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What is a representation?

• the mapping without the mechanism, described in 
information-theoretic terms



Forms of representations

Cummins, 1989, Meaning and Mental Representation, MIT Press



Representation is not magical
• Consequently, you can always think in 

terms of it 
• Considering the statistical mapping 

from one system to another 
• Without necessarily considering the 

mechanisms giving rise to the mapping 
• Examples 

• tachograph 
• cellular dynamics



What do we need to handle knowledge?

• A language in which we can express the 
knowledge about the environment the 
brain has to handle 

• the requirements of such a language will 
likely be different from those of a language 
used for conversations and literature 

• we will use it to model the procedures with 
which the brain builds a model of its 
environment



The need for formality
• animals and humans have to store information 

about how the world works 
• this will be a set of propositions 
• to handle such sets mathematically, we need a 

way to formalise propositions  
• we could use natural languages like English 

• they contain all sorts of ambiguities  
• they are unnecessarily complex to model 

simple scenarios, as they address real-
world context 
• we’d like to start modelling simple, 

experimentally well-testable problems 
• low-level perceptual phenomena, such as 

properties of a visual stimulus (textures, 
etc.) are cumbersome to describe

Pointer

“Time flies like an arrow.”
Groucho Marx



Elements of formal languages
• we have a fixed set of symbols (words of the language) 
• from these symbols we can assemble strings 

(sentences) 
• we have a set of rules that decide if a string is a valid 

sentence (grammar) 
• grammatically correct sentences are called well-

formed strings  
• we have a set of sentences that we choose as axioms 

• the axioms define what your formal language can talk 
about. Symbols and grammatical rules are the form 
and axioms are the (first grain of) content 

• formal languages with axioms are also called formal 
systems



Examples of formal languages
• geometry 

• symbols: points, lines and their relations 
• axioms: Euclid (or Bolyai-Gauss, etc.) 
• defined as a formal language by Alfred Tarski in 1959 

• mathematics 
• symbols: sets, elements and relations 
• axioms: for example, the Zermelo-Fraenkel set theory 

with the axiom of choice (ZFC) - there are many 
others, depending on what kind of mathematical 
problems you want to handle 

• programming languages 
• music



Inference in formal languages
• Inference is the procedure with which we can 

produce new sentences from the axioms 
• Axioms are the knowledge base, and with 

inference rules, we create new knowledge 
• A formal language is completed by the set of 

rules that define how we may do so 
• The strings that can be produced by the 

(repeated application of multiple) inference 
rules are called theorems 
• there are well-formed strings that are not 

theorems



Examples of formal inference

• mathematics 
• proofs 

• programming languages 
• interpretation/compilation of the code
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What formal language should we use?

• There are infinitely many of them 

• Some formal languages are explicitly designed to handle human 
knowledge in an intuitive way 

• These are called logics, and their strings (sentences) propositions 

• Symbols of logical languages always include certain relationship operators 

• NOT, AND, OR, denoted by  

• these allow for a special interpretation of the strings: they can be 
regarded as being true or false 

• implication symbol: a shorthand notation 

¬,^,_

¬A _B = A ! B



Truth and falsity in logic

• true proposition -> theorem, given the axioms and 
the inference rules 

• false proposition -> the negation (NOT + the 
proposition) is a theorem 

• undecidable propositions -> not theorems, and 
their negation is also not a theorem



Logical languages
• Propositional logic: symbols represent whole natural language statements 

• X = “In summer it rains a lot” Y = “It is summer” Z = “It is raining” 

• sentences:  (X∧ Y) ∨¬Z 

• Predicate logic: statements can be formulated in a compositional way 

• symbols representing elements of a set of objects - e.g. animals 

• symbols representing properties and relationships of object - predicates 

• Predator(dog), Eats(fox,rabbit) 

• symbols representing variables that may stand for any object - x,y 

• symbols to tell wether we talk about all possible values of a variable or only one - quantors: 

• ∀x - we state the following proposition for all possible values of the variable x

• ∃x - there exists at least one value of the variable x for which the proposition holds 

• sentences:  ∀x Predator(x) → Eats(x,rabbit)



Inference in logic
• In logical languages, inference rules can be defined as intuitive ways to find out 

whether a proposition is true 

• axiom set: AS = {All greeks wear togas. Socrates is Greek.} 

•  proposition: X = {Socrates wears a toga.} 

• formalisation in predicate logic 

• basis set: humans 

• predicate symbols: Greek(x), WearsToga(x) 

• AS =    x Greek(x) -> WearsToga(x), Greek(Socrates) 

• X = WearsToga(Socrates) 

• Inference rule: if    x Pred1(x) -> Pred2(x)  and  Pred1(A)  then Pred2(A) 

• There are more complicated inference rules that can decide whether a proposition is a 
theorem more effectively

Pointer
Incompleteness theorems
http://www.scottaaronson.com/
democritus/lec3.html
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The neuron as a logical device
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A fairer treatment of undecidable sentences
• AS = {All greeks wear togas. Socrates is Greek.}, X = {Socrates wears a toga.} 

• this is a theorem 

• what is our intuition about propositions like this? 

• X = {Achilles wears a toga.} Y = {Seamus wears a toga.} 

• both are undecidable 

• but we see that if we new whether Achilles and Seamus were Greeks, the 
propositions would be decidable. 

• we don’t now this, but we might have additional knowledge about the world that 
we can include in the axiom set: 

• AS’ = {All greeks wear togas. Socrates is Greek. One out 600 people is 
Greek. 9 out of 10 people called Achilles are Greek. 1 out of 10000 people 
called Seamus is Greek. Only 1 out of 100 non-Greeks wears a toga.} 

• X and Y are just as undecidable as before 

• but we certainly have an idea about X being closer to a theorem than Y
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Compression of observations
• we cannot store every detail of all our memories - e.g. once I got bit by a 

white dog, once by a black one 

• it would be too much data (even in hyperthymesia) 

• it would be unnecessarily clumsy to access it 

• we couldn’t generalize - wouldn’t know what to expect when a brown dog 
shows up 

• I can compress well when I’m aware of typical regularities

given: ~100000 Byte

“untidy room with puma”

useful: ~40 Byte



Lossy compression
• Loosing information is a good thing

?



How to compress well?
• shorter 

descriptions 
should be used for 
more common 
cases 

• to compress well, 
you have to know 
what is typical, and 
how likely different 
observations are



Why calculate with uncertainty?

• Why don’t we just use the most likely value?



The need to handle uncertainty in 
perception

• perceptual indetermination 
is ubiquitous 

• generalisability is key to 
function 

• if a brown dog bit me on 
Monday and a black dog 
bit me on Tuesday what 
will the spotty dog do on 
Wednesday?



Plausibility of a proposition

• In binary logic, a proposition is either a theorem of 
a certain axiom set, it contradicts it, or we can say 
nothing 

• Let’s extend this 3-valued evaluation into an infinite-
valued one that can describe the plausibility of the 
proposition being a theorem by arbitrary precision



Numerical representation
• We can express any proposition as the assignment of 

a numerical value to a variable  

• “The river is 3.4 meters wide.” 

• “This animal belongs to category 1.”

#1 #2



What we want our plausibility measure to be like?

• the plausibility of a proposition X given an axiom set AS should 
be a real number, let’s denote it by Pb(X | AS) 

• consistency: starting from the same information (axioms), we 
should get the same plausibility value, no matter in what order 
we applied the inference rules (validly) 

• the direction of change should be intuitive: if Pb(X | AS) 
increases, then Pb(X∧Y | AS) should also increase, and Pb(¬X | 
AS) should decrease 

• Cox theorem says that if these are fulfilled, we obtain 
probability calculus for the description of plausibilities: Pb = Pr 

• (we need slightly more precise versions of the requirements 
for this to be technically true, but the basic idea is the same)

Pointer



Probability calculus
• we decide that the probability of a theorem (certainly true 

proposition) is 1. We don’t lose any expressive power doing this. 

• consequence: the probability of all mutually exclusive 
propositions sum up to 1  
 
 

• we say that we are looking for the probability of X conditioned 
on AS 

• we have two inference rules to derive the probabilities of 
propositions using the already known ones

Pr(X | AS) + Pr(¬X | AS) = 1



Product rule

• what’s the probability of Bill watching a football game at any time? 

• there’s a 0.3 probability of a game going on 

• if there’s a game, the probability of Bill watching it is 0.7 

• the answer is 0.21 

• a direct consequence of this rule is the definition of conditional 
probability  

Pr(X ^ Y | AS) = Pr(X | Y ^AS)Pr(Y | AS)

Pr(X | Y ^AS) =
Pr(X ^ Y | AS)

Pr(Y | AS)



Sum rule

• x - rain, y - night or day 

• let’s say that the probability of raining at night is 0.3, at daylight 0.2 

• let’s say the night lasts for 10 hours - Pr(y=night) ~ 0.4 

• according to the product rule:  

• Pr(y=night,x=rain) = 0.3 x 0.4,  Pr(y=day,x=rain) = 0.2 x 0.6 

• according to the sum rule, the probability of rain regardless of the time of 
the day is 0.24 

• also called marginalisation

Pr(x = 1 | AS) =
NX

i=1

Pr(x = 1 ^ y = i | AS)

X X Yi



Bayes theorem

• another direct consequence of the product rule 
 
 
 
 

• X - someone has TB 

• Y - a test for TB gives a positive result 

• we know that the test gives a positive IF the patient has TB with 0.9 probability 

• what is the probability of someone has TB IF the test came out positive? 

• have to take into account base rates - how probable a priori is it for someone to have 
TB, and how probable is it for the test to give a positive in any condition 

• a Bayesian is someone or something using probability theory - no more, no less

Pr(X | Y ^AS) =
Pr(Y | X ^AS)Pr(X | AS)

Pr(Y | AS)



Notational simplicity
• that makes things more complicated 

• we often leave conditions implicit 

• Pr(X) means Pr(X | AS), where AS is the axiom set 
(knowledge base), all the information that was taken into 
account when quantifying the probability of X 

• as the knowledge base is always in the condition of all 
probabilities related to a given problem, this omission does 
not cause any technical problem 

• but we shouldn’t forget that it’s always there



Variability in the neural responses

• The fact that neurons respond 
differently to the same stimulus 
gives a hint about the nervous 
system handling uncertainty 

• By averaging these responses, 
we get the RFs

• But when we are trying to figure 
out cortical computations, we 
can postulate that this 
variability serves a purpose.

• We can try to predict this 
variability assuming that the 
brain conducts probabilistic 
inference.

V1 membrane potentials 

Finn et al, Neuron 2007; Churchland et al, Nat Neurosci 2010

200 ms
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window over the duration of the trial. The 
Fano factor has been used extensively to 
characterize neural variability (for example, 
see refs. 17–19). The Fano factor is influenced 
both by variability arising from spiking noise 
and by across-trial variability in the under-
lying firing rate20. Most prior work assumes 
that the underlying firing rate is similar 
across trials and uses the Fano factor to 
assess the statistics of spiking noise, which 
are roughly Poisson (Fano factor 1) for 
most of cortex. We began with the assump-
tion that spiking noise is roughly Poisson and 
we used the Fano factor to assess across-trial 
 variability in the underlying rate. We inter-
preted a Fano factor greater than 1 as being 
an indication of across-trial firing-rate vari-
ability. We interpreted changes in the Fano 
factor as reflecting changes in across-trial 
firing-rate variability9,20,21. Although this 
approach assumes Poisson spiking noise, 
it is reasonably robust to violations of that 
assumption (it is sufficient that spiking-noise 
variance scale linearly with the mean; the 
slope needn’t be unity). To begin, we exam-
ined how the Fano factor behaves across a 
variety of cortical areas.

We computed the mean firing rate and the 
Fano factor for ten datasets from seven cortical  
areas of the macaque monkey (Fig. 3): V1, V4, 
MT, the lateral intra-parietal area (LIP), the 
parietal reach region (PRR), dorsal premotor 
cortex (PMd) and orbitofrontal cortex (OFC). Responses were to 
 various visual stimuli or, for OFC, to juice reward. For each area, the 
Fano factor was averaged across neurons and conditions. This is similar 
to what was done for the membrane potential analysis and reflects both 
a desire for statistical power and the expectation that variability may 
change for both preferred and nonpreferred stimuli (as in Fig. 2a,b).

In every case, stimulus onset drove a decline in firing-rate vari-
ability as assessed by the Fano factor (all P < 0.02). This is notable, 
given the diversity of areas, stimuli and behavioral states. Variability 
declined during responses to simple visual stimuli, during operantly 

conditioned responses (PRR and PMd) and during reward-driven 
responses (OFC). The variability decline was present regardless of 
whether the monkey was anaesthetized (V1 and two of the four the 
MT datasets; Fig. 3, bottom), passively viewing (V4) or performing 
a task (the other six datasets). For two of the MT datasets (Fig. 3,  
bottom), stimulus onset occurred in two stages: pattern onset and 
motion onset. Both events drove a decline in variability, although only 
the more effective moving stimulus drove a sustained decline.

We previously proposed that declining variability in premotor  
cortex is related to the progress of motor preparation9. The changes 
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Figure 3 Changes in firing-rate variability for 
ten datasets (one per panel). Insets indicate 
stimulus type. Data are aligned on stimulus 
onset (arrow). For the two bottom panels  
(MT area/direction and MT speed), the dot 
pattern appeared at time zero (first arrow)  
and began moving at the second arrow. The 
mean rate (gray) and the Fano factor (black  
with flanking s.e.) were computed using a  
50-ms sliding window. For OFC, where response 
amplitudes were small, a 100-ms window was 
used to gain statistical power. Analysis included 
all conditions, including nonpreferred. The 
Fano factor was computed after mean matching 
(Fig. 4). The resulting stabilized means are 
shown in black. The mean number of trials  
per condition was 100 (V1), 24 (V4),  
15 (MT plaids), 88 (MT dots), 35 (LIP),  
10 (PRR), 31 (PMd), 106 (OFC), 125 (MT direction 
and area) and 14 (MT speed).
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 behavioral state. The decline was also present in the correlated firing-rate  
variability of neurons recorded using implanted multi-electrode arrays. 
Finally, we determined how recently developed methods, when applied 
to simultaneous multi-electrode recordings, can reconstruct the vari-
able evolution of firing rates on individual trials.

RESULTS
Across-trial variability in the membrane potential
Stimuli and task events can alter the structure and correlation13 of 
membrane-potential variability. In particular, visual stimuli drive 
a reduction in membrane potential (Vm) variability in cat primary 
visual cortex (V1) that is largely independent of stimulus orienta-
tion3,4. We re-analyzed previously reported data4 to determine the 
time course of this effect (Fig. 2). Stimulus onset drives an immediate 
decline in Vm variability. This decline occurs even for nonpreferred 
stimuli that elicit little change in mean Vm (see also refs. 3,4). Average 
variability (across all neurons and conditions) declined rapidly fol-
lowing stimulus onset and then remained at a rough plateau (Fig. 2c). 
The variability in question was across-trial variability, with a fairly 
long autocorrelation. When Vm was low (or high), it tended to stay 
low (or high) for tens to hundreds of milliseconds.

The relationship between intracellularly recorded Vm variability 
and extracellularly recorded firing-rate variability is likely to be 
 complex, given the nonlinear and dynamic relationship between  

Vm and firing rate (for example, considerable Vm variability 
occurs below threshold). One nevertheless expects across-trial  
Vm variability to produce across-trial firing-rate variability. A larger 
question is whether the observed decline in variability is specific to V1 
or whether it reflects a broader phenomenon. The latter is suggested 
by both the presence of a similar effect in premotor cortex9,10 and 
recent theoretical work11,12.

Addressing these issue requires quantifying firing-rate variability 
in extracellular recordings. Although quantifying Vm variability is 
straightforward, quantifying firing-rate variability is more compli-
cated. Extracellularly recorded spike trains are usually described in 
terms of an underlying firing rate (often termed ) observed via a 
noisy point process (for example, Poisson) that produces spikes. 
It should be stressed that this conception captures the statistics of 
neurons embedded in a network14,15; spike generation at the axon 
hillock is not responsible for the noisy spiking-process statistics16, 
nor is firing rate synonymous with membrane potential. Instead, 
the underlying firing rate can be thought of as the average response 
of many similarly tuned neurons or as the average response of one 
neuron across truly identical trials. Of course, repeated trials are not 
guaranteed to be truly identical; the underlying firing rate may differ 
somewhat. It is precisely this variability that we wished to capture, 
while ignoring variability arising from the roughly Poisson spiking. 
Spiking variability may have interesting structure of its own, but for 
present purposes, it acts as noise.

Poisson spiking-process noise can severely mask underlying firing-
rate variability (Supplementary Fig. 1). It is therefore rarely possi-
ble to discern changes in firing-rate variability by eye. We used two 
approaches to isolate the underlying firing-rate variability from the 
variability contributed by spiking noise. The first approach employed a 
modified method for computing the Fano factor. This method is appli-
cable to conventionally recorded single-neuron data, allowing analysis 
of a large number of existing datasets. The second approach used fac-
tor analysis to assess covariance in large-scale simultaneous recordings. 
These methods are technically very different, but both are intended to 
assess the same thing: the degree of across-trial firing rate variability, 
independent of the contribution of noisy spiking statistics.

A variability decline across multiple cortical areas
We first employed the Fano factor, which is the spike-count variance 
divided by the spike-count mean. Counts were made in a sliding 

a b c
Input × 4
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Figure 1 Schematic illustration of possible types of across-trial firing 
rate variability. (a–c) We suppose that the same stimulus is delivered 
four times (four trials) yielding four different responses. a and b were 
constructed to have the same mean response across the four trials. 
Stimulus-driven decline in variability is shown in a. Stimulus-driven rise 
in variability is shown in b. Stimulus-driven decline in variability with little 
change in mean rate is shown in c.

Figure 2 Analysis of intracellularly recorded membrane potential from cat V1. Stimuli were drifting sine-wave gratings presented at different 
orientations and frequencies. Spikes were removed before further analysis. Analysis employed a 50-ms sliding window (box filter) to match the 50-ms 
window used for the Fano factor analysis. Similar results were obtained with a shorter (5-ms) or longer (100-ms) window. (a) Data from one example 
neuron. Vm for individual trials (black) is plotted on top of the mean (gray). Data are shown when no stimulus was delivered, for a nonpreferred stimulus 
and for a preferred stimulus. The arrow marks stimulus onset. (b) Similar plot for a second example neuron. (c) The mean and variance of Vm across all 
52 neurons and all stimuli. Flanking traces give s.e.m.
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V1 spike trains 

MONKEY STRIATE CORTEX
showed little or no directional preference. Even when responses were highly
asymmetrical, the less effective direction of movement usually evoked
some minimal response (see Text-fig. 2), but there were a few examples in
which the maintained activity was actually suppressed.

Individual complex cells differed markedly in their relative responsive-
ness to slits, edges, or dark bars. The majority responded very much better
to one than to the other two, but some reacted briskly to two of them, and
a few to all three. For a cell that was sensitive to slits, but not to edges, the
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Text-fig. 2. Responses of a complex cell in right striate cortex (layer IV A) to
various ori6ntations of a moving black bar. Receptive field in the left eye indicated
by the interrupted rectangles; it was approximately i x I' in size, and was situated
40 below and to the left of the point offixation. Ocular-dominance group 4. Duration
of each record, 2 sec. Background intensity 1-3 log10 cd/M2, dark bars 0.0 log cd/M2.

responses increased as slit width was increased up to some optimal value,
and then they fell off sharply; the optimum width was always a small
fraction of the width of the whole field. For complex cells that responded
best to edges, some reacted to one configuration and also to its mirror

219

) by guest on February 13, 2011jp.physoc.orgDownloaded from J Physiol (

moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).

Response Reliability in Different V1 Layers

To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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Figure 2. Distributions of Fano factors in individual V1 layers. The medians (gray bars)
and the interquartile ranges (error bars) are displayed. The number of cells sampled
from each layer is displayed to the right of each bar.
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Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
show responses without compensation for eye position while the upper plots show responses with timing computationally adjusted for eye position post hoc. (A) Responses to
repeated forward and back sweeps of an optimally oriented bar (120! from horizontal, tr. 13) across the receptive field of a complex cell located in layer 2/3. There were no
saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
were near threshold and were quite variable. Other conventions are as in Figure 1.
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moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).
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To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
show responses without compensation for eye position while the upper plots show responses with timing computationally adjusted for eye position post hoc. (A) Responses to
repeated forward and back sweeps of an optimally oriented bar (120! from horizontal, tr. 13) across the receptive field of a complex cell located in layer 2/3. There were no
saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
were near threshold and were quite variable. Other conventions are as in Figure 1.
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Probability theory

Consistent way to handle  
uncertain knowledge

Efficient compression 
of observations

A way to handle neural variability



Sidenote - interpretations of probability

• Frequentist 

• probability can be interpreted in repeated experiments as the relative 
frequency of an outcome among all trials 

• Information-based (Bayesian, Laplacian) 

• probability describes the uncertainty of the information an observer has 
about some phenomenon 

• Subjective (de Finetti) 

• probability represents  
personal beliefs 

• Logical (objective, Jaynes)

Pointer
How quantum mechanics 
relates to probability theory?
http://www.scottaaronson.com/
democritus/lec9.html

Pointer
Kolmogorov axioms



Sidenote - other attempts to quantify 
uncertainty

• Null hypothesis significance testing 

• a heuristic to assess the plausibility of a 
proposition using some elements of probability 
theory

• you can do them by pencil and paper if needed

• Fuzzy logic

• According to the Cox theorem, these either end 
up with the same plausibilities as probability 
theory, or they become inconsistent at some 
point



The way forward
• Now we have a framework of handling knowledge that we 

introduced as a natural extension of logic to uncertain cases 

• coincidentally, this happens to be probability calculus, for 
which there is a vast amount of techniques readily 
available 

• We have to develop tools to formalise real problems of 
perception (representation, inference and learning) in terms 
of probability theory 

• Then we can move on to make predictions about behaviour 
and ultimately neural activity


