
VI - Prediction of 
neural activity

Mihály Bányai
banyai.mihaly@wigner.mta.hu

http://golab.wigner.mta.hu/people/mihaly-banyai/

BSCS 2019 - Neural Computation

http://golab.wigner.mta.hu/people/mihaly-banyai/


• What to predict about neural activity? 

• Limits of measurability in the brain 

• How to build, test and improve models?
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Importance of making falsifiable 
predictions

• in order to assess whether our ideas about neural representations, 
formalised in models are any good, we have to be able to compare them 
to actual data from physiological experiments 

• strictly speaking, we cannot confirm the validity of a model, only reject it, 
if it’s outright false about something we measure 

• so the way to go is to squeeze out as many predictions about the models 
regarding phenomena we do have measurements about as possible 

• we can also compare models in terms of predictive accuracy 

• if we indeed falsify a prediction of a model, it doesn’t (necessarily) mean 
that we did something wrong - we learn that some of the assumptions we 
made when building the model were not accurate
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Using a specific model for prediction
• handling multiple observations in a graphical model 

• if we have several observations about the same variable, we 
would have to introduce each one of them as an independent 
observed value in the model - this would lead to giant models 

• there is a shorthand notation of this: the plate 

• xi ⊥ xj | u ⟺ p(x|u) = ∏i p(xi|u) 

• whatever is on the plate has a separate value for each 
observation, and whatever is off has a single value for all 
observations 

• predictions of response statistics per se are not strictly falsifiable, 
as we don’t know what level of noise should be tolerable 

• but we can produce predictions about how the response should 
change if the stimulus changes - and this is falsifiable x
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Functional intuition about brain regions

• in order to formalise a probabilistic model about what kind 
of inference a certain brain region implements, we have to 
have an idea about the computational problem it solves 

• the easiest targets of such intuition are sensory cortices 

• the visual cortex needs to perform object recognition 

• auditory cortex has to perform localisation & 
separation of sound sources 

• this intuition suggests a formal computation that solves the 
same problem
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Three aspects of resolution of measurement techniques

• spatial - how small is the volume in which we can measure the neural activity 
separately from the rest of the brain?  

• EEG is very bad at this 

• fMRI is better, but still far from seeing individual cells 

• temporal - how long does it take to make one measurement of the neural activity? 

• fMRI is very slow 

• electrophysiological methods are very good at this 

• coverage - what portion of the whole brain can we monitor at the same time? 

• patch-clamp can only measure one cell 

• multielectrode arrays are better, but still only a couple of hundreds maximum 

• same with calcium imaging



Measuring from a behaving animal
• in an experiment with sensory cortex 

measurements, we have to control the stimulus the 
animal receives at each moment 

• in vision, we have to know what exactly the 
animal sees - not easy, as eyes move all the 
time 

• one attempt to solve this is anaesthesia - primary 
sensory cortices keep working even if the animal is 
unconscious 

• but the anaesthetics have various, not 
completely known effects on the response 
distribution of neurons - results are not 
completely comparable to awake studies  

• another possibility is training the animal to perform 
a task in which it has to fixate on the same point  

• only monkeys will do this, not cats or rats



Microelectrode arrays



Extracellular recording



Extracellular recording



extracell recording



Spike sorting



Spike sorting
• Manual and automatic methods to sort measured spikes 

into clusters that are assumed to correspond to cells


• Hard to evaluate the algorithms as there is little ground 
truth data


• Technically quite difficult to measure simultaneously 
with extracellular electrodes and patch clamps from the 
same cells


• Introduces a noise of largely unknown properties



Calcium imaging
• genetically modified cells express  

fluorescent proteins that respond to  
the binding of calcium


• calcium levels in a cell change when  
spikes are generated


• the activity of cells can be recorded using fluorescent microscopy


• the calcium signal is slow - we can only tell wether there were any spikes 
in a certain time bin


• getting back the spike train for a cell is an inference problem


• we can sacrifice temporal resolution to record more cells up to ~ 10000



What kind of signals can we 
measure?

• How many cells at once - spatial scale


• one ion channel -> whole brain


• With what level of detail - spatial resolution


• one ion channel -> whole brain


• Temporal resolution


• 20 kHz -> 1 Hz


• Trade-offs everywhere


• Neural population measurement with microscopic resolution from a behaving animal


• ~100-1000 cells, depending on the temporal resolution, only spike trains



Publicly available datasets

• Many different 
datasets in the 
CRCNS database 

• Some researchers 
make data available, 
e.g. Matthias Bethge

Pointer
http://crcns.org/

Pointer
http://bethgelab.org/datasets/v1gratings/ 
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Computation in the primary visual 
cortex

• in electrode recordings we can see 
that a lot of cells in V1 respond to bar 
segments placed in specific locations 
in the visual field 

• the strength of the response 
depends on how the bar is oriented 

• the receptive field of the cell is a 
localised, oriented edge 

• these cells act like edge detectors 

• their response can be crudely 
approximated by multiplying the 
stimulus with an edge filter



Modelling the variability of neural 
responses

• Can we relate it to perceptual uncertainty?



Step-by-step building of the 
graphical model of vision

• V1 responses are predicted by 
independent contributions of localised 
oriented edges to the stimulus 

• stimulus content is independent of lighting 
conditions, thus contrast should be an 
independent modulation of the edge 
combinations 

• As edges define object contours, they do 
not appear independently - a covariance 
matrix needs to be learned for them.
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“Never attribute to stupidity that 
which is adequately explained by 
unstated assumptions.”

Geert Bollen

Pointer
http://xcorr.net/2015/11/20/
turing-machines-the-number-
game-and-inference/



Contrast-normalised models of V1

• the observed variable x encodes the pixels of a black&white 
image - an approximation of retinal rod sensor activations 

• hidden variable u encodes how strongly specific localised 
edges contribute to the composition of the image - we will 
use this to predict the membrane potential of V1 neurons 

• hidden variable z encodes the contrast of the image 

• called Gaussian scale mixture models
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GSM predictions
• How do neural activations change with stimulus contrast?

Orbán et al, 2016, 
Neuron
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GSM predictions
• How does neural spiking change with stimulus contrast?

Orbán et al, 2016, 
Neuron

Response variance at different 
contrast levels
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Moving towards the 
implementation level

• With the GSM model, we made predictions on the algorithmic level of 
abstraction, as we showed that evoked responses are compatible with 
probabilistic inference 

• In order to really move to the implementation level, additional to the generative 
model, we have to assume a specific inference algorithm too 

• Such an algorithm may give predictions not only about properties of response 
distributions, but actual time series of neural membrane potentials, that can be 
compared to measurements 

• The sampling hypothesis suggests that the inference algorithm will be one that 
produces samples from the posterior distribution of the latent variables 

• There are many such sampling algorithms with different properties, we choose 
one that is efficient and lends itself to implementation with neural networks



Measurement time series predictions with GSM

• implementation of an efficient sampling algorithm by a biophysically realistic neural network model 

• inhibitory and excitatory subpopulations exhibit oscillatory dynamics at different amplitudes, and 
are shifted in phase relative to each other 

• stimulus onset evokes a transient increase in firing rates
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Modelling the correlation structure of 
neural responses

• Can we relate it to perceptual context?
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Perception as hierarchical inference
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/35Lee & Nguyen, 2001
Lee & Mumford, 2003

Measured top-down effect in mean responses
DiCarlo et al, 2012
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Predictions of context-dependent models

Bányai et al, 2019
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A generative model for audition

The lowest layer represents sound epochs perceived by the left and the right ear xL and xR. 
They are decomposed by a sparse coding algorithm into phase and amplitude vectors ϕL, 
ϕR and aL, aR. Phases are further subtracted from each other in order to obtain an intramural 
phase difference (IPD) vector Δϕ. The second layer encodes jointly monaural amplitudes and 
IPDs. Auxiliary variables (phase offset and the scaling factor w) are depicted in gray.

Wiktor Młynarski, 2015



Predictions of the auditory model 
• Experimentally 

measured responses to 
sounds originating from 
different directions 
measured in the A1 
area of the cat in two 
types of neurons.  

• Model predictions 
sorted into two typical 
clusters of variables. 
Thin gray lines are 
values of single 
variables, while thick 
black lines depict 
cluster averages

Wiktor Młynarski, 2015



Factorising relational and sensory 
information

Whittington et al, 2019, bioRxiv



The Tolman-Eichenbaum machine



The TEM and the Brain



Random movement on 



Prediction by parameter learning - A model of V1 receptive fields

• Let’s try to model how V1 simple cells work

• They respond to oriented edges

• this is what the model should predict!

• So the model of visual scenes (images of b&w 
pixels) on this level is that there are some edge-
objects that translate to pixels (x) at different 
locations

• Assumptions for a probabilistic model

• there is a latent variable (u) for each possible 
edge

• their prior distribution is sparse meaning that 
only a few of them will contribute to single scene 

• they are independent from each other (this is a 
strong simplification)

• they mix linearly

• pixels may deviate from the mix of images 
according to a Gaussian distribution (this means 
that there is some observation noise)

p(x | u) = N (x;Au,�

x

I)

p(u) = Sparse(u; 0)

u1 u2 uN

x



Learning edge filters from natural images

• a question is how to do the linear mixing of the latents so that they will follow the 
sparse distribution - that is, what should be the features (A) corresponding to latent 
variables

• the algorithm that looks for linear filters for sparsely distributed, independent latent 
variables is Independent Component Analysis (ICA) - it is used in signal 
processing, more about similar things when we get to learning

• If you apply such a procedure, you get features similar to Gabor filters used for 
edge detection in image processing (Olshausen & Field, 1996)

• The model predicts the shape of V1 simple cell receptive fields assuming sparsity and 
learning from natural images

• Another prediction: the average activation (e.g. membrane potential or number of 
action potentials) of V1 simple cells in response to an image will be proportional 
with the latent values inferred by the model from the image

Olshausen & Field, 1996

First-order statistics (pixel histograms)

sparsity



The way forward
• We have seen that it is possible to produce falsifiable predictions 

regarding neural computation by using probabilistic models 

• Some predictions of simple models of early vision hold up 
against measurements from behaving animals 

• We have to build more complex models that can predict activity 
from higher-level visual processing areas, not just V1 

• we may use various state-of-the-art techniques from machine 
learning 

• Step by step, we have to figure out what is the mental 
representation of the environment



What do we know about how the brain works?
• We know a lot about anatomy 

• but we still don’t have the 
connectome - the blueprint of neural 
networks in the brain 

• local connectivity patterns within 
cortical regions are also only partially 
known 

• We know a lot about dynamics 

• we can describe single neuron and 
network level electric behaviour 
patterns 

• but mostly without tying them to any 
function to prediction 

• We know a lot about localisation 

• low-level perceptual functionality, 
motor areas, episodic memory, etc. 

• some hints about other functions  

• We know a lot of receptive fields 

• if we looked for all the right quantities 
of the stimuli when we characterised 
them 

• for objects and concepts we have 
only hints 

• We know a lot about how to solve 
problems the brain has to solve 

• specialised solutions exists, mostly to 
perceptual stuff, no general problem 
solvers 

• we have no idea how plausible these 
solutions are regarding biological 
implementation 

• We know a little about the mental model 
and how to do inference in it  


