BSCS 2019 - Neural Computation

II - Knowledge representations

Mihály Bányai banyai.mihaly@wigner.mta.hu <u>http://golab.wigner.mta.hu/people/mihaly-banyai/</u>

- Formal languages
- Formalisation of knowledge as logic
- Dealing with uncertain knowledge

- Formal languages
- Formalisation of knowledge as logic
- Dealing with uncertain knowledge

What is a representation?

the mapping without the mechanism, described in information-theoretic terms

Forms of representations

Cummins, 1989, Meaning and Mental Representation, MIT Press

Representation is not magical

- Consequently, you can always think in terms of it
 - Considering the statistical mapping from one system to another
 - Without necessarily considering the mechanisms giving rise to the mapping
- Examples
 - tachograph
 - cellular dynamics

What do we need to handle knowledge?

- A language in which we can express the knowledge about the environment the brain has to handle
- the requirements of such a language will likely be different from those of a language used for conversations and literature
- we will use it to model the procedures with which the brain builds a model of its environment

The need for formality

- animals and humans have to store information about how the world works
- this will be a set of propositions
- to handle such sets mathematically, we need a way to formalise propositions
- we could use natural languages like English
 - they contain all sorts of ambiguities
 - they are unnecessarily complex to model simple scenarios, as they address realworld context
 - we'd like to start modelling simple, experimentally well-testable problems
 - low-level perceptual phenomena, such as properties of a visual stimulus (textures, etc.) are cumbersome to describe

"Time flies like an arrow." *Groucho Marx*

Elements of formal languages

- we have a fixed set of symbols (words of the language)
- from these symbols we can assemble strings (sentences)
- we have a set of rules that decide if a string is a valid sentence (grammar)
 - grammatically correct sentences are called wellformed strings
- we have a set of sentences that we choose as axioms
 - the axioms define what your formal language can talk about. Symbols and grammatical rules are the form and axioms are the (first grain of) content
- formal languages with axioms are also called formal systems

Examples of formal languages

- geometry
 - symbols: points, lines and their relations
 - axioms: Euclid (or Bolyai-Gauss, etc.)
 - defined as a formal language by Alfred Tarski in 1959
- mathematics
 - symbols: sets, elements and relations
 - axioms: for example, the Zermelo-Fraenkel set theory with the axiom of choice (ZFC) - there are many others, depending on what kind of mathematical problems you want to handle
- programming languages
- music

Inference in formal languages

- Inference is the procedure with which we can produce new sentences from the axioms
- Axioms are the **knowledge base**, and with inference rules, we create new knowledge
- A formal language is completed by the set of rules that define how we may do so
- The strings that can be produced by the (repeated application of multiple) inference rules are called theorems
 - there are well-formed strings that are not theorems

Examples of formal inference

- mathematics
 - proofs
- programming languages
 - interpretation/compilation of the code

- Formal languages
- Formalisation of knowledge as logic
- Dealing with uncertain knowledge

What formal language should we use?

- There are infinitely many of them
- Some formal languages are explicitly designed to handle human knowledge in an intuitive way
- These are called **logics**, and their strings (sentences) **propositions**
- Symbols of logical languages always include certain relationship operators
 - NOT, AND, OR, denoted by \neg, \land, \lor
 - these allow for a special interpretation of the strings: they can be regarded as being true or false
- implication symbol: a shorthand notation $\neg A \lor B = A \rightarrow B$

Truth and falsity in logic

- true proposition -> theorem, given the axioms and the inference rules
- false proposition -> the negation (NOT + the proposition) is a theorem
- undecidable propositions -> not theorems, and their negation is also not a theorem

Logical languages

- Propositional logic: symbols represent whole natural language statements
 - X = "In summer it rains a lot" Y = "It is summer" Z = "It is raining"
 - sentences: $(X \land Y) \lor \neg Z$
- Predicate logic: statements can be formulated in a compositional way
 - symbols representing elements of a set of **objects** e.g. animals
 - symbols representing properties and relationships of object predicates
 - Predator(dog), Eats(fox,rabbit)
 - symbols representing **variables** that may stand for any object x,y
 - symbols to tell wether we talk about all possible values of a variable or only one quantors:
 - $\forall x$ we state the following proposition for all possible values of the variable x
 - $\exists x$ there exists at least one value of the variable x for which the proposition holds
 - sentences: $\forall x \operatorname{Predator}(x) \rightarrow \operatorname{Eats}(x, \operatorname{rabbit})$

Inference in logic

- In logical languages, inference rules can be defined as intuitive ways to find out whether a proposition is true
 - axiom set: AS = {All greeks wear togas. Socrates is Greek.}
 - proposition: X = {Socrates wears a toga.}
 - formalisation in predicate logic
 - basis set: humans
 - predicate symbols: Greek(x), WearsToga(x)
 - $AS = \forall x Greek(x) \rightarrow WearsToga(x), Greek(Socrates)$
 - X = WearsToga(Socrates)
 - Inference rule: if $\forall x \operatorname{Pred1}(x) \rightarrow \operatorname{Pred2}(x)$ and $\operatorname{Pred1}(A)$ then $\operatorname{Pred2}(A)$
- There are more complicated inference rules that can decide whether a proposition is a theorem more effectively

Pointer

Incompleteness theorems http://www.scottaaronson.com/ democritus/lec3.html

The neuron as a logical device

 \vec{x}

 $y = f(x_1w_1 + x_2w_2 - \theta)$

A fairer treatment of undecidable sentences

- AS = {All greeks wear togas. Socrates is Greek.}, X = {Socrates wears a toga.}
 - this is a theorem
- what is our intuition about propositions like this?
 - X = {Achilles wears a toga.} Y = {Seamus wears a toga.}
 - both are undecidable
 - but we see that if we new whether Achilles and Seamus were Greeks, the propositions would be decidable.
 - we don't now this, but we might have additional knowledge about the world that we can include in the axiom set:
 - AS' = {All greeks wear togas. Socrates is Greek. One out 600 people is Greek. 9 out of 10 people called Achilles are Greek. 1 out of 10000 people called Seamus is Greek. Only 1 out of 100 non-Greeks wears a toga.}
 - X and Y are just as undecidable as before
 - but we certainly have an idea about X being closer to a theorem than Y

- Formal languages
- Formalisation of knowledge as logic
- Dealing with uncertain knowledge

Compression of observations

- we cannot store every detail of all our memories e.g. once I got bit by a white dog, once by a black one
 - it would be too much data (even in hyperthymesia)
 - it would be unnecessarily clumsy to access it
 - we couldn't generalize wouldn't know what to expect when a brown dog shows up
- I can compress well when I'm aware of typical regularities

"untidy room with puma"

given: ~100000 Byte

useful: ~40 Byte

Lossy compression

Loosing information is a good thing

How to compress well?

shorter descriptions should be used for more common cases

to compress well,
you have to know
what is typical, and
how likely different
observations are

Why calculate with uncertainty?

• Why don't we just use the most likely value?

The need to handle uncertainty in perception

- perceptual indetermination is ubiquitous
- generalisability is key to function
 - if a brown dog bit me on Monday and a black dog bit me on Tuesday what will the spotty dog do on Wednesday?

Plausibility of a proposition

- In binary logic, a proposition is either a theorem of a certain axiom set, it contradicts it, or we can say nothing
- Let's extend this 3-valued evaluation into an infinitevalued one that can describe the plausibility of the proposition being a theorem by arbitrary precision

Numerical representation

- We can express any proposition as the assignment of a numerical value to a variable
 - "The river is 3.4 meters wide."
 - "This animal belongs to category 1."

What we want our plausibility measure to be like?

- the plausibility of a proposition X given an axiom set AS should be a real number, let's denote it by Pb(X | AS)
- consistency: starting from the same information (axioms), we should get the same plausibility value, no matter in what order we applied the inference rules (validly)
- the direction of change should be intuitive: if Pb(X | AS) increases, then Pb(X∧Y | AS) should also increase, and Pb(¬X | AS) should decrease
- Cox theorem says that if these are fulfilled, we obtain probability calculus for the description of plausibilities: Pb = Pr
 - (we need slightly more precise versions of the requirements for this to be technically true, but the basic idea is the same)

Probability calculus

- we decide that the probability of a theorem (certainly true proposition) is 1. We don't lose any expressive power doing this.
- consequence: the probability of all mutually exclusive propositions sum up to 1

$$Pr(X \mid AS) + Pr(\neg X \mid AS) = 1$$

- we say that we are looking for the probability of X conditioned on AS
- we have two inference rules to derive the probabilities of propositions using the already known ones

Product rule

$Pr(X \land Y \mid AS) = Pr(X \mid Y \land AS)Pr(Y \mid AS)$

- what's the probability of Bill watching a football game at any time?
 - there's a 0.3 probability of a game going on
 - if there's a game, the probability of Bill watching it is 0.7
 - the answer is 0.21
- a direct consequence of this rule is the definition of conditional probability

$$Pr(X \mid Y \land AS) = \frac{Pr(X \land Y \mid AS)}{Pr(Y \mid AS)}$$

Sum rule

$$\mathbf{X} \qquad \sum_{i=1}^{N} \mathbf{X} \qquad \mathbf{Y}_{i}$$
$$Pr(x = 1 \mid AS) = \sum_{i=1}^{N} Pr(x = 1 \land y = i \mid AS)$$

- x rain, y night or day
- let's say that the probability of raining at night is 0.3, at daylight 0.2
- let's say the night lasts for 10 hours Pr(y=night) ~ 0.4
- according to the product rule:
 - $Pr(y=night,x=rain) = 0.3 \times 0.4$, $Pr(y=day,x=rain) = 0.2 \times 0.6$
- according to the sum rule, the probability of rain regardless of the time of the day is 0.24
- also called marginalisation

Bayes theorem

• another direct consequence of the product rule

$$Pr(X \mid Y \land AS) = \frac{Pr(Y \mid X \land AS)Pr(X \mid AS)}{Pr(Y \mid AS)}$$

- X someone has TB
- Y a test for TB gives a positive result
- we know that the test gives a positive IF the patient has TB with 0.9 probability
- what is the probability of someone has TB IF the test came out positive?
- have to take into account base rates how probable a priori is it for someone to have TB, and how probable is it for the test to give a positive in any condition
- a Bayesian is someone or something using probability theory no more, no less

Notational simplicity

- that makes things more complicated
- we often leave conditions implicit
- Pr(X) means Pr(X | AS), where AS is the axiom set (knowledge base), all the information that was taken into account when quantifying the probability of X
- as the knowledge base is always in the condition of all probabilities related to a given problem, this omission does not cause any technical problem
- but we shouldn't forget that it's always there

Variability in the neural responses

V1 spike trains

Gur & Snodderly, Cereb Cortex 2006

V1 membrane potentials

200 ms

Finn et al, Neuron 2007; Churchland et al, Nat Neurosci 2010

- The fact that neurons respond differently to the same stimulus gives a hint about the nervous system handling uncertainty
- By averaging these responses, we get the RFs
- But when we are trying to figure out cortical computations, we can postulate that this variability serves a purpose.
- We can try to predict this variability assuming that the brain conducts probabilistic inference.

Sidenote - interpretations of probability

• Frequentist

Pointer Kolmogorov axioms

- probability can be interpreted in repeated experiments as the relative frequency of an outcome among all trials
- Information-based (Bayesian, Laplacian)
 - probability describes the uncertainty of the information an observer has about some phenomenon
 - Subjective (de Finetti)
 - probability represents personal beliefs
 - Logical (objective, Jaynes)

Pointer

How quantum mechanics relates to probability theory? <u>http://www.scottaaronson.com/</u> <u>democritus/lec9.html</u>

Sidenote - other attempts to quantify uncertainty

- Null hypothesis significance testing
 - a heuristic to assess the plausibility of a proposition using some elements of probability theory
 - you can do them by pencil and paper if needed
- Fuzzy logic
- According to the Cox theorem, these either end up with the same plausibilities as probability theory, or they become inconsistent at some point

The way forward

- Now we have a framework of handling knowledge that we introduced as a natural extension of logic to uncertain cases
 - coincidentally, this happens to be probability calculus, for which there is a vast amount of techniques readily available
- We have to develop tools to formalise real problems of perception (representation, inference and learning) in terms of probability theory
- Then we can move on to make predictions about behaviour and ultimately neural activity