Pohang 2014

Natal 2012

$\{1, 1, 10, 14, 14, 21, 30, 30\}$

Degeneracies of a certain anisotropic integrable quantum spin chain

- A main aim of this talk is to explain such degeneracies
- Due to rich symmetries!

Outline

- I. Introduction
- 2. Symmetries & degeneracies of integrable spin chains
- 3. Generalization
 1802.04864
 + A. Retore

 1805.10144
 + R. Pimenta
- 4. Conclusions

I. Introduction

Key to quantum integrability:

Solution of Yang-Baxter equation (YBE)

 $R_{12}(u-v) R_{13}(u) R_{23}(v) = R_{23}(v) R_{13}(u) R_{12}(u-v)$

Classes of R-matrices:

• Rational invariant under Lie group G

Ex:
$$R(u) = \begin{pmatrix} u+i & 0 & 0 & 0 \\ 0 & u & i & 0 \\ \hline 0 & i & u & 0 \\ 0 & 0 & 0 & u+i \end{pmatrix}$$

$$G = SU(2)$$

"isotropic", XXX

 \bullet Trigonometric $\, \longleftrightarrow \,$ affine Lie algebra $\, \hat{g} \,$

Ex:
$$R(u) = \begin{pmatrix} \sinh(u+\eta) & 0 & 0 & 0 \\ 0 & \sinh(u) & \sinh(\eta) & 0 \\ \hline 0 & \sinh(\eta) & \sinh(u) & 0 \\ 0 & 0 & 0 & \sinh(u+\eta) \end{pmatrix} \quad \hat{g} = A_1^{(1)}$$
 "anisotropic", XXZ

 η : "anisotropy parameter"

XY/

• Elliptic

Ex:
$$R(u) = \begin{pmatrix} \sin(u+\eta) & 0 & 0 & k \sin(u+\eta) \sin(u) \sin(\eta) \\ 0 & \sin(u) & \sin(\eta) & 0 \\ \hline 0 & \sin(\eta) & \sin(u) & 0 \\ k \sin(u+\eta) \sin(u) \sin(\eta) & 0 & 0 & \sin(u+\eta) \end{pmatrix}$$

Uses of R-matrices:

- S-matrices of integrable quantum field theories in I + I dimensions
 Ex: sine-Gordon model
- Building blocks of I-dimensional integrable quantum spin chains

Ex: Heisenberg (XXX) spin chain XXX R-matrix \longrightarrow Hamiltonian: $H^{(1)} = \sum_{n=1}^{N} \vec{\sigma}_n \cdot \vec{\sigma}_{n+1}, \quad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$

N spin
$$\frac{1}{2}$$

- quantum many-body model
- integrable:

 $H^{(3)} = \dots$

$$H^{(2)} = \sum_{n=1}^{N} \vec{\sigma}_n \cdot (\vec{\sigma}_{n+1} \times \vec{\sigma}_{n+2})$$

$$\left[H^{(j)}, H^{(k)}\right] = 0$$

 \Rightarrow

solvable by Bethe ansatz

many applications

2. Symmetries and degeneracies of integrable spin chains

• Rational [easy!]

 \Rightarrow

R-matrix with symmetry G

spin chain has same symmetry $\ G$

Ex: Heisenberg (XXX) spin chain has symmetry SU(2)

Degeneracies in the spectrum are given by group theory

Ex: N=4

 $\begin{aligned} \mathsf{Clebsch-Gordan} \Rightarrow \ (\tfrac{1}{2} \otimes \tfrac{1}{2}) \otimes (\tfrac{1}{2} \otimes \tfrac{1}{2}) &= (\underline{0} \oplus \underline{1}) \otimes (\underline{0} \oplus \underline{1}) \\ &= 2 \cdot \underline{0} \oplus 3 \cdot \underline{1} \oplus \underline{2} \end{aligned}$

degeneracies $\{1, 1, 3, 3, 3, 5\}$

spin $s \rightarrow 2s+1$

2. Symmetries and degeneracies of integrable spin chains

- Trigonometric [not so easy!]
 - \hat{g} R-matrix

 \Rightarrow

periodic spin chain does *not* have any nice symmetry or degeneracy

Periodic boundary conditions break symmetry

To realize symmetry, we consider open spin chain

We insist that boundary conditions should preserve integrability

$$H = \sum_{n=1}^{N-1} \left[\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y + \frac{1}{2} (q+q^{-1}) \sigma_n^z \sigma_{n+1}^z \right] - \frac{1}{2} (q-q^{-1}) \left(\sigma_1^z - \sigma_N^z \right)$$

[Pasquier, Saleur 1990]

- anisotropy parameter q
- integrable
- quantum group symmetry

Quantum Group (QG) symmetry

$$[H, S^z] = 0 = [H, S^\pm]$$

$$S^{z} = \sum_{k=1}^{N} S_{k}^{z}, \qquad S_{k}^{z} = \frac{1}{2}\sigma_{k}^{z}$$

"coproducts"

$$S^{\pm} = \sum_{k=1}^{N} q^{-(S_1^z + \dots + S_{k-1}^z)} S_k^{\pm} q^{(S_{k+1}^z + \dots + S_N^z)}, \qquad S_k^{\pm} = \frac{1}{2} (\sigma_k^x \pm i\sigma_k^y)$$

 $[S^{z}, S^{\pm}] = \pm S^{\pm}, \qquad [S^{+}, S^{-}] = [2S^{z}]_{q}, \qquad [x]_{q} \equiv \frac{q^{x} - q^{-x}}{q - q^{-1}}$ $\to 2S^{z} \quad \text{for} \quad q \to 1$

For generic q, the degeneracies are the same as for isotropic!

3. Generalization

Key to *boundary* quantum integrability:

K-matrix (reflection matrix) $K^R(u) \sim$

Solution of boundary Yang-Baxter equation (BYBE)

 $R_{12}(u-v) K_1^R(u) R_{21}(u+v) K_2^R(v) = K_2^R(v) R_{12}(u+v) K_1^R(u) R_{21}(u-v)$

Let's consider integrable open spin chains constructed with:

• "trigonometric" R-matrix \iff affine Lie algebra \hat{g}

[Jimbo 1986, Kuniba 1991]

• diagonal K-matrix, depending on discrete parameter p [Lima-Santos 2006]

These spin chains have QG symmetry corresponding to removing $\mathbf{p}^{\rm th}$ node of Dynkin diagram of \hat{g}

[RIN, Retore 2018]

QG symmetry

$U_q(B_3)$

 $\begin{array}{l} \textbf{QG symmetry} \\ U_q(B_3) \\ U_q(B_2) \otimes U_q(C_1) \\ U_q(B_1) \otimes U_q(C_2) \end{array}$

QG symmetry $U_q(B_3)$ $U_q(B_2) \otimes U_q(C_1)$ $U_q(B_1) \otimes U_q(C_2)$ $U_q(C_3)$

Ex: $\hat{g} = C_4^{(1)}$	$0 1 2 3 4$ $ \Rightarrow 0 -0 -0 \neq 0$	QG symmetry
p = 0	0-0-0\$	$U_q(C_4)$
p = 1	0 0-0\$0	$U_q(C_3) \otimes U_q(C_1)$
p = 2	$\rightarrow 0 \qquad 0 \neq 0$	$U_q(C_2)\otimes U_q(C_2)$
p = 3	O >O−O O	$U_q(C_1) \otimes U_q(C_3)$
p = 4	(O > O−O−O	$U_q(C_4)$

Ex: $\hat{g} = C$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	QG symmetry
p =	0 O-O-O¢O	$U_q(C_4)$
p =	1 O O-O \Leftarrow O	$U_q(C_3) \otimes U_q(C_1)$
p =	$2 \qquad \bigcirc $	$U_q(C_2) \otimes U_q(C_2) \longrightarrow$
p =	3 0≯0−0 0	$U_q(C_1)\otimes U_q(C_3)$
p =	4 ○⇒○- ○-○	$U_q(C_4)$

Ex: $\hat{g} = C_4^{(1)}$	$) \qquad \begin{array}{c} 0 1 2 3 4 \\ \hline \rightarrow 0 -0 -0 4 \\ \hline \rightarrow 0 -0 4 \\ \hline \hline \rightarrow 0 -0 4 \\ \hline \hline$	QG symmetry		
p = 0	0-0-040	$U_q(C_4)$		
p = 1	0 0-040	$U_q(C_3)\otimes U_q(C_1)$		
p = 2	$\rightarrow 0 \rightarrow 0$	$U_q(C_2)\otimes U_q(C_2)$		
p = 3	O > O−O O	$U_q(C_1)\otimes U_q(C_3)$		
p = 4	0≠0-0-0	$U_q(C_4)$		
$\hat{g} = C_n^{(1)}$ duality symmetry $p \leftrightarrow n - p$				
	self-duality $p = \frac{n}{2}$	$n = \operatorname{even}$		

p = 0

3

QG symmetry

 $U_q(C_3)$

p = 0

QG symmetry

 $U_q(C_3)$

Ex: $\hat{g} = A_5^{(2)}$

p = 0

QG symmetry

 $U_q(C_1) \otimes U_q(D_2)$

 $U_q(D_3)$

 $U_q(C_3)$

These symmetries explain the degeneracies!

Ex:
$$\hat{g} = A_{10}^{(2)}$$
 with $p = 3, N = 2$

By explicit diagonalization, find degeneracies:

 $\{1, 1, 10, 14, 14, 21, 30, 30\}$

QG symmetry $U_q(B_2) \otimes U_q(C_3)$

The "spin" at each site is in the representation $(5,1) \oplus (1,6)$

 $\mathsf{LieART} \Rightarrow$

 $((\mathbf{5},\mathbf{1})\oplus(\mathbf{1},\mathbf{6}))^{\otimes 2}=2(\mathbf{1},\mathbf{1})\oplus2(\mathbf{5},\mathbf{6})\oplus(\mathbf{10},\mathbf{1})\oplus(\mathbf{1},\mathbf{14})\oplus(\mathbf{14},\mathbf{1})\oplus(\mathbf{1},\mathbf{21})$

Exactly matches with observed degeneracies!

4. Conclusions

• Anisotropic open integrable spin chains constructed with

 $\left\{ \begin{array}{ll} {\rm trigonometric \ R-matrices} & \hat{g} \\ {\rm diagonal \ K-matrices, \ parameter \ p} \end{array} \right. } \right. \label{eq:generalized}$

exhibit rich patterns of degeneracies

• Due to rich symmetries:

QG: removing p^{th} node of Dynkin diagram of \hat{g} duality: $p \leftrightarrow n - p$ Z₂ • For $N \to \infty$ expect infinite-dimensional symmetry

 $U_q(\hat{g})$

(regardless of boundary conditions) [Jimbo & Miwa 1994, ...]

For finite N, the symmetry algebra is a finite-dimensional sub-algebra of $U_q(\hat{g})$

The maximal sub-algebras can be obtained by removing one node from Dynkin diagram

We have described the boundary conditions & integrable open spin chains with these maximal symmetries, for all non-exceptional \hat{g}

Happy 70th Birthday!

& many more birthdays & papers!