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0 G-spin (Hopf spin) chains
@ Motivation for the algebraic approach
@ ‘Thermodynamic limit’ of local algebras of quantum observables

e Phase structure
@ Definition of phase equivalence on pure states
@ Classification of phases
@ |llustration: phases on ferromagnetic states

e Appendix
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G-spin chains Motivation *

G-spin chains and well-known examples

G-spin chain (C Hopf spin chain):

quantum chain based on an arbitrary finite group G _

(on dual pair of finite dimensional Hopf algebras H, H,

e.g. H = CG group algebra, H = C(G) algebra of functions on G)
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G-spin chain (C Hopf spin chain):

quantum chain based on an arbitrary finite group G _

(on dual pair of finite dimensional Hopf algebras H, H,
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G = Z» — Ising quantum chain
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Hising(J, L) ZJU ol + > ol
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G-spin chains Motivation ‘The

G-spin chains and well-known examples

G-spin chain (C Hopf spin chain):

quantum chain based on an arbitrary finite group G

(on dual pair of finite dimensional Hopf algebras H, H,

e.g. H= CG group algebra, H = C(G) algebra of functions on G)

G = Z» — Ising quantum chain

L
Hising(J, L) ZJU ol + > ol

G = Z» x Zp — spin-3 XYZ quantum chain

L1
Hxyz(d, L) =Y ool +dyol ol +deofofiy, = (dx,dy,Jz) €R

i=1
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G-spin chains Motivation ‘The

G-spin chains and well-known examples

G-spin chain (C Hopf spin chain):

quantum chain based on an arbitrary finite group G

(on dual pair of finite dimensional Hopf algebras H, H,

e.g. H= CG group algebra, H = C(G) algebra of functions on G)

G = Z» — Ising quantum chain

L
Hising(J, L) ZJU ol + > ol

G = Z» x Zp — spin-3 XYZ quantum chain

L—1
Hxyz(d, L) =Y ool +dyol ol +deofofiy, = (dx,dy,Jz) €R

i=1

given by Hamiltonians on H; := ®4C?
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G-spin chains Motivation ‘Thermodynamic limit’ of lot

Difficulties in the traditional formulation

@ Hamiltonian formulation of quantum chains is inspired by QM:
no inequivalent representations of the quantum observables
(CCR in QM), only the spectrum of the Hamiltonian is interesting
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G-spin chains Motivation Therm

Difficulties in the traditional formulatlon

@ Hamiltonian formulation of quantum chains is inspired by QM:
no inequivalent representations of the quantum observables
(CCR in QM), only the spectrum of the Hamiltonian is interesting

@ however parameter dependent Hamiltonians are given here
to describe the expected ‘essentially different’ behaviour of
ground states in the L — oo thermodynamic limit (TL), i.e. the
expected existence of phases in the TL in the parameter space
(phases: not only unitary, but ‘essentially inequivalent’
representations of quantum observables)
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(CCR in QM), only the spectrum of the Hamiltonian is interesting

@ however parameter dependent Hamiltonians are given here
to describe the expected ‘essentially different’ behaviour of
ground states in the L — oo thermodynamic limit (TL), i.e. the
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Difficulties in the traditional formulatlon

@ Hamiltonian formulation of quantum chains is inspired by QM:
no inequivalent representations of the quantum observables
(CCR in QM), only the spectrum of the Hamiltonian is interesting

@ however parameter dependent Hamiltonians are given here
to describe the expected ‘essentially different’ behaviour of
ground states in the L — oo thermodynamic limit (TL), i.e. the
expected existence of phases in the TL in the parameter space
(phases: not only unitary, but ‘essentially inequivalent’
representations of quantum observables)

@ difficulties in rigorous derivation and classification of phases
due to parallel TL of algebra of quantum observables
(Hamiltonians) and (ground) states on them

@ circumvention: decompose the TL into two consecutive steps
1. TL of local algebras of quantum observables,

i.e. C*-inductive limit leading to the A = Ay quasilocal
observable C*-algebra of the given quantum chain
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G-spin chains Motivation ‘Th

Difficulties in the traditional formulatlon

@ Hamiltonian formulation of quantum chains is inspired by QM:
no inequivalent representations of the quantum observables
(CCR in QM), only the spectrum of the Hamiltonian is interesting

@ however parameter dependent Hamiltonians are given here
to describe the expected ‘essentially different’ behaviour of
ground states in the L — oo thermodynamic limit (TL), i.e. the
expected existence of phases in the TL in the parameter space
(phases: not only unitary, but ‘essentially inequivalent’
representations of quantum observables)

@ difficulties in rigorous derivation and classification of phases
due to parallel TL of algebra of quantum observables
(Hamiltonians) and (ground) states on them

@ circumvention: decompose the TL into two consecutive steps
1. TL of local algebras of quantum observables,

i.e. C*-inductive limit leading to the A = Ay quasilocal
observable C*-algebra of the given quantum chain

2. examine the pure state space of A leading to irreps of A
S(A) .= {w: A — C|w positive linear normalized pure}
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G-spin chains ion ‘Thermodynamic limit’ of local algebras of quantum observables

Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model
generated by monoms in the corresponding local Hamlltoman

A(L) := ( monoms in H(L)) ¢+, A:=U A(L)
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G-spin chains n ‘Thermodynamic limit’ of local algebras of quantum observables

Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model
generated by monoms in the corresponding local Hamlltoman

A(L) := { monoms in H(L))c-, A:=U A(L)

e Ising chain on }Z

./4]:<A,' ZZO’f) ~ M & My ~CZy, ieZ
Ai+%:<Ai+1§: , I+1>C _M1EBM1N(C(Zg) ieZ
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G-spin chains ion ‘Thermodynamic limit’ of local algebras of quantum observables

Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model
generated by monoms in the corresponding local Hamlltoman

A(L) := { monoms in H(L))c-, A:=U A(L)
e Ising chain on }Z

A = <A —O')C*NM‘]@M*]NCZQ ieZ
'AH»% = <A/+‘§ = /+1> ~M oM ~ (C(Z2) ieZ

A AAL il =3,
AA = { AA. otherwisc. = crossed products of n.n. algebras

A(L) = (AT € LC 3Z)g = A=Ay == A, L=[j K]
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G-spin chains n ‘Thermodynamic limit’ of local algebras of quantum observables

Relation of Hamiltonians and the algebraic approach

prescription of correspondence: local algebras of a given model
generated by monoms in the corresponding local Hamlltoman

A(L) := { monoms in H(L))c-, A:=U A(L)
e Ising chain on }Z

Ai:<Af = O'IX> ~ M & My ~CZy, i€z
'AH»% :<Ai+1§: , /+1>C ~ M; & M, N(C(Zg) ieZ

AA = _A/Ai7 i jl= %’ = crossed products of n.n. algebras
" AjA;, otherwise.
A(L) = (Aji € LC §Z)c = Ap=Ap 1= = A, L= [, K]
inductive limit C*-algebra: two-sided iterated crossed products
-Alsing =... ><1CZQNC(ZQ)NCZZN(C(ZZ)X]CZQN -

2°°-type UHF C*-algebra
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G-spin chains Thermodynamic limit’ of local algebras of quantum observables

Relation of Hamiltonians and quasilocal algebras

e spin-1 XYZ chain on Z

Aj = (A =ofof 4, Bi = Yot e @?M1 ~ C-Zo X Zop, i even

I I 1+
Ai = (Bj = ofof 1, Ai = U,YUIY_‘_QC* ~ @?M1 ~ C(Z2 x Z»), i odd

[Ai,B] =0, AA/BB; = { AjAi/B;B;, otherwise.

A(L) == (A, Bii e LC Zyor = Aj<Aj1>< ... = A, L=j,K]
inductive limit C*-algebra: two-sided iterated crossed products
AXYZ =...<C- Zio X ZQN(C(Zg X Z2)><1(C clp X L= ...

2°°-type UHF C*-algebra
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G-spin chains n ‘Thermodynamic limit’ of local algebras of quantum observables

Quasilocal algebra of Hopf spin chains on 1Z

General case without prescribed Hamiltonians

o dual pair of finite dimensional Hopf C*-algebras: H,H

case of G-spin chains: H = CG, H = C(G)

e quasilocal algebra: A = Ay = ... H=<H=H=H> . ..
two-sided iterated crossed products wrt left Sweedler actions,
|H|>°-type UHF C*-algebra
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G-spin chains ion ‘Thermodynamic limit’ of local algebras of quantum observables

Quasilocal algebra of Hopf spin chains on 1Z

General case without prescribed Hamiltonians

o dual pair of finite dimensional Hopf C*-algebras: H,H
case of G-spin chains: H = CG, H = C(G)

e quasilocal algebra: A = Ay = ... H=<H=H=H> . ..
two-sided iterated crossed products wrt left Sweedler actions,
|H|>°-type UHF C*-algebra

describing models given by any local Hamiltonian in A(L)
Important properties:

e algebraic Haag duality: A(L') n. A= A(L), L C %Z finite
L'=[i,j]" == 3Z\{i— %,i,...,j.j + 5} causal complement
< local algebras on causally separated regions commute
and local algebras saturate the commutants
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G-spin chains ion ‘Thermodynamic limit’ of local algebras of quantum observables

Quasilocal algebra of Hopf spin chains on 1Z

General case without prescribed Hamiltonians

o dual pair of finite dimensional Hopf C*-algebras: H,H

case of G-spin chains: H = CG, H = C(G)

e quasilocal algebra: A = Ay = ... H=<H=H=H> . ..
two-sided iterated crossed products wrt left Sweedler actions,
|H|>°-type UHF C*-algebra

describing models given by any local Hamiltonian in A(L)

Important properties:

e algebraic Haag duality ALY N A= A(L), L C 3Z finite
L'=[ij]" == 3Z\{i—%,i,....j.j+ 3} causal complement
< local algebras on causally separated regions commute
and local algebras saturate the commutants

e integer translation covariance
Z3n—1h€AutA:  1h(Ai(h)) = Aign(h),i € 3Z
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Phase structure Phase equivalence on states

Indication for different phases on S(A)

idea: emergence of different sets of local order/disorder operators
in the irreps 7, : A — B(H.,) induced by pure states w € S(A)

having non-zero ‘vacuum’ expectation values
QeH,,{BeB(H,)}:(Q2,BQ)+#0

P. Vecsernyés Phase structure of G-spin chains



Phase structure Phase equivalence on states Classification c

Indication for different phases on S(A)

idea: emergence of different sets of local order/disorder operators
in the irreps 7, : A — B(H.,) induced by pure states w € S(A)

having non-zero ‘vacuum’ expectation values
QeH,,{BeB(H,)}:(Q2,BQ)+#0

math: emergence of inequivalent local algebra extensions of 7, (.A)
in the irreps 7, : A — B(H,,) induced by pure states w € S(A)
given by the dual observable algebra A9

ALY = mo(AL)) N B(H) 2 mu(A(L)) 1 7a(A) = ma(A(L)
A = AU CBOL)
Lz

measuring inequivalent violations of Haag duality in the irreps
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Phase structure Phase equivalence on state:

Definition of phases on S(.A)

phase equivalence of w,w’ € S(A):
w~ ' if 3¢: AZ — A9, x-algebra isomorphism such that

A1 (A)) = T (A), A A

phases on S(.A): equivalence classes wrt the equivalence relation ~

translation invariant phases: restriction of phases to translation
invariant pure states Sp(A) := {w € S(A) |w =w o}
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Phase structure Phase equivalence on states

Definition of phases on S(.A)

phase equivalence of w,w’ € S(A):
w~ ' if 3¢: AZ — A9, x-algebra isomorphism such that

A1 (A)) = T (A), A A

phases on S(.A): equivalence classes wrt the equivalence relation ~
translation invariant phases: restriction of phases to translation
invariant pure states Sp(A) := {w € S(A) |w =w o}

e phase equivalence ~ is strictly weaker than unitary equivalence ~
T My T = w ~ W', because ¢ := Ad U,

but expectation values of B, ¢(B), B € .A? can be different
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Phase structure C Classification of phases F

Algebraic structures emerging in phase classification

Combination of two algebraic structures generalized from
finite groups — group algebras — Hopf algebras:
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Phase structure Classification of phases F

Algebraic structures emerging in phase classification

Combination of two algebraic structures generalized from
finite groups — group algebras — Hopf algebras:

1. subgroup lattice of a finite group G

— special sublattice of subalgebras in CG:

subgroup algebra lattice of CG

< lattice of left (= right) coideal subalgebras of CG

— lattice of left (right) coideal subalgebras of a Hopf algebra H
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Phase structure Classification of phases F

Algebraic structures emerging in phase classification

Combination of two algebraic structures generalized from
finite groups — group algebras — Hopf algebras:

1. subgroup lattice of a finite group G

— special sublattice of subalgebras in CG:

subgroup algebra lattice of CG

< lattice of left (= right) coideal subalgebras of CG

— lattice of left (right) coideal subalgebras of a Hopf algebra H

2. projective representation U, : G — Aut V of a finite group G
U(g)U(h) = a(g, h)U(gh), a(g, h) € C; satisfying 2-cocycle condition,
cohomology class of 2-cocycles: a ~ o/ if 38 € C4(G) such that

o’(g. h) = B(9)B(h)/B(gh)a(g. h)

— (representation of the) one-sided deformed group algebra CG,,

by a coproduct cocycle « of C(G)

— one-sided deformed finite dimensional Hopf algebra H,,

by a right (left) coproduct cocycle « in the dual Hopf algebra A
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Phase structure

Classification of phases

steps of classification:

1. characterization of the extensions A% (H) D 7, (A(H))
2. determine the phase equivalent characterizations

3. determine the translation invariant phases
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Phase structure ase e 0 s Classification of phases Ferromac

Classification of phases

steps of classification:

1. characterization of the extensions A% (H) D 7, (A(H))
2. determine the phase equivalent characterizations

3. determine the translation invariant phases

Result:

1.a) A9 = +1 27 A)

where B,+ = mu(A(—00,i — D) N (A +1,00)) N B(He)
is a finite dimensional right D-module von Neumann algebra.
D = D(H) is the Drinfeld double of H, if A; ~ H

1. B; 4 ; is isomorphic as a right D-module *-algebra

to a one-sided deformed left coideal subalgebra K of D
by an intermediate right coproduct cocycle (IRC) («, k) of D,
ie. K=(k—=D),.
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Phase structure ase e 0 s Classification of phases Ferromac

Classification of phases

steps of classification:

1. characterization of the extensions A% (H) D 7, (A(H))
2. determine the phase equivalent characterizations

3. determine the translation invariant phases

Result:

1.a) A9 = +1 27 A)

where B,+ = mu(A(—00,i — D) N (A +1,00)) N B(He)
is a finite dimensional right D-module von Neumann algebra.
D = D(H) is the Drinfeld double of H, if A; ~ H

1. B; 4 ; is isomorphic as a right D-module *-algebra

to a one-sided deformed left coideal subalgebra K of D
by an intermediate right coproduct cocycle (IRC) («, k) of D,
ie. K=(k—=D),.

2. w,w’ € §(A) are phase equivalent
iff (o, k) and (o, k') are in the same cohomology class.
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Phase structure C Classification of phases F

Classification of translation invariant phases

3.a A is bosonic, i.e. [By, ;, By 1] = 0if [i —j| > 1
< the IRC («, k) is bosonic, i.e. Ra = a.
(R is the universal R-matrix of the quasitringular D(H).)

3.b A9 is bosonic if w is translation invariant.
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Phase structure e s Classification of phases Ferromac

Classification of translation mvarlant phases

3.a A is bosonic, i.e. [By, ;, By 1] = 0if [i —j| > 1

< the IRC («, k) is bosonic, i.e. Ra = a.

(R is the universal R-matrix of the quasitringular D(H).)
3.b A9 is bosonic if w is translation invariant.

= translation invariant phases are characterized by cohomology
classes of bosonic IRC-s.
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Phase structure Classification of phases F

Classification of translation invariant phases

3.a A is bosonic, i.e. [By, ;, By 1] = 0if [i —j| > 1

< the IRC («, k) is bosonic, i.e. Ra = a.

(R is the universal R-matrix of the quasitringular D(H).)

3.b A9 is bosonic if w is translation invariant.

= translation invariant phases are characterized by cohomology
classes of bosonic IRC-s.

Example 1: G = Zy — N-state Potts quantum chains for N prime
oD(Zy) ~ C - Zy x Zy ~ D(Zn) =

e extensions B,-+%7, ~ (k — D), are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:

— N different 2CC on Zy x Zn

—single 2CC on any of the N + 1 Zx subgroups

— single 2CC on the trivial subgroup (no extension)

P. Vecsernyés Phase structure of G-spin chains



Phase structure e s Classification of phases Ferromac

Classification of translation mvarlant phases

3.a A is bosonic, i.e. [By, ;, By 1] = 0if [i —j| > 1

< the IRC («, k) is bosonic, i.e. Ra = a.

(R is the universal R-matrix of the quasitringular D(H).)
3.b A9 is bosonic if w is translation invariant.

= translation invariant phases are characterized by cohomology
classes of bosonic IRC-s.

Example 1: G = Zy — N-state Potts quantum chains for N prime
oD(ZN) ~ C - Ly x Ty =~ ﬁ(AZN) =

e extensions By ~ (k — D), are given by subgroups

and 2-cocycle cohomology classes (2CC) on them:

— N different 2CC on Zy x Zp

—single 2CC on any of the N + 1 Zy subgroups

— single 2CC on the trivial subgroup (no extension)

e D 5 (m, n) is an anyon with statistics phase exp(2wimn/N)

= only three bosonic/translation invariant phase
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Phase structure ase e ates Classification of phases Ferromac

Translation invariant phases — examples

Example 2: G = Z4 — 4-state Potts quantum chain

OD(Z4) C 74 X Ly >~ 75(24) =

e extensions B,+ i~ (k= A) are given by subgroups

and 2-cocycle cohomology classes (2CC) on them

e D 5 (m, n) is an anyon with statistics phase exp(2rimn/4)

=- bosonic/translation invariant phases with maximal subgroups:
- Z4, Lo X Lo (tWO 2CC), M

— single 2CC on any of the three Z, subgroups

— single 2CC on the trivial subgroup (no extension)
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Phase structure ase e ates Classification of phases Ferromac

Translation invariant phases — examples

Example 2: G = Z4 — 4-state Potts quantum chain

OD(Z4) C 74 X Ly >~ ﬁ(Zﬁ) =

e extensions B,+ i~ (k — D), are given by subgroups

and 2-cocycle cohomology classes (2CC) on them

e D > (m, n) is an anyon with statistics phase exp(2wimn/4)

=- bosonic/translation invariant phases with maximal subgroups:
- Z4, Lo X Lo (tWO 2CC), M

— single 2CC on any of the three Z, subgroups

— single 2CC on the trivial subgroup (no extension)

Example 3: G = Z x Z — spin-3 XYZ- chain

OD(ZZ XZQ)E(C-Zg X Lo XZQXZgﬁ@(ZgXZz)j

e bosonic/translation invariant phases with maximal subgroups:
— five Zo x Z all with two 2CC

— single 2CC on any of the nine Z, subgroups
— single 2CC on the trivial subgroup (no extension)
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Phase structure Cle ‘erromagnetic states

Ferromagnetic states from ferromagnetic elements

o define ferromagnetic elements in a Hopf algebra H as intersection
of positive and positive definite elements: F(H) := H, N HT

o ‘verification: B(g, h) := ¢(g~'h), ¢ € F(C(G)) leads to left
G-invariant ferromagnetic Boltzmann weight on G x G

0 < B(g, h) = B(fg, th) = p(g~'h) < p(e) = B(g,9)
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Phase structure Cle ‘erromagnetic states

Ferromagnetic states from ferromagnetic elements

o define ferromagnetic elements in a Hopf algebra H as intersection
of positive and positive definite elements: F(H) := H, N HT

o ‘verification: B(g, h) := ¢(g~'h), ¢ € F(C(G)) leads to left
G-invariant ferromagnetic Boltzmann weight on G x G

0 < B(g, h) = B(fg, th) = p(g~'h) < p(e) = B(g,9)

« Fourier transformation maps F(H) onto F(H)
H>aw— F(a):=a— x € H, where x € H is the Haar integral

e F(H) is a convex cone, normalization leads to a convex set
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Phase structure Cle ‘erromagnetic states

Ferromagnetic states from ferromagnetlc elements

o define ferromagnetic elements in a Hopf algebra H as intersection
of positive and positive definite elements: F(H) := H, N HT

o ‘verification: B(g, h) := ¢(g~'h), ¢ € F(C(G)) leads to left
G-invariant ferromagnetic Boltzmann weight on G x G

0 < B(g. h) = B(fg, th) = v(g~"h) < »(e) = B(g,g)

e Fourier transformation maps F(H) onto F(H)

H> ar~ F(a) .= a— x € H, where y € H is the Haar integral

e F(H) is a convex cone, normalization leads to a convex set

e A is UHF = unique normalized trace on A: use (power of)
ferromagnetic transfer ‘matrices’ as density metrices

Tiiy () == Vi (OWiy () Viip(f), - f € F(H), f = Z(f)

Vi) (F) = Tkepijrz Ax(F), Wy (F) = [kepijnzss Ac(f)

Piij(F) == limm T (F)™/Te (Tyip (F)™)

wi(=) == limy" Tr(P_n(f)—) (set of states on A is w*-compact =
convergent subsequences, unique? pure? translation invariant?)
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Phase structure Phase sific: es Ferromagnetic states

Ferromagnetic projections and maX|maI bosonlc

extensions

e projections p € Fo(H) := {f € F(H)|1 = (1,f)} are extremal points
o their Fourier transformed p := F(p)/{x, p) € Fo(H) are projections
e their embeddings in the chain commute: [Ai(p), /f( )] =0

= Ti—n.n(f),n € Nis a sequence of decreasing prOJectlons
= the ferromagnetic state wp, is translation invariant pure

P. Vecsernyés Phase structure of G-spin chains



Phase structure val ates sific: es Ferromagnetic states

Ferromagnetic projections and maX|maI bosonlc

extensions

e projections p € Fo(H) := {f € F(H)|1 = (1,f)} are extremal points
o their Fourier transformed p := F(p)/(x, p) € Fo(H) are projections
o their embeddings in the chain commute: [A;(p), /f( )] =0

= Ti—n.n(f),n € Nis a sequence of decreasing prOJectlons

= the ferromagnetic state wp, is translation invariant pure

e K :=D(p)D(p) € D(H) are bosonic IRC projections
(KeK,K)withRIK@K)=K® K

to the (undeformed) maximal bosonic left coideal subalgebras

K — D(H) c D(H)

® wp is contained in the phase characterized by the extension

By~ K — D(H)
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Appendix

(Bosonic) IRCs

Characterization of phases of A = A(H)

@ phases in S(A) (in Sp(.A)) ~ cohomology classes of (bosonic)
intermediate right A-cocycles (IRC) in the quasitriangular
Drinfeld double D = (D(H), R)

(bosonic) IRC in D
@ the pair (w, k) of a partial isometry w € D ® D and a projection
k € Dis an IRC if
w*w = K® K, AK)w=w
S(q*)q:k, q .= S(W1)W2
(e ®id)(w) =k = (id ® g)(w)
(id® A)(w)(1eow)=(Axid)(w)(wx1).

@ an IRC (w, k) is bosonic if Rw = w
@ (w, k) and (w’, k") are cohomologous if 3x € D unitary with
e(x)=1, w =AX")w(x® x).



Appendix

Connection between bosonic IRCs and asymptotic

commutants .44°

If wis a pure a-invariant state on a norm asymtotically
abelian (NAA) algebra (A, ) then (AZ°, a, := Ad U) is SAA (WAA).
@ A C A ifwe S
@ transportability if w € S
Ir1 A9(i+ 5, 0) — AZ(i — §,i— 1) right D-module *-algebra
isomorphism:
7'_1(8)ZZBTFW(Ag)(B-)(ﬁ)7 A@ EA(/—%,I,LXﬁ eD
@ o, o7~ right D-module *-algebra automorphism of A9 (i + 3, /)
= 3x € D unitary A(xX)w = w(x ® X)
= Specx? C (Specx)? = Specx = In€ N : x" =
@ generalized antiferromagnets (x # 1) but no quasicrystals
x"#£1, meN)ifwe S
@ A is local (Haag dual) if w € Sy
(a,"®@id)(Fi3)Fir(a,"@id)(Fi3)Fiz =13 @ W*Rw =13 k@ K
Fio = ®(k—£5) ® X5 € A3(i + ,1) ® D partial isometry
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