This term

Conformal Field Theory, Wednesday 10:30, room: 2.105.

Previous years

Integrable field theories 2015
Integrable methods in the gauge/gravity duality II 2013
Integrable methods in the gauge/gravity duality I 2012
String theory I 2011
Integrable field theories 2010
Boundary field theories 2009
Perturbed conformal field theories 2006, 2008
Konform térelméletek 2006, 2007
Mértékelméletek geometriai megalapozása 2004
Differenciálgeometria módszerek a kvantummechanikában 1998, 2000, 2002
Differenciálgeometria módszerek a mechanikában 1997, 1999, 2001
Elméleti Fizika matematikusoknak 1997-1999
Elméleti fizika és matematika gyakorlatok 1991-1996

Integrable methods in the gauge/gravity duality I

Topics covered:
  1. superconformal algebra
  2. Green-Schwarz string as a coset model
  3. integrability of the classical superstring
  4. lightcone gauge fixing
  5. ecompactification limit, perturbative S-matrix
  6. symmetries, exact S-matrix

Integrable methods in the gauge/gravity duality II

Topics covered:
  1. centrally extended su(2|2) algebra
  2. exact S-matrix, dispersion relation
  3. bound-states
  4. asymptotic Bethe Ansatz
  5. Luscher correction
  6. Thermodynamic Bethe Ansatz

Integrable field theories

The aim of the course is to introduce methods, used to solve classical and quantum integrable models, based on the example of the sine (sinh)-Gordon field theory.

  1. Classical integrable models: multiparticle solutions, time delays, conserved charges, integrability
  2. Quantum integrable models:
    1. Conformal quantization scheme: free boson CFT, its perturbations and their integrability
    2. Lagrangian quantization scheme: scattering matrix, its connection to correlators and its analytical structure
    3. Bootstrap quantization scheme: properties of the integrable S-matrix, Zamolodchikov-Fateev algebra, bootstrap program
    4. Quantization via lattice regularizations: inhomogenous XXZ model, its solution and double scaled limit
    5. Correlation functions from form factors: form factor boostrap
  3. Quantum integrable models in finite volume: Bethe-Yang equations, Lüscher corrections, Thermodynamic Bethe Ansatz