Phase structure of *G*-spin chains – an informal overview –

Peter Vecsernyés partially joint works with Volkhard F. Müller and Balázs Megyeri

PallaFest - 14 June 2018 - ELTE

Content

G-spin (Hopf spin) chains

- Motivation for the algebraic approach
- 'Thermodynamic limit' of local algebras of quantum observables

Phase structure

- Definition of phase equivalence on pure states
- Classification of phases
- Illustration: phases on ferromagnetic states

伺 と く ヨ と く ヨ と

G-spin chains and well-known examples

G-spin chain (\subset Hopf spin chain): quantum chain based on an arbitrary finite group *G* (on dual pair of finite dimensional Hopf algebras *H*, \hat{H} , e.g. $H = \mathbb{C}G$ group algebra, $\hat{H} = \mathbb{C}(G)$ algebra of functions on *G*)

 $G = \mathbb{Z}_2$ – Ising quantum chain

$$H_{\textit{lsing}}(J,L) := \sum_{i=1}^{L-1} J \sigma_i^z \sigma_{i+1}^z + \sum_{i=1}^L \sigma_i^x, \quad J \in \mathbb{R}$$

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2 - \text{spin} \cdot \frac{1}{2} XYZ$ quantum chain

 $H_{XYZ}(\mathbf{J},L) := \sum_{i=1}^{L-1} J_x \sigma_i^x \sigma_{i+1}^x + J_y \sigma_i^y \sigma_{i+1}^y + J_z \sigma_i^z \sigma_{i+1}^z, \quad \mathbf{J} = (J_x, J_y, J_z) \in \mathbb{R}^3$

given by Hamiltonians on $\mathcal{H}_L := \otimes_1^L \mathbb{C}^2$

G-spin chains and well-known examples

G-spin chain (\subset Hopf spin chain): quantum chain based on an arbitrary finite group *G* (on dual pair of finite dimensional Hopf algebras *H*, \hat{H} , e.g. $H = \mathbb{C}G$ group algebra, $\hat{H} = \mathbb{C}(G)$ algebra of functions on *G*)

 $G = \mathbb{Z}_2$ – Ising quantum chain

$$H_{lsing}(J,L) := \sum_{i=1}^{L-1} J \sigma_i^z \sigma_{i+1}^z + \sum_{i=1}^L \sigma_i^x, \quad J \in \mathbb{R}$$

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2 - \text{spin} \cdot \frac{1}{2} XYZ$ quantum chain

 $H_{XYZ}(\mathbf{J},L) := \sum_{i=1}^{L-1} J_x \sigma_i^x \sigma_{i+1}^x + J_y \sigma_i^y \sigma_{i+1}^y + J_z \sigma_i^z \sigma_{i+1}^z, \quad \mathbf{J} = (J_x, J_y, J_z) \in \mathbb{R}^3$

given by Hamiltonians on $\mathcal{H}_L := \otimes_1^L \mathbb{C}^2$

G-spin chains and well-known examples

G-spin chain (\subset Hopf spin chain): quantum chain based on an arbitrary finite group *G* (on dual pair of finite dimensional Hopf algebras *H*, \hat{H} , e.g. $H = \mathbb{C}G$ group algebra, $\hat{H} = \mathbb{C}(G)$ algebra of functions on *G*)

 $G = \mathbb{Z}_2$ – Ising quantum chain

$$egin{aligned} \mathcal{H}_{\mathit{lsing}}(J,L) := \sum_{i=1}^{L-1} J \sigma_i^z \sigma_{i+1}^z + \sum_{i=1}^L \sigma_i^x, \quad J \in \mathbb{R} \end{aligned}$$

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ – spin- $\frac{1}{2}$ *XYZ* quantum chain

$$H_{XYZ}(\mathbf{J},L) := \sum_{i=1}^{L-1} J_x \sigma_i^x \sigma_{i+1}^x + J_y \sigma_i^y \sigma_{i+1}^y + J_z \sigma_i^z \sigma_{i+1}^z, \quad \mathbf{J} = (J_x, J_y, J_z) \in \mathbb{R}^3$$

given by Hamiltonians on $\mathcal{H}_L := \otimes_1^L \mathbb{C}^2$

G-spin chains and well-known examples

G-spin chain (\subset Hopf spin chain): quantum chain based on an arbitrary finite group *G* (on dual pair of finite dimensional Hopf algebras *H*, \hat{H} , e.g. $H = \mathbb{C}G$ group algebra, $\hat{H} = \mathbb{C}(G)$ algebra of functions on *G*)

 $G = \mathbb{Z}_2$ – Ising quantum chain

$$egin{aligned} \mathcal{H}_{\mathit{lsing}}(J,L) := \sum_{i=1}^{L-1} J \sigma_i^z \sigma_{i+1}^z + \sum_{i=1}^L \sigma_i^x, \quad J \in \mathbb{R} \end{aligned}$$

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ – spin- $\frac{1}{2}$ *XYZ* quantum chain

$$H_{XYZ}(\mathbf{J},L) := \sum_{i=1}^{L-1} J_x \sigma_i^x \sigma_{i+1}^x + J_y \sigma_i^y \sigma_{i+1}^y + J_z \sigma_i^z \sigma_{i+1}^z, \quad \mathbf{J} = (J_x, J_y, J_z) \in \mathbb{R}^3$$

given by Hamiltonians on $\mathcal{H}_L:=\otimes_1^L\mathbb{C}^2$

- Hamiltonian formulation of quantum chains is inspired by QM: no inequivalent representations of the quantum observables (CCR in QM), only the spectrum of the Hamiltonian is interesting
- however parameter dependent Hamiltonians are given here to describe the expected 'essentially different' behaviour of ground states in the $L \rightarrow \infty$ thermodynamic limit (TL), i.e. the expected existence of phases in the TL in the parameter space (phases: not only unitary, but 'essentially inequivalent' representations of quantum observables)
- difficulties in rigorous derivation and classification of phases due to parallel TL of algebra of quantum observables (Hamiltonians) and (ground) states on them
- circumvention: decompose the TL into two consecutive steps

 TL of local algebras of quantum observables,
 i.e. C*-inductive limit leading to the A ≡ A_H quasilocal observable C*-algebra of the given quantum chain
 examine the pure state space of A leading to irreps of A S(A) := {ω: A → C | ω positive linear normalized pure}

- Hamiltonian formulation of quantum chains is inspired by QM: no inequivalent representations of the quantum observables (CCR in QM), only the spectrum of the Hamiltonian is interesting
- however parameter dependent Hamiltonians are given here to describe the expected 'essentially different' behaviour of ground states in the $L \rightarrow \infty$ thermodynamic limit (TL), i.e. the expected existence of phases in the TL in the parameter space (phases: not only unitary, but 'essentially inequivalent' representations of quantum observables)
- difficulties in rigorous derivation and classification of phases due to parallel TL of algebra of quantum observables (Hamiltonians) and (ground) states on them
- circumvention: decompose the TL into two consecutive steps

 TL of local algebras of quantum observables,
 i.e. C*-inductive limit leading to the A ≡ A_H quasilocal observable C*-algebra of the given quantum chain
 examine the pure state space of A leading to irreps of A S(A) := {ω: A → C | ω positive linear normalized pure}

- Hamiltonian formulation of quantum chains is inspired by QM: no inequivalent representations of the quantum observables (CCR in QM), only the spectrum of the Hamiltonian is interesting
- however parameter dependent Hamiltonians are given here to describe the expected 'essentially different' behaviour of ground states in the $L \rightarrow \infty$ thermodynamic limit (TL), i.e. the expected existence of phases in the TL in the parameter space (phases: not only unitary, but 'essentially inequivalent' representations of quantum observables)
- difficulties in rigorous derivation and classification of phases due to parallel TL of algebra of quantum observables (Hamiltonians) and (ground) states on them
- circumvention: decompose the TL into two consecutive steps

 TL of local algebras of quantum observables,
 i.e. C*-inductive limit leading to the A ≡ A_H quasilocal observable C*-algebra of the given quantum chain
 examine the pure state space of A leading to irreps of A S(A) := {ω: A → C | ω positive linear normalized pure}

- Hamiltonian formulation of quantum chains is inspired by QM: no inequivalent representations of the quantum observables (CCR in QM), only the spectrum of the Hamiltonian is interesting
- however parameter dependent Hamiltonians are given here to describe the expected 'essentially different' behaviour of ground states in the $L \rightarrow \infty$ thermodynamic limit (TL), i.e. the expected existence of phases in the TL in the parameter space (phases: not only unitary, but 'essentially inequivalent' representations of quantum observables)
- difficulties in rigorous derivation and classification of phases due to parallel TL of algebra of quantum observables (Hamiltonians) and (ground) states on them

- Hamiltonian formulation of quantum chains is inspired by QM: no inequivalent representations of the quantum observables (CCR in QM), only the spectrum of the Hamiltonian is interesting
- however parameter dependent Hamiltonians are given here to describe the expected 'essentially different' behaviour of ground states in the $L \rightarrow \infty$ thermodynamic limit (TL), i.e. the expected existence of phases in the TL in the parameter space (phases: not only unitary, but 'essentially inequivalent' representations of quantum observables)
- difficulties in rigorous derivation and classification of phases due to parallel TL of algebra of quantum observables (Hamiltonians) and (ground) states on them
- circumvention: decompose the TL into two consecutive steps
 TL of local algebras of quantum observables,
 i.e. C*-inductive limit leading to the A ≡ A_H quasilocal observable C*-algebra of the given quantum chain

 $\mathcal{S}(\mathcal{A}) := \{\omega : \mathcal{A} \to \mathbb{C} \mid \omega \text{ positive linear normalized pure}\}$

- Hamiltonian formulation of quantum chains is inspired by QM: no inequivalent representations of the quantum observables (CCR in QM), only the spectrum of the Hamiltonian is interesting
- however parameter dependent Hamiltonians are given here to describe the expected 'essentially different' behaviour of ground states in the $L \rightarrow \infty$ thermodynamic limit (TL), i.e. the expected existence of phases in the TL in the parameter space (phases: not only unitary, but 'essentially inequivalent' representations of quantum observables)
- difficulties in rigorous derivation and classification of phases due to parallel TL of algebra of quantum observables (Hamiltonians) and (ground) states on them
- circumvention: decompose the TL into two consecutive steps

 TL of local algebras of quantum observables,
 c. C*-inductive limit leading to the A ≡ A_H quasilocal observable C*-algebra of the given quantum chain
 examine the pure state space of A leading to irreps of A S(A) := {ω: A → C | ω positive linear normalized pure}

伺 ト イヨ ト イヨ ト

Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model generated by monoms in the corresponding local Hamiltonian $\mathcal{A}(L) := \langle \text{ monoms in } H(L) \rangle_{C^*}, \qquad \mathcal{A} := \overline{\bigcup_{L \nearrow \mathbb{Z}} \mathcal{A}(L)}^{C^*}$ • Ising chain on $\frac{1}{2}\mathbb{Z}$

 $\begin{array}{ll} \mathcal{A}_{i} \coloneqq \langle A_{i} \coloneqq \sigma_{i}^{x} \rangle_{C^{*}} \simeq M_{1} \oplus M_{1} \simeq \mathbb{CZ}_{2}, & i \in \mathbb{Z} \\ \mathcal{A}_{i+\frac{1}{2}} \equiv \langle A_{i+\frac{1}{2}} \coloneqq \sigma_{i}^{z} \sigma_{i+1}^{z} \rangle_{C^{*}} \simeq M_{1} \oplus M_{1} \simeq \mathbb{C}(\mathbb{Z}_{2}), & i \in \mathbb{Z} \end{array}$

 $A_i A_j = \begin{cases} -A_j A_i, & |i-j| = \frac{1}{2}, \\ A_j A_i, & \text{otherwise.} \end{cases} \Rightarrow \text{crossed products of n.n. algebras}$

 $\mathcal{A}(L) := \langle A_i, i \in L \subset \frac{1}{2}\mathbb{Z} \rangle_{C^*} = \mathcal{A}_j \rtimes \mathcal{A}_{j+\frac{1}{2}} \rtimes \ldots \rtimes \mathcal{A}_k, \ L = [j, k]$

inductive limit C*-algebra: two-sided iterated crossed products

 $\mathcal{A}_{\textit{lsing}} := \ldots \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \mathbb{C}(\mathbb{Z}_2) \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \mathbb{C}(\mathbb{Z}_2) \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \ldots$

Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model generated by monoms in the corresponding local Hamiltonian

 $\mathcal{A}(L) := \langle \text{ monoms in } H(L) \rangle_{C^*}, \qquad \mathcal{A} := \overline{\bigcup_{L \nearrow \mathbb{Z}} \mathcal{A}(L)}^{C^*}$ • Ising chain on $\frac{1}{2}\mathbb{Z}$

$$\begin{aligned} \mathcal{A}_{i} &= \langle \mathcal{A}_{i} := \sigma_{i}^{x} \rangle_{C^{*}} \simeq \mathcal{M}_{1} \oplus \mathcal{M}_{1} \simeq \mathbb{CZ}_{2}, \qquad i \in \mathbb{Z} \\ \mathcal{A}_{i+\frac{1}{2}} &= \langle \mathcal{A}_{i+\frac{1}{2}} := \sigma_{i}^{z} \sigma_{i+1}^{z} \rangle_{C^{*}} \simeq \mathcal{M}_{1} \oplus \mathcal{M}_{1} \simeq \mathbb{C}(\mathbb{Z}_{2}), \qquad i \in \mathbb{Z} \end{aligned}$$

 $A_i A_j = \begin{cases} -A_j A_i, & |i - j| = \frac{1}{2}, \\ A_j A_i, & \text{otherwise.} \end{cases} \Rightarrow \text{crossed products of n.n. algebras}$

 $\mathcal{A}(L) := \langle A_i, i \in L \subset \frac{1}{2}\mathbb{Z} \rangle_{C^*} = \mathcal{A}_j \rtimes \mathcal{A}_{j+\frac{1}{2}} \rtimes \ldots \rtimes \mathcal{A}_k, \ L = [j, k]$

inductive limit C*-algebra: two-sided iterated crossed products

 $\mathcal{A}_{\textit{lsing}} := \ldots \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \mathbb{C}(\mathbb{Z}_2) \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \mathbb{C}(\mathbb{Z}_2) \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \ldots$

伺 ト イ ヨ ト イ ヨ ト ー

Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model generated by monoms in the corresponding local Hamiltonian

 $\mathcal{A}(L) := \langle \text{ monoms in } H(L) \rangle_{C^*}, \qquad \mathcal{A} := \overline{\bigcup_{L \nearrow \mathbb{Z}} \mathcal{A}(L)}^{C^*}$ • Ising chain on $\frac{1}{2}\mathbb{Z}$

$$\begin{array}{ll} \mathcal{A}_{i} = \langle \mathcal{A}_{i} := \sigma_{i}^{x} \rangle_{\mathcal{C}^{*}} \simeq \mathcal{M}_{1} \oplus \mathcal{M}_{1} \simeq \mathbb{CZ}_{2}, & i \in \mathbb{Z} \\ \mathcal{A}_{i+\frac{1}{2}} = \langle \mathcal{A}_{i+\frac{1}{2}} := \sigma_{i}^{z} \sigma_{i+1}^{z} \rangle_{\mathcal{C}^{*}} \simeq \mathcal{M}_{1} \oplus \mathcal{M}_{1} \simeq \mathbb{C}(\mathbb{Z}_{2}), & i \in \mathbb{Z} \end{array}$$

 $A_i A_j = \begin{cases} -A_j A_i, & |i - j| = \frac{1}{2}, \\ A_j A_i, & \text{otherwise.} \end{cases} \Rightarrow \text{crossed products of n.n. algebras}$

 $\mathcal{A}(L) := \langle A_i, i \in L \subset \frac{1}{2}\mathbb{Z} \rangle_{\mathcal{C}^*} = \mathcal{A}_j \rtimes \mathcal{A}_{j+\frac{1}{2}} \rtimes \ldots \rtimes \mathcal{A}_k, \ L = [j, k]$

inductive limit C*-algebra: two-sided iterated crossed products

 $\mathcal{A}_{\textit{lsing}} := \ldots \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \mathbb{C}(\mathbb{Z}_2) \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \mathbb{C}(\mathbb{Z}_2) \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \ldots$

Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model generated by monoms in the corresponding local Hamiltonian

 $\mathcal{A}(L) := \langle \text{ monoms in } H(L) \rangle_{C^*}, \qquad \mathcal{A} := \overline{\bigcup_{L \nearrow \mathbb{Z}} \mathcal{A}(L)}^{C^*}$ • Ising chain on $\frac{1}{2}\mathbb{Z}$

$$\begin{array}{ll} \mathcal{A}_{i} = \langle \mathcal{A}_{i} := \sigma_{i}^{x} \rangle_{\mathcal{C}^{*}} \simeq \mathcal{M}_{1} \oplus \mathcal{M}_{1} \simeq \mathbb{CZ}_{2}, & i \in \mathbb{Z} \\ \mathcal{A}_{i+\frac{1}{2}} = \langle \mathcal{A}_{i+\frac{1}{2}} := \sigma_{i}^{z} \sigma_{i+1}^{z} \rangle_{\mathcal{C}^{*}} \simeq \mathcal{M}_{1} \oplus \mathcal{M}_{1} \simeq \mathbb{C}(\mathbb{Z}_{2}), & i \in \mathbb{Z} \end{array}$$

 $A_i A_j = \begin{cases} -A_j A_i, & |i - j| = \frac{1}{2}, \\ A_j A_i, & \text{otherwise.} \end{cases} \Rightarrow \text{crossed products of n.n. algebras}$

$$\mathcal{A}(L) := \langle A_i, i \in L \subset \frac{1}{2}\mathbb{Z} \rangle_{C^*} = \mathcal{A}_j \rtimes \mathcal{A}_{j+\frac{1}{2}} \rtimes \ldots \rtimes \mathcal{A}_k, \ L = [j, k]$$

inductive limit C*-algebra: two-sided iterated crossed products

$$\mathcal{A}_{\textit{Ising}} := \ldots \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \mathbb{C}(\mathbb{Z}_2) \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \mathbb{C}(\mathbb{Z}_2) \rtimes \mathbb{C}\mathbb{Z}_2 \rtimes \ldots$$

Relation of Hamiltonians and quasilocal algebras

• spin- $\frac{1}{2}$ XYZ chain on \mathbb{Z}

$$\begin{array}{l} \mathcal{A}_{i} = \langle A_{i} := \sigma_{i}^{x} \sigma_{i+1}^{x}, B_{i} := \sigma_{i}^{y} \sigma_{i+1}^{y} \rangle_{C^{*}} \simeq \oplus_{1}^{4} M_{1} \simeq \mathbb{C} \cdot \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \ i \ \text{even} \\ \mathcal{A}_{i} = \langle B_{i} := \sigma_{i}^{x} \sigma_{i+1}^{x}, A_{i} := \sigma_{i}^{y} \sigma_{i+1}^{y} \rangle_{C^{*}} \simeq \oplus_{1}^{4} M_{1} \simeq \mathbb{C}(\mathbb{Z}_{2} \times \mathbb{Z}_{2}), \ i \ \text{odd} \end{array}$$

$$[A_i, B_j] = 0, \quad A_i A_j / B_i B_j = \begin{cases} -A_j A_i / B_j B_i, & |i - j| = 1, \\ A_j A_i / B_j B_i, & \text{otherwise.} \end{cases}$$

 $\mathcal{A}(L) := \langle A_i, B_i; i \in L \subset \mathbb{Z} \rangle_{C^*} = \mathcal{A}_j \rtimes \mathcal{A}_{j+1} \rtimes \ldots \rtimes \mathcal{A}_k, \ L = [j, k]$

inductive limit C*-algebra: two-sided iterated crossed products

 $\mathcal{A}_{XYZ} := \ldots \rtimes \mathbb{C} \cdot \mathbb{Z}_2 \times \mathbb{Z}_2 \rtimes \mathbb{C} (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{C} \cdot \mathbb{Z}_2 \times \mathbb{Z}_2 \rtimes \ldots$

Quasilocal algebra of Hopf spin chains on $\frac{1}{2}\mathbb{Z}$

General case without prescribed Hamiltonians

- dual pair of finite dimensional Hopf *C**-algebras: H,\hat{H} case of *G*-spin chains: $H = \mathbb{C}G, \hat{H} = \mathbb{C}(G)$
- quasilocal algebra: $\mathcal{A} \equiv \mathcal{A}_H := \dots H \rtimes \hat{H} \rtimes H \rtimes \hat{H} \rtimes \dots$

two-sided iterated crossed products wrt left Sweedler actions, $|{\cal H}|^\infty\text{-type}$ UHF $C^*\text{-algebra}$

describing models given by any local Hamiltonian in $\mathcal{A}(L)$

Important properties:

• algebraic Haag duality: $\mathcal{A}(L')' \cap \mathcal{A} = \mathcal{A}(L), L \subset \frac{1}{2}\mathbb{Z}$ finite $L' \equiv [i,j]' := \frac{1}{2}\mathbb{Z} \setminus \{i - \frac{1}{2}, i, \dots, j, j + \frac{1}{2}\}$ causal complement \Leftrightarrow local algebras on causally separated regions commute and local algebras saturate the commutants

• integer translation covariance

 $\mathbb{Z} \ni n \mapsto \tau_n \in \operatorname{Aut} \mathcal{A} : \quad \tau_n(\mathcal{A}_i(h)) = \mathcal{A}_{i+n}(h), i \in \frac{1}{2}\mathbb{Z}$

Quasilocal algebra of Hopf spin chains on $\frac{1}{2}\mathbb{Z}$

General case without prescribed Hamiltonians

- dual pair of finite dimensional Hopf *C*^{*}-algebras: H,\hat{H} case of *G*-spin chains: $H = \mathbb{C}G, \hat{H} = \mathbb{C}(G)$
- quasilocal algebra: $\mathcal{A} \equiv \mathcal{A}_H := \dots H \rtimes \hat{H} \rtimes H \rtimes \hat{H} \rtimes \dots$

two-sided iterated crossed products wrt left Sweedler actions, $|H|^{\infty}$ -type UHF *C**-algebra describing models given by any local Hamiltonian in $\mathcal{A}(L)$

Important properties:

• algebraic Haag duality: $\mathcal{A}(L')' \cap \mathcal{A} = \mathcal{A}(L), L \subset \frac{1}{2}\mathbb{Z}$ finite $L' \equiv [i,j]' := \frac{1}{2}\mathbb{Z} \setminus \{i - \frac{1}{2}, i, \dots, j, j + \frac{1}{2}\}$ causal complement \Leftrightarrow local algebras on causally separated regions commute and local algebras saturate the commutants

• integer translation covariance

 $\mathbb{Z} \ni n \mapsto \tau_n \in \operatorname{Aut} \mathcal{A} : \quad \tau_n(\mathcal{A}_i(h)) = \mathcal{A}_{i+n}(h), i \in \frac{1}{2}\mathbb{Z}$

Quasilocal algebra of Hopf spin chains on $\frac{1}{2}\mathbb{Z}$

General case without prescribed Hamiltonians

- dual pair of finite dimensional Hopf *C*^{*}-algebras: H,\hat{H} case of *G*-spin chains: $H = \mathbb{C}G, \hat{H} = \mathbb{C}(G)$
- quasilocal algebra: $\mathcal{A} \equiv \mathcal{A}_H := \dots H \rtimes \hat{H} \rtimes H \rtimes \hat{H} \rtimes \dots$

two-sided iterated crossed products wrt left Sweedler actions, $|H|^{\infty}$ -type UHF *C**-algebra describing models given by any local Hamiltonian in $\mathcal{A}(L)$

Important properties:

• algebraic Haag duality: $\mathcal{A}(L')' \cap \mathcal{A} = \mathcal{A}(L), L \subset \frac{1}{2}\mathbb{Z}$ finite $L' \equiv [i, j]' := \frac{1}{2}\mathbb{Z} \setminus \{i - \frac{1}{2}, i, \dots, j, j + \frac{1}{2}\}$ causal complement \Leftrightarrow local algebras on causally separated regions commute and local algebras saturate the commutants

• integer translation covariance $\mathbb{Z} \ni n \mapsto \tau_n \in \operatorname{Aut} \mathcal{A} : \quad \tau_n(\mathcal{A}_i(h)) = \mathcal{A}_{i+n}(h), i \in \frac{1}{2}\mathbb{Z}$

Quasilocal algebra of Hopf spin chains on $\frac{1}{2}\mathbb{Z}$

General case without prescribed Hamiltonians

- dual pair of finite dimensional Hopf *C*^{*}-algebras: H,\hat{H} case of *G*-spin chains: $H = \mathbb{C}G, \hat{H} = \mathbb{C}(G)$
- quasilocal algebra: $\mathcal{A} \equiv \mathcal{A}_H := \dots H \rtimes \hat{H} \rtimes H \rtimes \hat{H} \rtimes \dots$

two-sided iterated crossed products wrt left Sweedler actions, $|H|^{\infty}$ -type UHF *C**-algebra describing models given by any local Hamiltonian in $\mathcal{A}(L)$

Important properties:

• algebraic Haag duality: $\mathcal{A}(L')' \cap \mathcal{A} = \mathcal{A}(L), L \subset \frac{1}{2}\mathbb{Z}$ finite $L' \equiv [i, j]' := \frac{1}{2}\mathbb{Z} \setminus \{i - \frac{1}{2}, i, \dots, j, j + \frac{1}{2}\}$ causal complement \Leftrightarrow local algebras on causally separated regions commute and local algebras saturate the commutants

• integer translation covariance

$$\mathbb{Z} \ni n \mapsto \tau_n \in \operatorname{Aut} \mathcal{A} : \quad \tau_n(\mathcal{A}_i(h)) = \mathcal{A}_{i+n}(h), i \in \frac{1}{2}\mathbb{Z}$$

Indication for different phases on $\mathcal{S}(\mathcal{A})$

idea: emergence of different sets of local order/disorder operators in the irreps $\pi_{\omega} : \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\omega})$ induced by pure states $\omega \in \mathcal{S}(\mathcal{A})$

having non-zero 'vacuum' expectation values $\Omega \in \mathcal{H}_{\omega}, \{B \in \mathcal{B}(\mathcal{H}_{\omega})\} : (\Omega, B\Omega) \neq 0$

math: emergence of inequivalent local algebra extensions of $\pi_{\omega}(\mathcal{A})$ in the irreps $\pi_{\omega} \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\omega})$ induced by pure states $\omega \in \mathcal{S}(\mathcal{A})$ given by the dual observable algebra \mathcal{A}_{ω}^{d}

$$\mathcal{A}^{d}_{\omega}(L) := \pi_{\omega}(\mathcal{A}(L'))' \cap \mathcal{B}(\mathcal{H}_{\omega}) \supseteq \pi_{\omega}(\mathcal{A}(L'))' \cap \pi_{\omega}(\mathcal{A}) = \pi_{\omega}(\mathcal{A}(L)),$$
$$\mathcal{A}^{d}_{\omega} := \bigcup_{L \nearrow \frac{1}{2}\mathbb{Z}} \mathcal{A}^{d}_{\omega}(L)^{C^{*}} \subseteq \mathcal{B}(\mathcal{H}_{\omega})$$

measuring inequivalent violations of Haag duality in the irreps

Indication for different phases on $\mathcal{S}(\mathcal{A})$

idea: emergence of different sets of local order/disorder operators in the irreps $\pi_{\omega} : \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\omega})$ induced by pure states $\omega \in \mathcal{S}(\mathcal{A})$

having non-zero 'vacuum' expectation values $\Omega \in \mathcal{H}_{\omega}, \{B \in \mathcal{B}(\mathcal{H}_{\omega})\} : (\Omega, B\Omega) \neq 0$

math: emergence of inequivalent local algebra extensions of $\pi_{\omega}(\mathcal{A})$ in the irreps $\pi_{\omega} \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\omega})$ induced by pure states $\omega \in \mathcal{S}(\mathcal{A})$ given by the dual observable algebra \mathcal{A}^{d}_{ω}

$$\begin{array}{lll} \mathcal{A}^{d}_{\omega}(L) & := & \pi_{\omega}(\mathcal{A}(L'))' \cap \mathcal{B}(\mathcal{H}_{\omega}) \supseteq \pi_{\omega}(\mathcal{A}(L'))' \cap \pi_{\omega}(\mathcal{A}) = \pi_{\omega}(\mathcal{A}(L)), \\ \mathcal{A}^{d}_{\omega} & := & \overline{\bigcup_{L \nearrow \frac{1}{2}\mathbb{Z}}} \mathcal{A}^{d}_{\omega}(L)^{C^{*}} \subseteq \mathcal{B}(\mathcal{H}_{\omega}) \end{array}$$

measuring inequivalent violations of Haag duality in the irreps

Definition of phases on $\mathcal{S}(\mathcal{A})$

phase equivalence of $\omega, \omega' \in \mathcal{S}(\mathcal{A})$: $\omega \sim \omega'$ if $\exists \phi \colon \mathcal{A}^d_{\omega} \to \mathcal{A}^d_{\omega'}$ *-algebra isomorphism such that

$$\phi(\pi_{\omega}(A)) = \pi_{\omega'}(A), \ A \in \mathcal{A}.$$

phases on $\mathcal{S}(\mathcal{A})$: equivalence classes wrt the equivalence relation ~ translation invariant phases: restriction of phases to translation invariant pure states $\mathcal{S}_0(\mathcal{A}) := \{\omega \in \mathcal{S}(\mathcal{A}) | \omega = \omega \circ \tau_1\}$

• phase equivalence \sim is strictly weaker than unitary equivalence $\simeq \pi_{\omega} \simeq_U \pi_{\omega'} \Rightarrow \omega \sim \omega'$, because $\phi := \operatorname{Ad} U$, but expectation values of $B, \phi(B), B \in \mathcal{A}^d_{\omega}$ can be different

Definition of phases on $\mathcal{S}(\mathcal{A})$

phase equivalence of $\omega, \omega' \in \mathcal{S}(\mathcal{A})$: $\omega \sim \omega'$ if $\exists \phi \colon \mathcal{A}^d_{\omega} \to \mathcal{A}^d_{\omega'}$ *-algebra isomorphism such that

$$\phi(\pi_{\omega}(A)) = \pi_{\omega'}(A), \ A \in \mathcal{A}.$$

phases on $\mathcal{S}(\mathcal{A})$: equivalence classes wrt the equivalence relation ~ translation invariant phases: restriction of phases to translation invariant pure states $\mathcal{S}_0(\mathcal{A}) := \{\omega \in \mathcal{S}(\mathcal{A}) | \omega = \omega \circ \tau_1\}$

phase equivalence ~ is strictly weaker than unitary equivalence ≃
 π_ω ≃_U π_{ω'} ⇒ ω ~ ω', because φ := Ad U,
 but expectation values of B, φ(B), B ∈ A^d_ω can be different

< □ > < 同 > < 回 > < 回

Algebraic structures emerging in phase classification

Combination of two algebraic structures generalized from finite groups \rightarrow group algebras \rightarrow Hopf algebras:

- 1. subgroup lattice of a finite group G
- ightarrow special sublattice of subalgebras in $\mathbb{C}G$:
- subgroup algebra lattice of $\mathbb{C}G$
- \Leftrightarrow lattice of left (= right) coideal subalgebras of $\mathbb{C}G$
- ightarrow lattice of left (right) coideal subalgebras of a Hopf algebra H

2. projective representation U_{α} : $G \to \operatorname{Aut} V$ of a finite group G $U(g)U(h) = \alpha(g, h)U(gh), \alpha(g, h) \in \mathbb{C}_1$ satisfying 2-cocycle condition, cohomology class of 2-cocycles: $\alpha \sim \alpha'$ if $\exists \beta \in \mathbb{C}_1(G)$ such that $\alpha'(g, h) = \beta(g)\beta(h)/\beta(gh)\alpha(g, h)$

- \rightarrow (representation of the) one-sided deformed group algebra $\mathbb{C}G_{\alpha}$ by a coproduct cocycle α of $\mathbb{C}(G)$
- \rightarrow one-sided deformed finite dimensional Hopf algebra H_{α} by a right (left) coproduct cocycle α in the dual Hopf algebra \hat{H}

• • • • • • • • • • • • •

Algebraic structures emerging in phase classification

Combination of two algebraic structures generalized from

finite groups \rightarrow group algebras \rightarrow Hopf algebras:

- 1. subgroup lattice of a finite group G
- ightarrow special sublattice of subalgebras in $\mathbb{C}G$:
- subgroup algebra lattice of $\mathbb{C}G$
- \Leftrightarrow lattice of left (= right) coideal subalgebras of $\mathbb{C}G$
- \rightarrow lattice of left (right) coideal subalgebras of a Hopf algebra H

2. projective representation U_{α} : $G \to \operatorname{Aut} V$ of a finite group G $U(g)U(h) = \alpha(g, h)U(gh), \alpha(g, h) \in \mathbb{C}_1$ satisfying 2-cocycle condition, cohomology class of 2-cocycles: $\alpha \sim \alpha'$ if $\exists \beta \in \mathbb{C}_1(G)$ such that $\alpha'(g, h) = \beta(g)\beta(h)/\beta(gh)\alpha(g, h)$

- \rightarrow (representation of the) one-sided deformed group algebra $\mathbb{C}G_{\alpha}$ by a coproduct cocycle α of $\mathbb{C}(G)$
- \rightarrow one-sided deformed finite dimensional Hopf algebra H_{α} by a right (left) coproduct cocycle α in the dual Hopf algebra \hat{H}

Algebraic structures emerging in phase classification

Combination of two algebraic structures generalized from

finite groups \rightarrow group algebras \rightarrow Hopf algebras:

- 1. subgroup lattice of a finite group G
- ightarrow special sublattice of subalgebras in $\mathbb{C} G$:
- subgroup algebra lattice of $\mathbb{C} G$
- $\Leftrightarrow \text{ lattice of left (= right) coideal subalgebras of } \mathbb{C} G$
- \rightarrow lattice of left (right) coideal subalgebras of a Hopf algebra H

2. projective representation U_{α} : $G \to \operatorname{Aut} V$ of a finite group G $U(g)U(h) = \alpha(g, h)U(gh), \alpha(g, h) \in \mathbb{C}_1$ satisfying 2-cocycle condition, cohomology class of 2-cocycles: $\alpha \sim \alpha'$ if $\exists \beta \in \mathbb{C}_1(G)$ such that $\alpha'(g, h) = \beta(g)\beta(h)/\beta(gh)\alpha(g, h)$

- \rightarrow (representation of the) one-sided deformed group algebra $\mathbb{C}G_{\alpha}$ by a coproduct cocycle α of $\mathbb{C}(G)$
- \rightarrow one-sided deformed finite dimensional Hopf algebra ${\cal H}_{\alpha}$ by a right (left) coproduct cocycle α in the dual Hopf algebra $\hat{\cal H}$

< □ > < /i>

Classification of phases

steps of classification:

- 1. characterization of the extensions $\mathcal{A}^{d}_{\omega}(H) \supseteq \pi_{\omega}(\mathcal{A}(H))$
- 2. determine the phase equivalent characterizations

3. determine the translation invariant phases

Result:

1.a) $\mathcal{A}^{d}_{\omega} = \mathcal{B}_{i+rac{1}{2},i}
times \pi_{\omega}(\mathcal{A})$

where $\mathcal{B}_{i+\frac{1}{2},i} := \pi_{\omega}(\mathcal{A}(-\infty, i-\frac{1}{2}))' \cap \pi_{\omega}(\mathcal{A}(i+1,\infty))' \cap \mathcal{B}(\mathcal{H}_{\omega})$ is a finite dimensional right \mathcal{D} -module von Neumann algebra. $\mathcal{D} \equiv \mathcal{D}(H)$ is the Drinfeld double of H, if $\mathcal{A}_i \simeq H$.

1.b $\mathcal{B}_{i+\frac{1}{2},i}$ is isomorphic as a right \mathcal{D} -module *-algebra to a one-sided deformed left coideal subalgebra \mathcal{K} of $\hat{\mathcal{D}}$ by an intermediate right coproduct cocycle (IRC) (α, k) of \mathcal{D} , i.e. $\mathcal{K} = (k \rightharpoonup \hat{\mathcal{D}})_{\alpha}$.

2. $\omega, \omega' \in S(\mathcal{A})$ are phase equivalent iff (α, k) and (α', k') are in the same cohomology class.

Classification of phases

steps of classification:

- 1. characterization of the extensions $\mathcal{A}^{d}_{\omega}(H) \supseteq \pi_{\omega}(\mathcal{A}(H))$
- 2. determine the phase equivalent characterizations
- 3. determine the translation invariant phases

Result:

1.a)
$$\mathcal{A}^d_\omega = \mathcal{B}_{i+\frac{1}{2},i} \rtimes \pi_\omega(\mathcal{A})$$

where $\mathcal{B}_{i+\frac{1}{2},i} := \pi_{\omega}(\mathcal{A}(-\infty, i-\frac{1}{2}))' \cap \pi_{\omega}(\mathcal{A}(i+1,\infty))' \cap \mathcal{B}(\mathcal{H}_{\omega})$ is a finite dimensional right \mathcal{D} -module von Neumann algebra. $\mathcal{D} \equiv \mathcal{D}(\mathcal{H})$ is the Drinfeld double of \mathcal{H} , if $\mathcal{A}_i \simeq \mathcal{H}$.

1.b $\mathcal{B}_{i+\frac{1}{2},i}$ is isomorphic as a right \mathcal{D} -module *-algebra to a one-sided deformed left coideal subalgebra \mathcal{K} of $\hat{\mathcal{D}}$ by an intermediate right coproduct cocycle (IRC) (α , k) of \mathcal{D} , i.e. $\mathcal{K} = (k \rightharpoonup \hat{\mathcal{D}})_{\alpha}$.

2. $\omega, \omega' \in S(\mathcal{A})$ are phase equivalent iff (α, k) and (α', k') are in the same cohomology class.

Classification of phases

steps of classification:

- 1. characterization of the extensions $\mathcal{A}^{d}_{\omega}(H) \supseteq \pi_{\omega}(\mathcal{A}(H))$
- 2. determine the phase equivalent characterizations
- 3. determine the translation invariant phases

Result:

1.a)
$$\mathcal{A}^d_\omega = \mathcal{B}_{i+\frac{1}{2},i} \rtimes \pi_\omega(\mathcal{A})$$

where $\mathcal{B}_{i+\frac{1}{2},i} := \pi_{\omega}(\mathcal{A}(-\infty, i-\frac{1}{2}))' \cap \pi_{\omega}(\mathcal{A}(i+1,\infty))' \cap \mathcal{B}(\mathcal{H}_{\omega})$ is a finite dimensional right \mathcal{D} -module von Neumann algebra. $\mathcal{D} \equiv \mathcal{D}(\mathcal{H})$ is the Drinfeld double of \mathcal{H} , if $\mathcal{A}_i \simeq \mathcal{H}$.

1.b $\mathcal{B}_{i+\frac{1}{2},i}$ is isomorphic as a right \mathcal{D} -module *-algebra to a one-sided deformed left coideal subalgebra \mathcal{K} of $\hat{\mathcal{D}}$ by an intermediate right coproduct cocycle (IRC) (α, k) of \mathcal{D} , i.e. $\mathcal{K} = (k \rightharpoonup \hat{\mathcal{D}})_{\alpha}$.

2. $\omega, \omega' \in S(\mathcal{A})$ are phase equivalent iff (α, k) and (α', k') are in the same cohomology class.

< D > < P > < E > <</pre>

Classification of translation invariant phases

3.a \mathcal{A}_{ω}^{d} is bosonic, i.e. $[\mathcal{B}_{i+\frac{1}{2},i}, \mathcal{B}_{j+\frac{1}{2},j}] = 0$ if $|i-j| \ge 1$ \Leftrightarrow the IRC (α, k) is bosonic, i.e. $R\alpha = \alpha$.

(*R* is the universal *R*-matrix of the quasitringular $\mathcal{D}(H)$.)

3.b \mathcal{A}^d_{ω} is bosonic if ω is translation invariant.

 \Rightarrow translation invariant phases are characterized by cohomology classes of bosonic IRC-s.

Example 1: $G = \mathbb{Z}_N - N$ -state Potts quantum chains for N prime • $\mathcal{D}(\mathbb{Z}_N) \simeq \mathbb{C} \cdot \mathbb{Z}_N \times \mathbb{Z}_N \simeq \hat{\mathcal{D}}(\mathbb{Z}_N) \Rightarrow$

• extensions $\mathcal{B}_{i+1} \simeq (k \rightarrow \hat{\mathcal{D}})_{\alpha}$ are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:

- *N* different 2CC on $\mathbb{Z}_N \times \mathbb{Z}_N$
- single 2CC on any of the $N + 1 \mathbb{Z}_N$ subgroups
- single 2CC on the trivial subgroup (no extension)

• $\hat{D} \ni (m, n)$ is an anyon with statistics phase $\exp(2\pi i m n/N)$ \Rightarrow only three bosonic/translation invariant phase

< D > < P > < E > <</pre>

Classification of translation invariant phases

3.a \mathcal{A}_{ω}^{d} is bosonic, i.e. $[\mathcal{B}_{i+\frac{1}{2},i}, \mathcal{B}_{j+\frac{1}{2},j}] = 0$ if $|i-j| \ge 1$ \Leftrightarrow the IRC (α, k) is bosonic, i.e. $R\alpha = \alpha$.

(*R* is the universal *R*-matrix of the quasitringular $\mathcal{D}(H)$.)

3.b \mathcal{A}^d_{ω} is bosonic if ω is translation invariant.

 \Rightarrow translation invariant phases are characterized by cohomology classes of bosonic IRC-s.

Example 1: $G = \mathbb{Z}_N - N$ -state Potts quantum chains for N prime • $\mathcal{D}(\mathbb{Z}_N) \simeq \mathbb{C} \cdot \mathbb{Z}_N \times \mathbb{Z}_N \simeq \hat{\mathcal{D}}(\mathbb{Z}_N) \Rightarrow$

• extensions $\mathcal{B}_{i+\frac{1}{2},i} \simeq (k \rightarrow \hat{\mathcal{D}})_{\alpha}^{\alpha}$ are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:

- *N* different 2CC on $\mathbb{Z}_N \times \mathbb{Z}_N$
- single 2CC on any of the $N + 1 \mathbb{Z}_N$ subgroups
- single 2CC on the trivial subgroup (no extension)

• $\hat{D} \ni (m, n)$ is an anyon with statistics phase $\exp(2\pi i m n/N)$ \Rightarrow only three bosonic/translation invariant phase

Classification of translation invariant phases

3.a \mathcal{A}_{ω}^{d} is bosonic, i.e. $[\mathcal{B}_{i+\frac{1}{2},i}, \mathcal{B}_{j+\frac{1}{2},j}] = 0$ if $|i-j| \ge 1$ \Leftrightarrow the IRC (α, k) is bosonic, i.e. $R\alpha = \alpha$.

(*R* is the universal *R*-matrix of the quasitringular $\mathcal{D}(H)$.)

3.b \mathcal{A}^{d}_{ω} is bosonic if ω is translation invariant.

 \Rightarrow translation invariant phases are characterized by cohomology classes of bosonic IRC-s.

Example 1: $G = \mathbb{Z}_N - N$ -state Potts quantum chains for N prime

 $\bullet \mathcal{D}(\mathbb{Z}_N) \simeq \mathbb{C} \cdot \mathbb{Z}_N \times \mathbb{Z}_N \simeq \hat{\mathcal{D}}(\mathbb{Z}_N) \Rightarrow$

• extensions $\mathcal{B}_{i+\frac{1}{2},i} \simeq (k \rightharpoonup \hat{\mathcal{D}})_{\alpha}$ are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:

- *N* different 2CC on $\mathbb{Z}_N \times \mathbb{Z}_N$
- single 2CC on any of the $N + 1 \mathbb{Z}_N$ subgroups
- single 2CC on the trivial subgroup (no extension)

• $\hat{D} \ni (m, n)$ is an anyon with statistics phase $\exp(2\pi i m n/N)$ \Rightarrow only three bosonic/translation invariant phase

Classification of translation invariant phases

3.a \mathcal{A}_{ω}^{d} is bosonic, i.e. $[\mathcal{B}_{i+\frac{1}{2},i}, \mathcal{B}_{j+\frac{1}{2},j}] = 0$ if $|i-j| \ge 1$ \Leftrightarrow the IRC (α, k) is bosonic, i.e. $R\alpha = \alpha$.

(*R* is the universal *R*-matrix of the quasitringular $\mathcal{D}(H)$.)

3.b \mathcal{A}^{d}_{ω} is bosonic if ω is translation invariant.

 \Rightarrow translation invariant phases are characterized by cohomology classes of bosonic IRC-s.

Example 1: $G = \mathbb{Z}_N - N$ -state Potts quantum chains for N prime

 $\bullet \mathcal{D}(\mathbb{Z}_N) \simeq \mathbb{C} \cdot \mathbb{Z}_N \times \mathbb{Z}_N \simeq \hat{\mathcal{D}}(\mathbb{Z}_N) \Rightarrow$

• extensions $\mathcal{B}_{i+\frac{1}{2},i} \simeq (k \rightharpoonup \hat{\mathcal{D}})_{\alpha}$ are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:

- *N* different 2CC on $\mathbb{Z}_N \times \mathbb{Z}_N$
- single 2CC on any of the $N + 1 \mathbb{Z}_N$ subgroups
- single 2CC on the trivial subgroup (no extension)
- $\hat{\mathcal{D}} \ni (m, n)$ is an anyon with statistics phase $\exp(2\pi i m n/N)$
- \Rightarrow only three bosonic/translation invariant phase

Translation invariant phases – examples

Example 2: $G = \mathbb{Z}_4 - 4$ -state Potts quantum chain

- $\bullet \mathcal{D}(\mathbb{Z}_4) \simeq \mathbb{C} \cdot \mathbb{Z}_4 \times \mathbb{Z}_4 \simeq \hat{\mathcal{D}}(\mathbb{Z}_4) \Rightarrow$
- extensions $\mathcal{B}_{i+\frac{1}{2},i} \simeq (k
 ightarrow \hat{\mathcal{D}})_{\alpha}$ are given by subgroups
- and 2-cocycle cohomology classes (2CC) on them
- $\hat{\mathcal{D}} \ni (m,n)$ is an anyon with statistics phase $\exp(2\pi i m n/4)$
- \Rightarrow bosonic/translation invariant phases with maximal subgroups:
- $-\mathbb{Z}_4,\mathbb{Z}_2 imes\mathbb{Z}_2$ (two 2CC), \mathbb{Z}_4
- single 2CC on any of the three \mathbb{Z}_2 subgroups
- single 2CC on the trivial subgroup (no extension)

Example 3: $G = \mathbb{Z}_2 \times \mathbb{Z}_2 - \text{spin} - \frac{1}{2} XYZ$ - chain

- $\mathcal{D}(\mathbb{Z}_2 \times \mathbb{Z}_2) \simeq \mathbb{C} \cdot \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \simeq \hat{\mathcal{D}}(\mathbb{Z}_2 \times \mathbb{Z}_2) \Rightarrow$
- bosonic/translation invariant phases with maximal subgroups:
- five $\mathbb{Z}_2 \times \mathbb{Z}_2$ all with two 2CC
- single 2CC on any of the nine \mathbb{Z}_2 subgroups
- single 2CC on the trivial subgroup (no extension)

Translation invariant phases – examples

Example 2: $G = \mathbb{Z}_4 - 4$ -state Potts quantum chain

 $\bullet \mathcal{D}(\mathbb{Z}_4) \simeq \mathbb{C} \cdot \mathbb{Z}_4 \times \mathbb{Z}_4 \simeq \hat{\mathcal{D}}(\mathbb{Z}_4) \Rightarrow$

- extensions $\mathcal{B}_{i+\frac{1}{2},i} \simeq (k
 ightarrow \hat{\mathcal{D}})_{\alpha}$ are given by subgroups
- and 2-cocycle cohomology classes (2CC) on them
- $\hat{\mathcal{D}} \ni (m,n)$ is an anyon with statistics phase $\exp(2\pi i m n/4)$
- \Rightarrow bosonic/translation invariant phases with maximal subgroups:

$$-\mathbb{Z}_4,\mathbb{Z}_2 imes\mathbb{Z}_2$$
 (two 2CC), \mathbb{Z}_4

- single 2CC on any of the three \mathbb{Z}_2 subgroups
- single 2CC on the trivial subgroup (no extension)

Example 3: $G = \mathbb{Z}_2 \times \mathbb{Z}_2 - \text{spin} - \frac{1}{2} XYZ$ - chain

- $\bullet \ \mathcal{D}(\mathbb{Z}_2 \times \mathbb{Z}_2) \simeq \mathbb{C} \cdot \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \simeq \hat{\mathcal{D}}(\mathbb{Z}_2 \times \mathbb{Z}_2) \Rightarrow$
- bosonic/translation invariant phases with maximal subgroups:
- five $\mathbb{Z}_2\times\mathbb{Z}_2$ all with two 2CC
- single 2CC on any of the nine \mathbb{Z}_2 subgroups
- single 2CC on the trivial subgroup (no extension)

Ferromagnetic states from ferromagnetic elements

 define ferromagnetic elements in a Hopf algebra H as intersection of positive and positive definite elements: $F(H) := H_+ \cap H^+$ • 'verification': $B(g,h) := \varphi(g^{-1}h), \varphi \in F(\mathbb{C}(G))$ leads to left G-invariant ferromagnetic Boltzmann weight on $G \times G$ $0 \leq B(g,h) = B(fg,fh) = \varphi(g^{-1}h) \leq \varphi(e) = B(g,g)$ • Fourier transformation maps F(H) onto $F(\hat{H})$ F(H) is a convex cone, normalization leads to a convex set • \mathcal{A} is UHF \Rightarrow unique normalized trace on \mathcal{A} : use (power of)

Ferromagnetic states from ferromagnetic elements

 define ferromagnetic elements in a Hopf algebra H as intersection of positive and positive definite elements: $F(H) := H_+ \cap H^+$ • 'verification': $B(g,h) := \varphi(g^{-1}h), \varphi \in F(\mathbb{C}(G))$ leads to left G-invariant ferromagnetic Boltzmann weight on $G \times G$ $0 \leq B(g,h) = B(fg,fh) = \varphi(g^{-1}h) \leq \varphi(e) = B(g,g)$ • Fourier transformation maps F(H) onto $F(\hat{H})$ $H \ni a \mapsto \mathcal{F}(a) := a \rightharpoonup \chi \in \hat{H}$, where $\chi \in \hat{H}$ is the Haar integral • F(H) is a convex cone, normalization leads to a convex set • \mathcal{A} is UHF \Rightarrow unique normalized trace on \mathcal{A} : use (power of)

Ferromagnetic states from ferromagnetic elements

• define ferromagnetic elements in a Hopf algebra *H* as intersection of positive and positive definite elements: $F(H) := H_+ \cap H^+$

• 'verification': $B(g,h) := \varphi(g^{-1}h), \varphi \in F(\mathbb{C}(G))$ leads to left *G*-invariant ferromagnetic Boltzmann weight on $G \times G$

$$0 \leq B(g,h) = B(fg,fh) = \varphi(g^{-1}h) \leq \varphi(e) = B(g,g)$$

• Fourier transformation maps F(H) onto $F(\hat{H})$

 $H \ni a \mapsto \mathcal{F}(a) := a \rightharpoonup \chi \in \hat{H}$, where $\chi \in \hat{H}$ is the Haar integral

• F(H) is a convex cone, normalization leads to a convex set

• \mathcal{A} is UHF \Rightarrow unique normalized trace on \mathcal{A} : use (power of) ferromagnetic transfer 'matrices' as density metrices

$$\begin{split} T_{[i,j]}(f) &:= \sqrt{V_{[i,j]}(f)} \, W_{[i,j]}(\hat{f}) \sqrt{V_{[i,j]}(f)}, \quad f \in F(H), \hat{f} = \mathcal{F}(f) \\ V_{[i,j]}(f) &= \prod_{k \in [i,j] \cap \mathbb{Z}} A_k(f), \quad W_{[i,j]}(\hat{f}) = \prod_{k \in [i,j] \cap \mathbb{Z} + \frac{1}{2}} A_k(\hat{f}) \\ P_{[i,j]}(f) &:= \lim_{m} T_{[i,j]}(f)^m / \operatorname{Tr}(T_{[i,j]}(f)^m) \end{split}$$

 $\omega_f(-) := \lim_{n \to \infty} \operatorname{Tr}(P_{[-n,n]}(f)-)$ (set of states on \mathcal{A} is w*-compact \Rightarrow convergent subsequences, unique? pure? translation invariant?)

Ferromagnetic projections and maximal bosonic extensions

- projections $p \in F_0(H) := \{f \in F(H) \mid 1 = \langle \hat{1}, f \rangle\}$ are extremal points
- their Fourier transformed $\hat{p} := \mathcal{F}(p)/\langle \chi, p \rangle \in F_0(\hat{H})$ are projections
- their embeddings in the chain commute: $[A_i(p), A_{i\pm\frac{1}{2}}(\hat{p})] = 0$
- ⇒ $T_{[-n,n]}(f), n \in \mathbb{N}$ is a sequence of decreasing projections ⇒ the ferromagnetic state ω_p is translation invariant pure
- $K := \mathcal{D}(p)\mathcal{D}(\hat{p}) \in \mathcal{D}(H)$ are bosonic IRC projections $(K \otimes K, K)$ with $R(K \otimes K) = K \otimes K$
- to the (undeformed) maximal bosonic left coideal subalgebras $K \rightharpoonup \hat{\mathcal{D}}(H) \subset \hat{\mathcal{D}}(H)$
- ω_p is contained in the phase characterized by the extension $\mathcal{B}_{i+\frac{1}{2},i} \simeq K \rightharpoonup \hat{\mathcal{D}}(H)$

Ferromagnetic projections and maximal bosonic extensions

- projections $p \in F_0(H) := \{f \in F(H) \mid 1 = \langle \hat{1}, f \rangle\}$ are extremal points
- their Fourier transformed $\hat{p} := \mathcal{F}(p)/\langle \chi, p \rangle \in F_0(\hat{H})$ are projections
- their embeddings in the chain commute: $[A_i(p), A_{i\pm\frac{1}{2}}(\hat{p})] = 0$
- ⇒ $T_{[-n,n]}(f), n \in \mathbb{N}$ is a sequence of decreasing projections ⇒ the ferromagnetic state ω_p is translation invariant pure
- $K := \mathcal{D}(p)\mathcal{D}(\hat{p}) \in \mathcal{D}(H)$ are bosonic IRC projections $(K \otimes K, K)$ with $R(K \otimes K) = K \otimes K$

to the (undeformed) maximal bosonic left coideal subalgebras $K \rightarrow \hat{\mathcal{D}}(H) \subset \hat{\mathcal{D}}(H)$

• ω_p is contained in the phase characterized by the extension $\mathcal{B}_{i+\frac{1}{2},i} \simeq K \rightharpoonup \hat{\mathcal{D}}(H)$

References

G-spin chains K. Szlachányi and PV; Quantum Symmetry and Braid Group Statistics in G-spin Models Commun. Math. Phys. 156, 127 (1993) Hopf spin chains F. Nill and K. Szlachányi; Quantum chains of Hopf algebras with quantum double cosymmetry Commun. Math. Phys. 157, 159 (1997) Phase structure (under publication) V.F. Müller and PV; Phase structure of G-spin chains B. Megyeri and PV; Phase structure of the spin- $\frac{1}{2}$ XYZ chain PV; Asymptotic commutants and the absence of non-local translation invariant phases

(Bosonic) IRCs

Characterization of phases of $\mathcal{A} = \mathcal{A}(H)$

• phases in S(A) (in $S_0(A)$) \simeq cohomology classes of (bosonic) intermediate right Δ -cocycles (IRC) in the quasitriangular Drinfeld double $\mathcal{D} \equiv (\mathcal{D}(H), R)$

(bosonic) IRC in $\ensuremath{\mathcal{D}}$

the pair (w, k) of a partial isometry w ∈ D ⊗ D and a projection k ∈ D is an IRC if

$$\begin{split} w^*w &= k \otimes k, \qquad \Delta(k)w = w\\ S(q^*)q &= k, \qquad q := S(w_1)w_2\\ (\varepsilon \otimes id)(w) &= k = (id \otimes \varepsilon)(w)\\ id \otimes \Delta)(w)(\mathbf{1} \otimes w) = (\Delta \otimes id)(w)(w \otimes \mathbf{1}). \end{split}$$

- an IRC (w, k) is bosonic if Rw = w
- (w, k) and (w', k') are cohomologous if $\exists x \in D$ unitary with

$$\varepsilon(x) = 1, \quad w' = \Delta(x^*)w(x \otimes x).$$

Connection between bosonic IRCs and asymptotic commutants \mathcal{A}^{ac}

Lemma If ω is a pure α -invariant state on a norm asymptotically abelian (NAA) algebra (\mathcal{A}, α) then $(\mathcal{A}^{ac}_{\omega}, \alpha_{\omega} := Ad U)$ is SAA (WAA).

- $\mathcal{A}^{d}_{\omega} \subseteq \mathcal{A}^{ac}_{\omega}$ if $\omega \in S_{0}$
- transportability if $\omega \in S$ $\exists \tau^{-1} : \mathcal{A}^{d}_{\omega}(i+\frac{1}{2},i) \to \mathcal{A}^{d}_{\omega}(i-\frac{1}{2},i-1)$ right \mathcal{D} -module *-algebra isomorphism:

$$\tau^{-1}(B) = \sum_{\beta} \pi_{\omega}(A_{\beta})(B \cdot X_{\beta}), \quad A_{\beta} \in \mathcal{A}(i - \frac{1}{2}, i), X_{\beta} \in \mathcal{D}$$

- $\alpha_{\omega} \circ \tau^{-1}$ right \mathcal{D} -module *-algebra automorphism of $\mathcal{A}^{d}_{\omega}(i+\frac{1}{2},i)$ $\Rightarrow \exists x \in \mathcal{D}$ unitary $\Delta(x)w = w(x \otimes x)$ $\Rightarrow Spec x^{2} \subseteq (Spec x)^{2} = Spec x \Rightarrow \exists n \in \mathbb{N} : x^{n} = \mathbf{1}$
- generalized antiferromagnets $(x \neq 1)$ but no quasicrystals $(x^m \neq 1, m \in \mathbb{N})$ if $\omega \in S_0$
- \mathcal{A}^{d}_{ω} is local (Haag dual) if $\omega \in S_{0}$ $(\alpha^{-n}_{\omega} \otimes id)(F_{13}^{*})F_{12}^{*}(\alpha^{-n}_{\omega} \otimes id)(F_{13})F_{12} = \mathbf{1}_{\mathcal{B}} \otimes w^{*}Rw = \mathbf{1}_{\mathcal{B}} \otimes k \otimes k$ $F_{12} = \Phi(k \rightarrow \xi_{\beta}) \otimes X_{\beta} \in \mathcal{A}^{d}_{\omega}(i + \frac{1}{2}, i) \otimes \mathcal{D}$ partial isometry