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What Is a representation”

* the mapping without the mechanism, described In
information-theoretic terms




Forms of representations
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Cummins, 1989, Meaning and Mental Representation, MIT Press



Representat

lon Is not magical

» Consequently, you can always think in

terms of it

« Considering-

he statistical mapping

from one sys

« Without nece
mechanisms

 Examples

» tachograph

'em to another

ssarily considering the
giving rise to the mapping

» cellular dynamics



What do we need

to handle knowledge”

e A language in which we can express the

Knowledge aboL

t the environment the

orain has to handle

* the requirements of such a language will
ikely be different from those of a language
used for conversations and literature

e we will use it to model the procedures with
which the brain builds a model of its

environment



The need for formality

animals and humans have to store information Mo Wfes e 217 @ Tem”
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this will be a set of propositions
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to handle such sets mathematically, we need a
way to formalise propositions

we could use natural languages like English
e they contain all sorts of ambiguities

® they are unnecessarily complex to model
simple scenarios, as they address real-
world context

e we'd like to start modelling simple,
experimentally well-testable problems

® |ow-level perceptual phenomena, such as
properties of a visual stimulus (textures,

. GODEL.ESCHER,BACH:
etc.) are cumbersome to describe an Bl Gutlos Beal



Elements of formal languages

e we have a fixed set of symbols (words of the language)

e from these symbols we can assemble strings
(sentences)

e we have a set of rules that decide if a string is a valid
sentence (grammar)

e grammatically correct sentences are called well-
formed strings

e we have a set of sentences that we choose as axioms

e the axioms define what your formal language can talk
about. Symbols and grammatical rules are the form
and axioms are the (first grain of) content

e formal languages with axioms are also called formal
systems



Examples of formal languages

geometry

e symbols: points, lines and their relations

e axioms: Euclid (or Bolyai-Gauss, etc.)

e defined as a formal language by Alfred Tarski in 1959
mathematics

e symbols: sets, elements and relations

e axioms: for example, the Zermelo-Fraenkel set theory
with the axiom of choice (ZFC) - there are many
others, depending on what kind of mathematical
problems you want to handle

programming languages

MusSIC



Inference in formal languages

* |nference is the procedure with which we can
oroduce new sentences from the axioms

e Axioms are the knowledge base, and with
inference rules, we create new knowledge

e A formal language is completed by the set of
rules that define how we may do so

 [he strings that can be produced by the
(repeated application of multiple) inference
rules are called theorems

* there are well-formed strings that are not
theorems



Examples of formal inference

e mathematics
® Droofs
® programming languages

e interpretation/compilation of the code



* Formalisation of knowledge as logic



What formal language should we use”

e There are infinitely many of them

« Some formal languages are explicitly designed to handle human
kKnowledge in an intuitive way

* These are called logics, and their strings (sentences) propositions
* Symbols of logical languages always include certain relationship operators
« NOT, AND, OR, denoted by —, A,V

» these allow for a special interpretation of the strings: they can be
regarded as being true or false

 implication symbol: a shorthand notaton — AV B = A — B



Truth and talsity in logic

true proposition -> theorem, given the axioms and
the inference rules

false proposition -> the negation (NOT + the
proposition) is a theorem

undecidable propositions -> not theorems, and
their negation is also not a theorem



Logical languages

* Propositional logic: symbols represent whole natural language statements
e X ="Insummer itrains alot” Y = “lt is summer” Z = “It is raining”
e sentences: (XA Y) v-Z
* Predicate logic: statements can be formulated in a compositional way
e symbols representing elements of a set of objects - e.g. animals
e symbols representing properties and relationships of object - predicates
* Predator(dog), Eats(fox,rabbit)
e symbols representing variables that may stand for any object - x,y
e symbols to tell wether we talk about all possible values of a variable or only one - quantors:

e VX - we state the following proposition for all possible values of the variable x
e 3x - there exists at least one value of the variable x for which the proposition holds

e sentences: vx Predator(x) — Eats(x,rabbit)



Inference In logic

* |In logical languages, inference rules can be defined as intuitive ways to find out
whether a proposition is true

e axiom set: AS = {All greeks wear togas. Socrates is Greek.}

e proposition: X = {Socrates wears a toga.}

Pointer
* formalisation in predicate logic Incompleteness theorems
http://www.scottaaronson.com/
democritus/lec3.html

* pbasis set: humans

e predicate symbols: Greek(x), WearsToga(x)

AS =\V/>< Greek(x) -> WearsToga(x), Greek(Socrates)

X = WearsToga(Socrates)

Inference rule: if \V/x Pred1(x) -> Pred2(x) and Pred1(A) then Pred2(A)

* There are more complicated inference rules that can decide whether a proposition is a
theorem more effectively



The neuron as a logical device
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A fairer treatment of undecidable sentences

« AS = {All greeks wear togas. Socrates is Greek.}, X = {Socrates wears a toga.}
 this is a theorem

e what is our intuition about propositions like this?
X ={Achilles wears atoga.} Y = {Seamus wears a toga.}

e pboth are undecidable

 put we see that if we new whether Achilles and Seamus were Greeks, the
propositions would be decidable.

e we don’t now this, but we might have additional knowledge about the world that
we can include in the axiom set:

 AS' = {All greeks wear togas. Socrates is Greek. One out 600 people is
Greek. 9 out of 10 people called Achilles are Greek. 1 out of 10000 people
called Seamus is Greek. Only 1 out of 100 non-Greeks wears a toga.}

« Xand Y are just as undecidable as before

e pbut we certainly have an idea about X being closer to a theorem than Y



* Dealing with uncertain knowledge



Compression of observations

e we cannot store every detail of all our memories - e.g. once | got bit by a
white dog, once by a black one

e it would be too much data (even in hyperthymesia)
* it would be unnecessarily clumsy to access it

e we couldn't generalize - wouldn't know what to expect when a brown dog
shows up

e | can compress well when I'm aware of typical regularities

‘untidy room with puma’”

given: ~100000 Byte useful: ~40 Byte



| OSSy compression

* Loosing information is a good thing




How to compress well?
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* shorter
descriptions
should be used for
more common
cases

* to compress well,
you have to know
what Is typical, and
how likely different
observations are



Why calculate with uncertainty?

 Why don't we just use the most likely value®




The need to handle uncertainty In
perception

e perceptual indetermination
IS ubliquitous

e generalisability is key to
function

e |f a brown dog bit me on
Monday and a black dog
bit me on Tuesday what
will the spotty dog do on
Wednesday?




Plausibility of a proposition

* |In binary logic, a proposition is either a theorem of
a certain axiom set, it contradicts it, or we can say

nothing

* |et's extend this 3-valued evaluation into an infinite-
valued one that can describe the plausibility of the
proposition being a theorem by arbitrary precision



Numerical representation

 We can express any proposition as the assignment of
a numerical value to a variable

e “The river is 3.4 meters wide.”

 “This animal belongs to category 1.”




What we want our plausibility measure to be like?

the plausibility of a proposition X given an axiom set AS should
be a real number, let’'s denote it by Pb(X | AS)

Pointer

consistency: starting from the same information (axioms), we
should get the same plausibility value, no matter in what order
we applied the inference rules (validly) Probability Theory

The Logic of Science

E. T.JAYNES

the direction of change should be intuitive: if Pb(X | AS)
increases, then Pb(XAY | AS) should also increase, and Pb(—X |

AS) should decrease

Cox theorem says that if these are fulfilled, we obtain
probability calculus for the description of plausibilities: Pb = Pr

* (we need slightly more precise versions of the requirements
for this to be technically true, but the basic idea is the same)



Propabllity calculus

we decide that the probability of a theorem (certainly true
proposition) is 1. We don'’t lose any expressive power doing this.

conseqguence: the probability of all mutually exclusive
propositions sum up to 1

Pr(X | AS) + Pr(-X | AS) =1

we say that we are looking for the probability of X conditioned
on AS

we have two inference rules to derive the probabilities of
propositions using the already known ones



Product rule

Pr(X AY | AS) = Pr(X | Y A AS)Pr(Y | AS)

e what's the probability of Bill watching a football game at any time?
e there's a 0.3 probability of a game going on
e |f there's a game, the probability of Bill watching it is 0.7
e the answer is 0.21

e a direct consequence of this rule is the definition of conditional
probabillity

Pr(X NY | AS)
Pr(Y | AS)

Pr(X |Y NAS) =



Sum rule

X N X Y,
Priz=1[AS)=> Pr(z=1Ay=i|AS)

1=1

X - rain, y - night or day

let’'s say that the probability of raining at night is 0.3, at daylight 0.2
let’s say the night lasts for 10 hours - Pr(y=night) ~ 0.4

according to the product rule:

* Pr(y=night,x=rain) = 0.3 x 0.4, Pr(y=day,x=rain) = 0.2 x 0.6

according to the sum rule, the probability of rain regardless of the time of
the day is 0.24

also called marginalisation



Bayes theorem

e another direct consequence of the product rule

Pr(Y | X NAS)Pr(X | AS)
Pr(Y | AS)

Pr(X |Y ANAS) =

X - someone has 1B

Y - a test for TB gives a positive result

we know that the test gives a positive |F the patient has TB with 0.9 probability

what is the probability of someone has TB IF the test came out positive”?

have to take into account base rates - how probable a priori is it for someone to have
1B, and how probable is it for the test to give a positive in any condition

e a Bayesian is someone or something using probability theory - no more, no less



Notational simplicity

that makes things more complicated

we often leave conditions implicit

Pr(X) means Pr(X | AS), where AS is the axiom set
(knowledge base), all the information that was taken into
account when quantitying the probability of X

as the knowledge base is always in the condition of all

probabillities related to a given problem, this omission does
not cause any technical problem

but we shouldn't forget that it's always there



Variablility in the neural responses

V1 spike trains

0 50 100 150

Gur & Snodderly, Cereb Cortex 2006

V1 membrane potentials
—~ —90

>
é
e ég
= _70

200 ms

Finn et al, Neuron 2007; Churchland et al, Nat Neurosci 2010

The fact that neurons respond
differently to the same stimulus
gives a hint about the nervous
system handling uncertainty

By averaging these responses,
we get the RFs

But when we are trying to figure
out cortical computations, we
can postulate that this
variability serves a purpose.

We can try to predict this
variability assuming that the
brain conducts probabilistic
inference.



Consistent way to handle Efficient compression
uncertain knowledge of observations

Probability theory

A way to handle neural variability



Sidenote - interpretations of probabillity

Pointer

. Frequentist Kolmogorov axioms

e probability can be interpreted in repeated experiments as the relative
frequency of an outcome among all trials

* |Information-based (Bayesian, Laplacian)

e probability describes the uncertainty of the information an observer has
about some phenomenon

« Subjective (de Finetti) Pointer

How quantum mechanics
relates to probability theory?
http://www.scottaaronson.com/
democritus/lec9.html

e probabillity represents
personal beliefs

* Logical (objective, Jaynes)



Sidenote - other attempts to quantify
uncertainty

e Null hypothesis significance testing

® a heuristic to assess the plausibility of a
proposition using some elements of probability
theory

e you can do them by pencil and paper if needed
* Fuzzy logic

e According to the Cox theorem, these either end
up with the same plausibilities as probability
theory, or they become inconsistent at some
point



The way forwaro

 Now we have a framework of handling knowledge that we
introduced as a natural extension of logic to uncertain cases

* coincidentally, this happens to be probability calculus, for
which there is a vast amount of techniques readily
available

* We have to develop tools to formalise real problems of

perception (representation, inference and learning) in terms
of probability theory

 Then we can move on to make predictions about behaviour
and ultimately neural activity



