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G-spin chains and well-known examples

G-spin chain (⊂ Hopf spin chain):
quantum chain based on an arbitrary finite group G
(on dual pair of finite dimensional Hopf algebras H, Ĥ,
e.g. H = CG group algebra, Ĥ = C(G) algebra of functions on G)

G = Z2 – Ising quantum chain

HIsing(J,L) :=
L−1∑
i=1

Jσz
i σ

z
i+1 +

L∑
i=1

σx
i , J ∈ R

G = Z2 × Z2 – spin- 1
2 XYZ quantum chain

HXYZ (J,L) :=
L−1∑
i=1

Jxσ
x
i σ

x
i+1+Jyσ

y
i σ

y
i+1+Jzσ

z
i σ

z
i+1, J = (Jx , Jy , Jz) ∈ R3

given by Hamiltonians on HL := ⊗L
1C2
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Difficulties in the traditional formulation

Hamiltonian formulation of quantum chains is inspired by QM:
no inequivalent representations of the quantum observables
(CCR in QM), only the spectrum of the Hamiltonian is interesting
however parameter dependent Hamiltonians are given here
to describe the expected ‘essentially different’ behaviour of
ground states in the L→∞ thermodynamic limit (TL), i.e. the
expected existence of phases in the TL in the parameter space
(phases: not only unitary, but ‘essentially inequivalent’
representations of quantum observables)
difficulties in rigorous derivation and classification of phases
due to parallel TL of algebra of quantum observables
(Hamiltonians) and (ground) states on them
circumvention: decompose the TL into two consecutive steps
1. TL of local algebras of quantum observables,
i.e. C∗-inductive limit leading to the A ≡ AH quasilocal
observable C∗-algebra of the given quantum chain
2. examine the pure state space of A leading to irreps of A
S(A) := {ω : A → C |ω positive linear normalized pure}

P. Vecsernyés Phase structure of G-spin chains
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Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model
generated by monoms in the corresponding local Hamiltonian

A(L) := 〈 monoms in H(L)〉C∗ , A :=
⋃

L↗ZA(L)
C∗

• Ising chain on 1
2Z

Ai = 〈Ai := σx
i 〉C∗ ' M1 ⊕M1 ' CZ2, i ∈ Z

Ai+ 1
2

= 〈Ai+ 1
2

:= σz
i σ

z
i+1〉C∗ ' M1 ⊕M1 ' C(Z2), i ∈ Z

AiAj =

{
−AjAi , |i − j | = 1

2 ,
AjAi , otherwise.

⇒ crossed products of n.n. algebras

A(L) := 〈Ai , i ∈ L ⊂ 1
2Z〉C∗ = Aj>/Aj+ 1

2
>/ . . . >/Ak , L = [j , k ]

inductive limit C∗-algebra: two-sided iterated crossed products

AIsing := . . . >/CZ2>/C(Z2)>/CZ2>/C(Z2)>/CZ2>/ . . .

2∞-type UHF C∗-algebra

P. Vecsernyés Phase structure of G-spin chains
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Relation of Hamiltonians and quasilocal algebras

• spin- 1
2 XYZ chain on Z

Ai = 〈Ai := σx
i σ

x
i+1,Bi := σy

i σ
y
i+1〉C∗ ' ⊕4

1M1 ' C · Z2 × Z2, i even
Ai = 〈Bi := σx

i σ
x
i+1,Ai := σy

i σ
y
i+1〉C∗ ' ⊕4

1M1 ' C(Z2 × Z2), i odd

[Ai ,Bj ] = 0, AiAj/BiBj =

{
−AjAi/BjBi , |i − j | = 1,

AjAi/BjBi , otherwise.

A(L) := 〈Ai ,Bi ; i ∈ L ⊂ Z〉C∗ = Aj>/Aj+1>/ . . . >/Ak , L = [j , k ]

inductive limit C∗-algebra: two-sided iterated crossed products

AXYZ := . . . >/C · Z2 × Z2>/C(Z2 × Z2)>/C · Z2 × Z2>/ . . .

2∞-type UHF C∗-algebra
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Quasilocal algebra of Hopf spin chains on 1
2Z

General case without prescribed Hamiltonians
• dual pair of finite dimensional Hopf C∗-algebras: H,Ĥ
case of G-spin chains: H = CG, Ĥ = C(G)

• quasilocal algebra: A ≡ AH := . . .H>/ Ĥ>/H>/ Ĥ>/ . . .
two-sided iterated crossed products wrt left Sweedler actions,
|H|∞-type UHF C∗-algebra
describing models given by any local Hamiltonian in A(L)

Important properties:
• algebraic Haag duality: A(L′)′ ∩ A = A(L), L ⊂ 1

2Z finite
L′ ≡ [i , j]′ := 1

2Z \ {i −
1
2 , i , . . . , j , j + 1

2} causal complement
⇔ local algebras on causally separated regions commute
and local algebras saturate the commutants

• integer translation covariance
Z 3 n 7→ τn ∈ AutA : τn(Ai (h)) = Ai+n(h), i ∈ 1

2Z

P. Vecsernyés Phase structure of G-spin chains
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Indication for different phases on S(A)

idea: emergence of different sets of local order/disorder operators
in the irreps πω : A → B(Hω) induced by pure states ω ∈ S(A)

having non-zero ‘vacuum’ expectation values
Ω ∈ Hω, {B ∈ B(Hω)} : (Ω,BΩ) 6= 0

math: emergence of inequivalent local algebra extensions of πω(A)
in the irreps πω : A → B(Hω) induced by pure states ω ∈ S(A)

given by the dual observable algebra Ad
ω

Ad
ω(L) := πω(A(L′))′ ∩ B(Hω) ⊇ πω(A(L′))′ ∩ πω(A) = πω(A(L)),

Ad
ω :=

⋃
L↗ 1

2Z

Ad
ω(L)

C∗

⊆ B(Hω)

measuring inequivalent violations of Haag duality in the irreps
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Definition of phases on S(A)

phase equivalence of ω, ω′ ∈ S(A):
ω ∼ ω′ if ∃ φ : Ad

ω → Ad
ω′ ∗-algebra isomorphism such that

φ(πω(A)) = πω′(A), A ∈ A.

phases on S(A): equivalence classes wrt the equivalence relation ∼
translation invariant phases: restriction of phases to translation
invariant pure states S0(A) := {ω ∈ S(A) |ω = ω ◦ τ1}

• phase equivalence ∼ is strictly weaker than unitary equivalence '
πω 'U πω′ ⇒ ω ∼ ω′, because φ := Ad U,
but expectation values of B, φ(B),B ∈ Ad

ω can be different

P. Vecsernyés Phase structure of G-spin chains
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Algebraic structures emerging in phase classification

Combination of two algebraic structures generalized from
finite groups→ group algebras→ Hopf algebras:
1. subgroup lattice of a finite group G
→ special sublattice of subalgebras in CG:
subgroup algebra lattice of CG
⇔ lattice of left (= right) coideal subalgebras of CG
→ lattice of left (right) coideal subalgebras of a Hopf algebra H
2. projective representation Uα : G→ Aut V of a finite group G
U(g)U(h) = α(g,h)U(gh), α(g,h) ∈ C1 satisfying 2-cocycle condition,
cohomology class of 2-cocycles: α ∼ α′ if ∃β ∈ C1(G) such that
α′(g,h) = β(g)β(h)/β(gh)α(g,h)
→ (representation of the) one-sided deformed group algebra CGα

by a coproduct cocycle α of C(G)
→ one-sided deformed finite dimensional Hopf algebra Hα
by a right (left) coproduct cocycle α in the dual Hopf algebra Ĥ

P. Vecsernyés Phase structure of G-spin chains
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→ one-sided deformed finite dimensional Hopf algebra Hα
by a right (left) coproduct cocycle α in the dual Hopf algebra Ĥ
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Classification of phases

steps of classification:
1. characterization of the extensions Ad

ω(H) ⊇ πω(A(H))
2. determine the phase equivalent characterizations
3. determine the translation invariant phases
Result:
1.a) Ad

ω = Bi+ 1
2 ,i

>/πω(A)

where Bi+ 1
2 ,i

:= πω(A(−∞, i − 1
2 ))′ ∩ πω(A(i + 1,∞))′ ∩ B(Hω)

is a finite dimensional right D-module von Neumann algebra.
D ≡ D(H) is the Drinfeld double of H, if Ai ' H.
1.b Bi+ 1

2 ,i
is isomorphic as a right D-module ∗-algebra

to a one-sided deformed left coideal subalgebra K of D̂
by an intermediate right coproduct cocycle (IRC) (α, k) of D,
i.e. K = (k ⇀ D̂)α.

2. ω, ω′ ∈ S(A) are phase equivalent
iff (α, k) and (α′, k ′) are in the same cohomology class.

P. Vecsernyés Phase structure of G-spin chains



wigner-logo-ok06

G-spin chains Phase structure Appendix Phase equivalence on states Classification of phases Ferromagnetic states

Classification of phases

steps of classification:
1. characterization of the extensions Ad

ω(H) ⊇ πω(A(H))
2. determine the phase equivalent characterizations
3. determine the translation invariant phases
Result:
1.a) Ad

ω = Bi+ 1
2 ,i

>/πω(A)

where Bi+ 1
2 ,i

:= πω(A(−∞, i − 1
2 ))′ ∩ πω(A(i + 1,∞))′ ∩ B(Hω)

is a finite dimensional right D-module von Neumann algebra.
D ≡ D(H) is the Drinfeld double of H, if Ai ' H.
1.b Bi+ 1

2 ,i
is isomorphic as a right D-module ∗-algebra

to a one-sided deformed left coideal subalgebra K of D̂
by an intermediate right coproduct cocycle (IRC) (α, k) of D,
i.e. K = (k ⇀ D̂)α.

2. ω, ω′ ∈ S(A) are phase equivalent
iff (α, k) and (α′, k ′) are in the same cohomology class.

P. Vecsernyés Phase structure of G-spin chains



wigner-logo-ok06

G-spin chains Phase structure Appendix Phase equivalence on states Classification of phases Ferromagnetic states

Classification of phases

steps of classification:
1. characterization of the extensions Ad

ω(H) ⊇ πω(A(H))
2. determine the phase equivalent characterizations
3. determine the translation invariant phases
Result:
1.a) Ad

ω = Bi+ 1
2 ,i

>/πω(A)

where Bi+ 1
2 ,i

:= πω(A(−∞, i − 1
2 ))′ ∩ πω(A(i + 1,∞))′ ∩ B(Hω)

is a finite dimensional right D-module von Neumann algebra.
D ≡ D(H) is the Drinfeld double of H, if Ai ' H.
1.b Bi+ 1

2 ,i
is isomorphic as a right D-module ∗-algebra

to a one-sided deformed left coideal subalgebra K of D̂
by an intermediate right coproduct cocycle (IRC) (α, k) of D,
i.e. K = (k ⇀ D̂)α.

2. ω, ω′ ∈ S(A) are phase equivalent
iff (α, k) and (α′, k ′) are in the same cohomology class.

P. Vecsernyés Phase structure of G-spin chains



wigner-logo-ok06

G-spin chains Phase structure Appendix Phase equivalence on states Classification of phases Ferromagnetic states

Classification of translation invariant phases

3.a Ad
ω is bosonic, i.e. [Bi+ 1

2 ,i
,Bj+ 1

2 ,j
] = 0 if |i − j | ≥ 1

⇔ the IRC (α, k) is bosonic, i.e. Rα = α.
(R is the universal R-matrix of the quasitringular D(H).)
3.b Ad

ω is bosonic if ω is translation invariant.
⇒ translation invariant phases are characterized by cohomology
classes of bosonic IRC-s.

Example 1: G = ZN – N-state Potts quantum chains for N prime
•D(ZN) ' C · ZN × ZN ' D̂(ZN)⇒
• extensions Bi+ 1

2 ,i
' (k ⇀ D̂)α are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:
– N different 2CC on ZN × ZN
– single 2CC on any of the N + 1 ZN subgroups
– single 2CC on the trivial subgroup (no extension)
• D̂ 3 (m,n) is an anyon with statistics phase exp(2πimn/N)
⇒ only three bosonic/translation invariant phase

P. Vecsernyés Phase structure of G-spin chains



wigner-logo-ok06

G-spin chains Phase structure Appendix Phase equivalence on states Classification of phases Ferromagnetic states

Classification of translation invariant phases

3.a Ad
ω is bosonic, i.e. [Bi+ 1

2 ,i
,Bj+ 1

2 ,j
] = 0 if |i − j | ≥ 1

⇔ the IRC (α, k) is bosonic, i.e. Rα = α.
(R is the universal R-matrix of the quasitringular D(H).)
3.b Ad

ω is bosonic if ω is translation invariant.
⇒ translation invariant phases are characterized by cohomology
classes of bosonic IRC-s.

Example 1: G = ZN – N-state Potts quantum chains for N prime
•D(ZN) ' C · ZN × ZN ' D̂(ZN)⇒
• extensions Bi+ 1

2 ,i
' (k ⇀ D̂)α are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:
– N different 2CC on ZN × ZN
– single 2CC on any of the N + 1 ZN subgroups
– single 2CC on the trivial subgroup (no extension)
• D̂ 3 (m,n) is an anyon with statistics phase exp(2πimn/N)
⇒ only three bosonic/translation invariant phase

P. Vecsernyés Phase structure of G-spin chains



wigner-logo-ok06

G-spin chains Phase structure Appendix Phase equivalence on states Classification of phases Ferromagnetic states

Classification of translation invariant phases

3.a Ad
ω is bosonic, i.e. [Bi+ 1

2 ,i
,Bj+ 1

2 ,j
] = 0 if |i − j | ≥ 1

⇔ the IRC (α, k) is bosonic, i.e. Rα = α.
(R is the universal R-matrix of the quasitringular D(H).)
3.b Ad

ω is bosonic if ω is translation invariant.
⇒ translation invariant phases are characterized by cohomology
classes of bosonic IRC-s.

Example 1: G = ZN – N-state Potts quantum chains for N prime
•D(ZN) ' C · ZN × ZN ' D̂(ZN)⇒
• extensions Bi+ 1

2 ,i
' (k ⇀ D̂)α are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:
– N different 2CC on ZN × ZN
– single 2CC on any of the N + 1 ZN subgroups
– single 2CC on the trivial subgroup (no extension)
• D̂ 3 (m,n) is an anyon with statistics phase exp(2πimn/N)
⇒ only three bosonic/translation invariant phase

P. Vecsernyés Phase structure of G-spin chains



wigner-logo-ok06

G-spin chains Phase structure Appendix Phase equivalence on states Classification of phases Ferromagnetic states

Classification of translation invariant phases

3.a Ad
ω is bosonic, i.e. [Bi+ 1

2 ,i
,Bj+ 1

2 ,j
] = 0 if |i − j | ≥ 1

⇔ the IRC (α, k) is bosonic, i.e. Rα = α.
(R is the universal R-matrix of the quasitringular D(H).)
3.b Ad

ω is bosonic if ω is translation invariant.
⇒ translation invariant phases are characterized by cohomology
classes of bosonic IRC-s.

Example 1: G = ZN – N-state Potts quantum chains for N prime
•D(ZN) ' C · ZN × ZN ' D̂(ZN)⇒
• extensions Bi+ 1

2 ,i
' (k ⇀ D̂)α are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:
– N different 2CC on ZN × ZN
– single 2CC on any of the N + 1 ZN subgroups
– single 2CC on the trivial subgroup (no extension)
• D̂ 3 (m,n) is an anyon with statistics phase exp(2πimn/N)
⇒ only three bosonic/translation invariant phase

P. Vecsernyés Phase structure of G-spin chains



wigner-logo-ok06

G-spin chains Phase structure Appendix Phase equivalence on states Classification of phases Ferromagnetic states

Translation invariant phases – examples

Example 2: G = Z4 – 4-state Potts quantum chain
•D(Z4) ' C · Z4 × Z4 ' D̂(Z4)⇒
• extensions Bi+ 1

2 ,i
' (k ⇀ D̂)α are given by subgroups

and 2-cocycle cohomology classes (2CC) on them
• D̂ 3 (m,n) is an anyon with statistics phase exp(2πimn/4)
⇒ bosonic/translation invariant phases with maximal subgroups:
– Z4,Z2 × Z2 (two 2CC), Z4
– single 2CC on any of the three Z2 subgroups
– single 2CC on the trivial subgroup (no extension)
Example 3: G = Z2 × Z2 – spin- 1

2 XYZ - chain

• D(Z2 × Z2) ' C · Z2 × Z2 × Z2 × Z2 ' D̂(Z2 × Z2)⇒
• bosonic/translation invariant phases with maximal subgroups:
– five Z2 × Z2 all with two 2CC
– single 2CC on any of the nine Z2 subgroups
– single 2CC on the trivial subgroup (no extension)
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Ferromagnetic states from ferromagnetic elements

• define ferromagnetic elements in a Hopf algebra H as intersection
of positive and positive definite elements: F (H) := H+ ∩ H+

• ‘verification’: B(g,h) := ϕ(g−1h), ϕ ∈ F (C(G)) leads to left
G-invariant ferromagnetic Boltzmann weight on G ×G
0 ≤ B(g,h) = B(fg, fh) = ϕ(g−1h) ≤ ϕ(e) = B(g,g)

• Fourier transformation maps F (H) onto F (Ĥ)

H 3 a 7→ F(a) := a ⇀ χ ∈ Ĥ, where χ ∈ Ĥ is the Haar integral
• F (H) is a convex cone, normalization leads to a convex set
• A is UHF⇒ unique normalized trace on A: use (power of)
ferromagnetic transfer ‘matrices’ as density metrices
T[i,j](f ) :=

√
V[i,j](f )W[i,j](f̂ )

√
V[i,j](f ), f ∈ F (H), f̂ = F(f )

V[i,j](f ) =
∏

k∈[i,j]∩Z Ak (f ), W[i,j](f̂ ) =
∏

k∈[i,j]∩Z+ 1
2

Ak (f̂ )

P[i,j](f ) := limm T[i,j](f )m/Tr (T[i,j](f )m)

ωf (−) := limw∗
n Tr (P[−n,n](f )−) (set of states on A is w*-compact⇒

convergent subsequences, unique? pure? translation invariant?)
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• F (H) is a convex cone, normalization leads to a convex set
• A is UHF⇒ unique normalized trace on A: use (power of)
ferromagnetic transfer ‘matrices’ as density metrices
T[i,j](f ) :=

√
V[i,j](f )W[i,j](f̂ )

√
V[i,j](f ), f ∈ F (H), f̂ = F(f )

V[i,j](f ) =
∏

k∈[i,j]∩Z Ak (f ), W[i,j](f̂ ) =
∏

k∈[i,j]∩Z+ 1
2

Ak (f̂ )

P[i,j](f ) := limm T[i,j](f )m/Tr (T[i,j](f )m)

ωf (−) := limw∗
n Tr (P[−n,n](f )−) (set of states on A is w*-compact⇒

convergent subsequences, unique? pure? translation invariant?)

P. Vecsernyés Phase structure of G-spin chains



wigner-logo-ok06

G-spin chains Phase structure Appendix Phase equivalence on states Classification of phases Ferromagnetic states

Ferromagnetic states from ferromagnetic elements

• define ferromagnetic elements in a Hopf algebra H as intersection
of positive and positive definite elements: F (H) := H+ ∩ H+

• ‘verification’: B(g,h) := ϕ(g−1h), ϕ ∈ F (C(G)) leads to left
G-invariant ferromagnetic Boltzmann weight on G ×G
0 ≤ B(g,h) = B(fg, fh) = ϕ(g−1h) ≤ ϕ(e) = B(g,g)

• Fourier transformation maps F (H) onto F (Ĥ)
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Ferromagnetic projections and maximal bosonic
extensions

• projections p ∈ F0(H) := {f ∈ F (H) |1 = 〈1̂, f 〉} are extremal points
• their Fourier transformed p̂ := F(p)/〈χ,p〉 ∈ F0(Ĥ) are projections
• their embeddings in the chain commute: [Ai (p),Ai± 1

2
(p̂)] = 0

⇒ T[−n,n](f ),n ∈ N is a sequence of decreasing projections
⇒ the ferromagnetic state ωp is translation invariant pure
• K := D(p)D(p̂) ∈ D(H) are bosonic IRC projections
(K ⊗ K ,K ) with R(K ⊗ K ) = K ⊗ K
to the (undeformed) maximal bosonic left coideal subalgebras
K ⇀ D̂(H) ⊂ D̂(H)
• ωp is contained in the phase characterized by the extension
Bi+ 1

2 ,i
' K ⇀ D̂(H)
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(Bosonic) IRCs

Characterization of phases of A = A(H)

phases in S(A) (in S0(A)) ' cohomology classes of (bosonic)
intermediate right ∆-cocycles (IRC) in the quasitriangular
Drinfeld double D ≡ (D(H),R)

(bosonic) IRC in D
the pair (w , k) of a partial isometry w ∈ D ⊗D and a projection
k ∈ D is an IRC if

w∗w = k ⊗ k , ∆(k)w = w
S(q∗)q = k , q := S(w1)w2

(ε⊗ id)(w) = k = (id ⊗ ε)(w)

(id ⊗∆)(w)(1⊗ w) = (∆⊗ id)(w)(w ⊗ 1).

an IRC (w , k) is bosonic if Rw = w

(w , k) and (w ′, k ′) are cohomologous if ∃x ∈ D unitary with

ε(x) = 1, w ′ = ∆(x∗)w(x ⊗ x).
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Connection between bosonic IRCs and asymptotic
commutants Aac

Lemma If ω is a pure α-invariant state on a norm asymtotically
abelian (NAA) algebra (A, α) then (Aac

ω , αω := Ad U) is SAA (WAA).
Ad
ω ⊆ Aac

ω if ω ∈ S0

transportability if ω ∈ S
∃τ−1 : Ad

ω(i + 1
2 , i)→ A

d
ω(i − 1

2 , i − 1) right D-module ∗-algebra
isomorphism:
τ−1(B) =

∑
β πω(Aβ)(B · Xβ), Aβ ∈ A(i − 1

2 , i),Xβ ∈ D
αω ◦ τ−1 right D-module ∗-algebra automorphism of Ad

ω(i + 1
2 , i)

⇒ ∃x ∈ D unitary ∆(x)w = w(x ⊗ x)
⇒ Spec x2 ⊆ (Spec x)2 = Spec x ⇒ ∃n ∈ N : xn = 1
generalized antiferromagnets (x 6= 1) but no quasicrystals
(xm 6= 1,m ∈ N) if ω ∈ S0

Ad
ω is local (Haag dual) if ω ∈ S0

(α−n
ω ⊗ id)(F ∗13)F ∗12(α−n

ω ⊗ id)(F13)F12 = 1B ⊗w∗Rw = 1B ⊗ k ⊗ k
F12 = Φ(k⇀ξβ)⊗ Xβ ∈ Ad

ω(i + 1
2 , i)⊗D partial isometry
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