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Probability as information

• We are using probability theory to quantify 
the uncertainty of observed quantities 

• We also want to make inferences about 
quantities we do not observe directly 

• e.g. from a visual observation (retinal 
activation) the brain wants to infer 
what kind of objects are there in the 
environment 

• for this, we need a model that tells us 
how different object alignments 
produce different retinal activations 

• if we can formalise this forward 
mapping in a model, we can also do 
the inverse calculation in it

“To understand God's thoughts we 
must study statistics, for these are 
the measure of His purpose.”

Florence Nightingale

Recommended reading
http://www.johndcook.com/blog/
2014/01/21/probability-is-subtle/

“Whether you can observe a thing 
or not depends on the theory which 
you use. It is the theory which 
decides what can be observed.”

Albert Einstein



If I flip a coin, look at the result, but don’t show you, its state is random for you 
but not for me. Probability describes knowledge.



Random variables

• A random variable x is a quantity of unknown value, e.g. a grade of a 
student (this is not the formal definition) 

• each possible value of the random variable corresponds to a proposition 

• X1 = “The grade is 1”, X2 = “The grade is 2”, etc. 

• one of these proposition is also called a sample of the random 
variable 

• based on our axiom set, we derive the probabilities of these propositions 

• the probabilities of all possible values of x define its probability 
distribution



Probability distributions
• the axiom set contains two types of propositions: knowledge about the world and 

assumptions 

• AS = {“The probability of a student getting a grade 1 in a science class is 0.2 ”, 
          “The probability of a student getting a grade 2 in a science class is 0.3 ”, 
          …  
          “The probability of a student getting a grade 1 in a PE class is 0.1 ”, 
           … 
           “The probability of a class being a science class is 0.3”, 
           “The probability of a class being a PE class is 0.7”, 
           …}

• by the product and sum rules:  
Pr(X1) = 0.3 x 0.2 + 0.7 x 0.1 = 0.13 

• if we do this for all possible values of x, we obtain 
the probability mass function (PMF), P(x)



Mean and variance
• If we want to give a concise description about a 

random variable (possibly with very many values), we 
can give an average value of it, and a measure of how 
much are the actual values typically dispersed around 
this average 

• the mean (expectation) of the variable is given as a 
sum of all possible values weighted by their 
probabilities 

• E(x) =∑x x P(x) 

• the mean grade is 0.2x1 + 0.3x2 + … 

• the variance of the variable is given as the 
expectation of the squared deviation from the mean 

• Var(x) = E( (x - E(x))2 )



Joint probability distributions
• P(x,y) is the joint PMF of two variables, which tells us Pr(x=i ⋀ 

y=j) for each i and j in the possible value sets of the two variables 

• the two marginal PMFs, P(x) and P(y) can be obtained by the 
sum rule (marginalisation)

joint PMF of the outcome  
combinations of two dice



Correlation
• If we have two (or more) random variables, 

additional to their mean and variance, we 
can characterise them by measuring how 
much they typically move in the same 
direction, i.e. when one is bigger the other is 
also bigger 

• Correlation describes how well can a 
linear function describe the relationship 
between the two variables 

• Correlation, similarly to anything else in 
probability theory, does not tell us 
anything about causal relationships 
between the variables

Recommended reading
http://www.tylervigen.com/
spurious-correlations
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Conditional independence
• conditional independence means that two variables are only 

independent if we know the value of a third

• occurrence rates of hiking trips and shark attacks on a given 
day are clearly not independent - but that’s because both are 
more likely to happen in the summer. If I only look at summer 
periods, within those they do not vary together

• h = no. of hiking trips, a = no. of shark attacks,  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Building a probabilistic model
• We will also use a graphical representation of the model that will help our intuition

• first, we collect the variables that we want to talk about in our model

• what will be the quantity that we will be able to observe?

• grade of a test, g ∈ {A,B,C,D,F} = [5,4,3,2,1]

• we add a shaded circle to the graph with the observed variable

• what quantities do we want to infer?

• preparedness of a student, q ∈ {low,medium,high} = [1,2,3]

• we add an empty circe with the unobserved variable (also called latent or hidden), and 
connect it to the observed one with an arrow - this means that they are dependent

• might there be any other variables that influence how these two quantities relate to each other?

• difficulty of the test, d ∈ {easy,moderate,hard} = [1,2,3]

• we add this hidden variable to the graph as well in a way that it is directly connected to the 
grade, but not preparedness (the difficulty of a test and the preparedness of a person who 
did not create it are independent from each other)

g

d q



Meaning of the graphical model
• The graphical model is the skeleton of our probabilistic model - it does not define any 

probabilities yet, only independence relations between variables. 

• without any such information, we have to assume that all variables depend on all 
others 

• in this example, d and q are independent:  

• d⊥q ⟺ P(d,q) = P(d)P(q) ⟺ P(d|q) = P(d) ⟺ P(q|d) = P(q) 

• The graphical model implies a factorisation of the joint probability mass  
function of all our variables in which every variable is conditioned on its parents. 

• P(g,d,q) = P(g|d,q) P(d) P(q) 

• in fact, the factorisation can be obtained  
by the (repeated) application of the product rule,  
taking conditional independence into account 

• P(g,d,q) = P(g|d,q) P(d,q) = P(g|d,q) P(d|q)p(q) = P(g|d,q) P(d) P(q)

g

d q

“There is a santa claus called joint 
probability distribution.”

Judea Pearl



Independence relations in graphical models

• The observation of a variable can change independence relations  

• since marginal and conditional independence are not the same 

• preparedness and test difficulty are independent a priori - but 
given a specific grade, the are not - a phenomenon called 
explaining away (a v-shape in graphical models) 

• if the grade is D, what would you think about the probabilities of 
different preparedness values if the test was hard, and what if it 
was easy? - hardness of the test explains away the bad grade, 
you don’t need the preparedness to be low to make it probable
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Finishing up the probabilistic model

• We have to define the conditional probabilities we factored the joint 
distribution to. 

• P(g,d,q) = P(g|d,q) P(d) P(q) 

• We need 3 PMFs 

• We derive the PMF of the hidden variables using the axiom set, encoding 
our knowledge about the world and assumptions about the phenomena 
at hand 

• e.g. we know that medium preparedness is twice as likely as low or 
high: P(q) = [0.25 0.5 0.25] 

• e.g. we assume that all test difficulties are equally probable:  
P(d) = [0.33 0.33 0.33] 

• We have to quantify the PMF of g using the axioms and the value 
combinations of the two additional conditions 

• all possible combinations of the conditions will imply a different PMF for g 

• We can do this with conditional probability tables

g

d q

1,1 1,2

1 0.1 0.2

2 0.3 0.4

3 0.4 0.3

4 0.1 0.08

5 0.1 0.02
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Inference in probabilistic models
• we want to know how probable different values of the hidden variables are given a value of the 

observation 

• by repeated application of the sum and product rules, the Bayes theorem and conditional 
independence identities, we can deduce these values 

• let’s say we want to know how probable is it that the student’s preparedness is high if we see an 
‘A’ grade: P(q=3|g=5) 

• sum rule: P(q|g) = ∑d P(q,d|g) 

• Bayes theorem: P(q,d|g) = P(g|q,d) P(q,d) / P(g) 

• sum rule: P(g) = ∑d ∑q P(g,d,q) 

• product rule P(g) = ∑d ∑q P(g,d,q) = ∑d ∑q P(g|q,d) P(q,d) 

• independence P(g) = ∑d ∑q P(g,d,q) = ∑d ∑q P(g|q,d) P(q) P(d) 

• substituting in: P(q|g) = ∑d P(g|q,d) P(q) P(d) / ∑d ∑q P(g|q,d) P(q) P(d) 

• we arrived to an expression for the conditional PMF we were looking for that only contains 
PMFs we defined in the model, so we can evaluate this without problem

g

d q
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Technical note: summing infinitely many values
• sometimes we want to calculate with variables defined over a continuous 

interval instead of some discrete values - e.g. the height of a person 

• for this we need a generalisation of summation 

• we divide the interval x ∈ [a,b] of the function f(x) to smaller intervals, and 
draw bars over them just touching the value of the variable 

• we make the divisions finer and finer, thus approximating the area under 
the curve 

• this is called an integral with the following notation: 

Z b

a
f(x)dx

Recommended reading
http://platonicrealms.com/
encyclopedia/zenos-paradox-
of-the-tortoise-and-achilles



Pr(a < x < b) =

Continuous random variables
• infinitely many values  

• the problem is that each exact value has zero probability 
(e.g. what is the probability that someone is exactly 
1.825375317… meters tall?) 

• intervals on the other hand have nonzero probabilities (e.g. 
the probability that someone is between 1.7 and 1.8 meters) 

• we can define a function that gives us the probability of the 
intervals, conditioned on the axioms - called the probability 
density function (PDF), p(x) 

• we have to know (or assume) something about the variable 
to choose a density, e.g. an interval that contains all 
possible values or a typical value and the dispersion around 
it 

• if we don’t know or assume anything then the probability is 
not quantifiable - if we don’t have sufficient prior knowledge 
and we are not comfortable with assumptions, this is the 
case
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• Uniform - U(x; a,b) = 

• bounded

• parameters: a - minimum, b - maximum

• Gaussian (normal): symmetric unbounded

• one dimensional: N(x;μ,σ) = 
μ - mean, σ - standard deviation

• multidimensional:  
N(x;μ,Σ) = 
μ - mean, Σ - covariance matrix

• Gamma: Gam(x;k,θ) =

• positive

• k - shape, θ - scale
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• a two-dimensional PDF is 
a surface 

• the summation becomes 
an integral over all 
possible values of one of 
the two variables 

• the product rule and 
criteria for independence 
remain the same

p(x) =

Z 1

�1
p(x, y)dy

x?y ⌘ p(x, y) = p(x)p(y)

x?y | z ⌘ p(x, y | z) = p(x | z)p(y | z)



Bayes theorem for continuous 
variables

p(y | z) =
Z 1

�1
p(y | x, z)p(x | z)dx

p(x | y, z) = p(y | x, z)p(x | z)
p(y | z)

posterior
likelihood prior

evidence or marginal likelihood



Graphical models with continuous 
variables

• instead of the grade, we want to model the test score 

• the intelligence is measured in IQ, p(q) = N(q; 100,15) 

• the difficulty is a uniform variable, p(d) = U(d;1,10) 

• the conditional PDF of the score can be a Gamma variable, where 
the scale parameter (the location of the maximum) depends on the 
hidden variables 

• p(s|d,q) = Gam(s;2,f(d,q)) 

• the dependence would be something proportional to the IQ and 
inversely proportional to difficulty 
e.g. f(d,q) = q (1/d) 

• we denote PDF parameters in the graphical model with letters 
without circles

s

d q

a b μ σ

k

θ



Inference with continuous variables
• we want to know how probable it is that the student has an IQ over 

120 if we observed a test score of 100, that is  
Pr(q>100|s=100) = 

• analogously to the discrete model, we apply the sum, product, Bayes 
and independence rules in the same order, obtaining a similar 
expression 
 
 

• in this formula we again only have PDFs we defined in the model 

• but contrary to the discrete case, when substituting in the PDF 
formulas, we can easily arrive to an  
expression that we cannot evaluate  
exactly due to the difficult integrals  
- in this case we need to use some  
approximation

Z 1

120
p(q | s = 100)dq

p(q | s) =
R 10
1 p(s | q, d)dd

R 10
1

R1
�1 p(s | q, d)p(q)p(d)dqdd

“An approximate answer to the 
right problem is worth a good deal 
more than an exact answer to an 
approximate problem.”

John W. Tukey



Probabilistic programming 
languages

• You can define probabilistic generative models in them, 
supply data and run inference automatically over hidden 
variables 

• Stan - inference by sampling the posterior 

• Edward & Pyro - fuse PPLs with deep learning 

• Church - introduction of a Turing-complete PPL, focus 
on cognitive modelling 

• BUGS - the first widely used PPL, now sort of outdated

https://probmods.org/

http://edwardlib.org/

http://mc-stan.org/



The way forward

• now we have a toolset to define representations of quantities 
related to observations 

• we can formalise our knowledge about how they are related to 
each other 

• we can make inference about non-observed quantities from the 
observed ones using the model 

• we can move on to formulate and test predictions about perceptual 
problems using probabilistic models of the stimuli, assuming that 
the brain also tries to use such representations 

• then we have to tie the model variables and inference algorithms to 
neurons


