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Quantum electrodynamics is, for all practical purposes, exactly

solvable by perturbation theory.

Renormalized perturbation theory is an asymptotic expansions in

the fine structure constant α ∼ 1/137 which converges rapidly.

The amplitude for Moeller scattering, to one percent accuracy, is

given by
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However, there is a subtlety due to infrared divergences:
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Inclusive probability

= finite

Cancellation of infrared divergences is guaranteed by

unitarity of infrared cutoff S-matrix.
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Any scattering of charged particles is accompanied by the emission

of an infinite number of soft photons

¯
F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937)

D. R. Yennie, S. C. Frautschi, H. Suura, Ann. Phys. 13, 379 (1961)

soft photon theorems
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The infrared problem in perturbative quantum gravity mirrors that

in quantum electrodynamics, with the additional fact that all

particles, including the gravitons themselves carry gravitational

charge.

¯
S. Weinberg, Phys. Rev. 140, B516 (1965)

soft graviton theorem
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The soft photons which escape detection have polarizations and

directions of propagation.

How much information do they carry away?

G.Grignani,GWS, Phys. Lett. B 772 (2017) 699.

D.Carney,L.Chaurette,D.Neuenfeld, GWS,

Phys.Rev.Lett.119(2017)no.18,180502

Phys.Rev. D97 (2018) no.2, 025007

arXiv:1803.02370
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Information loss due to entanglement:

Composite system of two qubits: | >1 ⊗| >2

If subsystem | >2 becomes inaccessible, how much

information about | >1 do we lose?

Unentangled state: |ψ >= | ↑>1 ⊗| ↓>2

Entangled state: |ψ >= 1√
2
| ↑>1 ⊗| ↓>2 + 1√

2
| ↓>1 ⊗| ↑>2

Reduced density matrix: ρ = Tr2|ψ >< ψ|

Unentangled state: → ρ = | ↑>1<↑ |

Entangled state: → ρ = 1
2 | ↑>1<↑ |+ 1

2 | ↓>1<↓ | =

 1
2 0

0 1
2


Entanglement entropy: S = −Tr2ρ ln ρ

Unentangled state S = 0;

Entangled state S = 2 ln 2
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Scattering: in-states evolve to a superposition of in-states, with

coefficients the S-matrix elements

|α > →
∑
β,γ

S†
α,βγ |βγ >

where γ are soft photons.

|α >< α| →
∑
βγ

S†
α,βγ |βγ >

∑
β̃γ̃

< β̃, γ̃| Sβ̃γ̃,α

The S-matrix is infrared divergent.

Infrared divergences cancel from inclusive transition probabilities,

i.e. from the diagonal elements of the reduced density matrix

ρ =
∑
γ̂

< γ̂|

∑
βγ

S†
α,βγ |βγ >

∑
β̃γ̃

< β̃, γ̃| Sβ̃γ̃,α

 |γ̂ >

What about off-diagonal matrix elements of ρ?
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Entanglement entropy:

S = −Trρ ln ρ = −
∑
i

ρi ln ρi

Density matrix = pure state + trace...

ρ =
[
S†|α >< α|S

]
ββ′ +

Eigenvalues 0 and 1 perturbed by
(

e2

4π

)3

ln Λ
mph

The density matrix eigenvalues, ρi, are logarithmically infrared

divergent at order e6.
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Soft photon theorem applied to the density matrix:

Cutoffs:

mph photon mass as fundamental infrared cutoff

Λ1 =infrared cutoff in internal loops containing photon lines;

Λ2 =detector resolution

ET=total energy of soft photons

We need the hierarchy

αββ̃ >> Λ1,Λ2, ET >> mph
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The S-matrix is infrared divergent and it must be defined with a

fundamental cutoff mph. on the momenta of certain loops in

Feynman diagrams.

We can use soft photon theorem to show∑
γ

Θ(ET −
∑

Ei)
∏
i

Θ(Λ2 − |ki|)S
mph.†
βγ,α S

mph.

α,β̃γ

= S
mph.†
β,α S

mph.

α,β̃

(
Λ2

mph

)Ãαβ,αβ̃

F (ET )

F (∞) = 1

where

AX,Y = −
∑

n∈X,m′∈Y

enen′ηnη
′
n

8πβnn′
ln

[
1 + βnn′

1− βnn′

]
βnn′ = relative relativistic velocity
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The S-matrix is infrared divergent and it must be defined with a

fundamental cutoff mph. on the momenta of certain loops in

Feynman diagrams.

We can use soft photon theorem to show

S
mph.

α,β̃
= SΛ1

α,β̃

(
mph

Λ1

) 1
2Aαβ̃,αβ̃

where

AX,Y = −
∑

n∈X,m′∈Y

enen′ηnη
′
n

8πβnn′
ln

[
1 + βnn′

1− βnn′

]
βnn′ = relative relativistic velocity
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Soft photon theorem applied to the density matrix:

mph photon mass as fundamental infrared cutoff

Λ1 =infrared cutoff in internal loops; Λ2 =detector resolution

ET=total energy of soft photons

αββ̃ >> Λ1,Λ2, ET >> mph

We can use soft photon theorem to show

ρββ̃ = S†
βαSαβ̃

(
mph

Λ1

) 1
2Aαβ,αβ

(
mph

Λ1

) 1
2Aαβ̃,αβ̃

(
Λ2

mph

)Ãαβ,αβ̃

F (ET )

∼ m∆A
ph , ∆A = 1

2Aαβ,αβ + 1
2Aαβ̃,αβ̃ −Aαβ,αβ̃ ≥ 0

AX,Y = −
∑

n∈X,m′∈Y

enen′ηnη
′
n

8πβnn′
ln

[
1 + βnn′

1− βnn′

]
βnn′ =relative relativistic velocity
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• A generic density matrix element is proportional ∼ m∆A
ph , where

∆A ≥ 0 and depends on incoming and outgoing four-momenta.

• ∆A = 0 for diagonal elements of the density matrix (transition

probabilities)

• Generically, ∆A > 0 for off-diagonal elements

• The inequality is saturated, ∆A = 0, and density matrix

element nonzero only when the set of outgoing currents match:

β =

{
e1p

µ
1

2ω(p1)
, ...,

enp
µ
n

2ω(pn)

}
equals

β̃ =

{
ẽ1p̃

µ
1

2ω(p̃1)
, ...,

ẽñp̃
µ
ñ

2ω(p̃ñ)

}
• decoherence momentum eigenstates are pointer basis
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Example: Compton scattering

ρk′,q′;k̃′,q̃′ = m
e2

4π2 [ 1
2β ln 1+β

1−β−1]
ph , β =relative electron velocity

Exponent ≥ 0. Exponent = 0 only when β = 0.

As mph → 0, ρk′,q′;k̃′,q̃′ = 0 unless k′µ = k̃′µ.
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Implication: Diagonal elements of the density matrix are the

transition probabilities for QED processes.

ρk′,q′;k′,q′ = Probability of |k, q >→ |k′q′ >

Off-diagonal elements vanish ρk′,q′;k̃′,q̃′ = 0, k ̸= k̃′

Probability |k, q >→ 1√
2
|k′1, q′1 > + 1√

2
|k′2, q′2 >

equals
1
2 ·Probability |k, q >→ |k′1, q′1 >

+

1
2 ·Probability |k, q >→ |k′2, q′2 >

PallaFest June 2018



Infrared safe “dressed states”

For each charged particle, add a coherent state of soft photons:

|p >→ |p >D≡W (p)|p >

W (p) = exp

∑
ℓ

∫ Λ

0

d3k

2
√
k⃗2 +m2

ph

[
p · ϵℓ(k)
p · k

a†ℓ(k)−
p · ϵ∗ℓ (k)
p · k

aℓ(k)

]
mph << Λ << p k · ϵℓ(k) = 0

S̃αβ ≡D< α|S|β >D is infrared finite. Out-state can be a pure state

|α >D< α| → ρ̃ =
∑
β

S̃†
α,β |β >D

∑
β̃

D < β̃| S̃β̃,α

Trsoft photonsρ̃ =
(mph

Λ

)∆A
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Conclusions:

• The solution of the infrared problem in quantum

electrodynamics (and in perturbative quantum gravity) leads

to a fundamental decoherence of final states.

• There are other “infrared safe” approaches.

V.Chung, Phys.Rev.140, B1110 (1965); T.W.B.Kibble,

J.Math.Phys.9, 315 (1968); P.P.Kulish, L.D.Faddeev,

Theor.Math.Phys.4, 745 (1970); J.Ware, R.Saotome,

R.Akhoury, JHEP10, 159 (2013), 1308.6285. Same

decoherence when in-coming state is “infrared safe” coherent

state.

• Proper description of incoming wavepackets requires infrared

safe incoming states. Decoherence remains.

• Could such a decoherence be observable?
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What if the photon has a mass?

ρk′,q′;k̃′,q̃′ = (mph)
e2

4π2 [ 1
2β ln 1+β

1−β−1]

mph ∼ 10−32mel

∼ e−0.1β2

β << 1 , ∼
(
1− β

2

)0.1

β ∼ 1

Gravity is even more weakly coupled.
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Black hole information paradox

In a theory of quantum gravity, the collision of two high-energy

particles (i.e. gravitons) could produce a black hole which would

the evaporate by emitting Hawking radiation.

Pure quantum state of two incoming particles evolves to thermal

state of Hawking radiation.

|ψ >=
∑
E

|E, Ẽ > , ρ =
∑
E

e−βHE |E >< E|

Strominger’s idea: (A.Strominger, arXiv:1706.07143): soft

gravitons purify the Hawking radiation

|ψ >=
∑
E

|E, soft > , ρ = Trsoft|ψ >< ψ| =
∑
E

e−βHE |E >< E|

But |ψ >=
∑

E |E, soft, Ẽ >. Monogamy of entanglement.
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