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Artificial neuron

. X_4
weights :
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* we compare the weighted sum of inputs to a threshold

e two possible output values - a binary classification of
iINput combinations

e |inear separation
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Multi-layer neural network
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This is the path followed by the optimizer to reach the gl
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A fuitar Conditi
General scheme for :
parameter optimization
At each point, we B

calculate the derivative of the error
function with respect to the weights

We move the weights towards the

negative of the gradient
OF

Finds a local minimum Wy = Wy — 6—8
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[ ooking for the best weight values

given a specific dataset and a set of values for the
synaptic weights, the network will misclassity a number of
data samples

we are looking for the weight values that minimize this error

setting the many weights
parallelly is a hard
optimization problem

the back propagation
algorithm is a gradient _
search that finds an R, e
approximate optimum 0, et




Deep networks

Deep learning is a highly successful
machine learning framework which
is employed in a variety of computer
tasks, including object recognition

It employs a computational
architecture in which the basic
element is a simplified model
neuron

the basic elements are organised
into layers, connected by weights

each layer performs a
transformation of an input image

network weights are tuned to
perform classification of the inputs
Into categories - each category is
an object

Inputs  Weights
Wi

LAYER LAYER LAYER

NI
\"
\

PN

Threshold T

A SIMPLE NEURAL NETWORK

Image classification
Easiest classes

red fox (100) hen-of-the-woods (100) ibex (100)  goldfinch (100) flat-coated retriever (100)
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Visual features acquired by deep learning

HDP high-level features




Convolutional networks

C3: 1. maps 16@10x10
INPUT C1: leature maps S4:1. maps 16@5x$

6@28x28
3232 S2: 1. maps CS layer F6 layer ompur

6@14x14
r

Ful conr{echon | Gaussaan connections
Convolutions Subsampling Convolubons Subsamplng Full connection

A Full Convolutional Neural Network (LeNet)

e Stepl: a set of translation-invariant feature extractions

e Step 2: Subsampling the result to a lower-dimensional
space

e repeat



Similarities to the visual cortex

hidden layer 1 hidden layer 2 hidden layer 3
)

input layer

output layer




Human against machine

motor scooter

scooter
go-kart

mite
black widow

starfish| __ drilling platform golfeart Egyptian cat
method top-1 err. top-3 err.
VGG [40] (ILSVRC' 14) - 8.437
GoogleNet [43] (ILSVRC 14) - 7.89
VGG [40] (v5) 24.4 7.1
PReLU-net [12] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-30 20.74 5.25
ResNet-101 19.87 4.60 Andrej “the human benchmark” Karpathy
ResNet-152 19.38 4.49
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Prediction of neural activity with deep networks

Operations in Linear-Nonlinear Layer Behavioral Tasks
e.g. Trees vs non-Trees
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_ : Yamins et al, 2014
Deep convolutional networks

C o A » . _.
predictions of neural activity T sie 50 . —_

e The inferotemporal
cortex (IT) is thought to
be involved in object
recognition
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Population-level representational similarity

V1 -Ilke Model HMAX Model V4 neuronal umts IT neuronal unlts HMO model
e PRRTS : : , Rt s ' 25818 Animals (8)
" Boats(8) §
#4% s Cars (8) o%
.= &L Chairs (8) o, N
" Faces (8) g ©
| Fruits (8) — &
e Planes (8) &,
= =2 Tables (8)
Animals (4)
- . Boats (4) S
- Cars (4) -
5;), - ! Chairs (4) gg
Faces (4) 2 8
E 06- Fruits (4) © @
9 = Planes (4)
= Tables (4)
2 . Faces (8)
2 0.3 5
© 2 Fruits (8) >
S J1Z S N
8- ox® % Planes (8) 2 T
(0 I I:=.§# 2 T 0
Bs TSN Tables (8) © §
0.0- -

Image Object CateP r¥
generalization  generalization generalization



Predicting V4 activity
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Biologically realistic error

X h y IW
I/-\I l/- \,I /’-\,‘—-
e BP has multiple elements that are g O » <
. . . . a (X} o« 11} { L
questionable from a biological point -4 et =
. | ) ) ( /,l o T
of view - o 9 =
° Feedback c
e explicit computation of the error — — —
term ) oow (U
o—0 . "|®
l/ : -\| x/ : ‘\.l W]T I/ N
e | feed-forward and feed-back ) ~) )

weights are tied together

e derivative of the activation
function




Biologically realistic error
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Biologically realistic error
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Biologically realistic error
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Problems with deep
network models

0 0 100 150

Gur & Snodderly, Cereb Cortex 2006
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Probablilistic models vs. deep networks

probabilistic models provide detailed predictions of stimulus statistics
e most deep learning architectures don'’t explicitly account for variability
probabilistic models are explicitly formalised hypotheses about neural computation

» deep learning models are generic, very flexible computing architectures with no
easy interpretation

In probabilistic models it is often hard to implement inference, and each one is
different

e there are powerful existing methods to train deep learning models

it is nontrivial to build a generative model if images that performs acceptably in an
object recognition task

* deep learning models do object recognition very well

they can be combined to yield more powerful predictions















Banyai & Orban, 2019, Curr Opin Neurobiol



Semantic compression of the visual input
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Variational autoencoders and compression




Variational autoencoders and compression

Compressed Data

Or:gmal

Image

Encode Decode

original bicubic SRGAN
(21.59dB/0.6423)
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Neural representation of textures
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High-dimensional hierarchical generative models
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High-dimensional hierarchical generative models
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Sonderby et al, 2016
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Kingma & Welling, 2013
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Semantic compression of textures
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Representation of texture families in the model
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Predicting reward

Paviovian - classical conditioning

* unconditioned stimulus, conditioned stimulus

4 .. )
conditioned

stimulus: sound
of bell

4 ..
unconditioned

action ]

)

1. Before conditioning

stimulus: smell &
S view of food

>
N —e response
( reward —— [Food Salivation
J Unconditioned Unconditioned
stimulus response

2. Before conditi

“"5 ’(l / 2
responée

Tuning fork Mo salivation
Neutral No conditioned
stimulus response

3. During conditioning

1 .(" N
+ @ response

Tuning Food Salivation

Fork Unconditioned

response

4, After conditioning

Salivation

Tuning fork

Conditioned
response

Conditioned
stimulus

instrumental - operant conditioning

* the actions of the animal determine the reward
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How to build a decision making
model on top of the perceptual one? ; ‘-

* We need to choose a target variable from the model that
we will try to optimise - this will be called the reward

* Motor output will be modelled a fixed set of possible
actions that make modifications in the environment

e A combination of inferred values for the latent variables is
called a (perceived) state of the environment

* We have to figure out which action to choose in every
state




Basic types of learning problems

Supervised

data: input-output pairs

approximate the mapping between them

discrete output: classification

continuous: regression
Unsupervised

data: set of values

fit a predefined structure on it

find the optimal representation: clustering, filtering
Reinforcement

data: state information and sparse reward

learn optimal strategies

active learning




Reward encoding in the cortex

A B
SO early reward
sty il i ,

late no reward
M&ﬂ%ﬁ;

stimulus J reward J

e Dopamin neurons in the monkey’s cortex

respond according to the learned
associlation between indicator variables

and reward

e Activity is proportional to surprise



Agent-environment framework

>[ Agent

l’eward action

state

N
{4
-—

| [ Environment ]

e The environment communicates towards the
agent which state it’s in

e Reward is given in some states to the agent

e The agent pushes the environment to new
states by its actions



L earning the value of states

Simplest case: there is a finite number of
states of the environment

§ 958S e ye o
) , ) ) Sranch » ,’; reeze
each state sis a combination of inferred & T
values for the latent variables of the mental
model (e.g. we take the a posteriori most ' i
probable values) 3 il . 7 e
for each state we assign a value, V(s), that
' 1l < ss82 ";B;;;ze":’
encodes the desirability of that state 5 srench > SLOreszs -

after each decision, at time t, we update the
estimation of state values using previous
estimations and the reward

START
intuition: a value of a state is determined by . 5 3 4
the reward, and the value of other states that |
are accessible from it through a few actions Russell & Norvig, 1995

https://cs.stanford.edu/people/karpathv/reinforcejs/egridworld td.html



https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Reinforcement learning

The goal of RL is to maximize reward in
the long run

We have to learn how useful certain
states and actions are to do that

Trial and error
Set values based on reward

Propagate value to states without f
reward

| learned to ride with RL™™®



Temporal Difference learning

e We learn from prediction error

e The value of the state we stepped on
makes the previously visited state more
similar to itself

e \We can propagate to earlier states too

V(St) <= V(St)+o|Rip1+7V (Sei1) =V (Sh)]

_ , Reward t+1
Previous estimate

TD Target
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Action selection

e Now we have the state value function
e V:s->R

¢ In order to choose an action, we need to know that
from the current state, which action leads to which

other state
e M: (s,a)->s
e or more generally, M: (s1,s2,a) ->P

¢ this function, M, is called the model of the
environment

e |n each RL setting in which we learn a state-value
function, we have to learn a model function as well

e these are called model-based solutions
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Model-free RL

¢ |nstead of learning the model of the
environment, we can learn the value of
state-action pairs directly

e the function Q: (s,a) -> R
e the TD rule applies nicely here as well

e action selection only requires the Q
function, not the model

Qt+1(8t7 at) — Qt(St, @t) + € {Tt—l—l + ’YmélX Qt(St + 1, CL) — Qt(sta @t)
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bunch reflexes
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Exploration vs. exploitation

e \When we don’'t know anything about the
environment yet, it doesn't make sense to
repeat the first series of actions that led to
some reward

e \When we know more, we can just use the
best strategy we found

e Usual way: act randomly in the beginning,
gradually increase of probability of
choosing the action we think is best



Representation of the value function

e |f there are not so many, we can use a table
e With large and continuous spaces
e we can only represent state variables

® we need to generalise to states never
visited

e feedforward neural networks are a good
choice

e we have to construct a desired output for
backpropagation at each step from the
prediction error



1D learning with a neural network

- Gerald Tesauro: TD-

Gammon

- feed-forward neural network

- Input: states attainable by
possible actions

- QOutput: state value (winning
probability)

- At each step, we have to
calculate an output error for
the network

- based on the reward signal

- Result: comparable to best
human players

- Total training time today: 5s

14 15 16 17 18 20 21 22 23 24

.‘ r v " " L7 N\
4 ) < ) < » '

g A;A

d28 0y

predicted probability
of winning, V,

TD error, Vig1— VvV —»‘

backgammon position (198 input units)

. _.__; hidden units (40-80)
AT



1D using a neural representation

- Using the prediction error for learning

- Update of the state value in the neural
representation:

w(T)  w(T) +ed(t)u(t — 7) 5(t) =) r(t+7)—o(t)
- Calculating the prediction error

- |deally we'd need the sum of future rewards
- We use a single-step local approximation

Zr(t +7)—v(t) =rt)+u(t+1)

- If the enf/ironment IS observable, this converges to an
optimal strategy

- We can propagate the error back to previous states
too



Learning to play
computer games

e reinforcement learning
combined with deep
networks

® oObservation: computer
screen & score

Mnih et al, 2015

Video Pinball
Boxing
Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher
Demon Attack
Name This Game
Krull

Assault

Road Runner
Kangaroo
James Bond

i
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Pong

Space Invaders
Beam Rider
Tutankham
Kung-Fu Master
Freeway

Time Pilot
Enduro

Fishing Derby
Up and Down
ice Hockey
Q'bert
H.E.R.O.
Asterix

Battle Zone
Wizard of Wor
Chopper Command
Centipede
Bank Heist
Rwer Raid
Zaxxon

Amidar

Alien

Venture
Seaquest
Double Dunk
Bowling

Ms. Pac-Man
Asteroids
Frostbite
Gravitar

Private Eye
Montezuma's Revenge

=
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Below human-level

|
§
:

' IS
1 | L B L 1

400

S00 600

1,000 4,500%



Learning to play
computer games

e reinforcement learning
combined with deep
networks

® oObservation: computer
screen & score

Mnih et al, 2015

Video Pinball

Boxing |}

Breakout
Star Gunner

Robotank | 508
Atlantis | &48%

Crazy Climber |4 .

Gopher

Demon Attack |3

Name This Game
Krull

Assault

Road Runner

i
:

James Bond

:

Pong

Space Invaders
Beam Rider
Tutankham
Kung-Fu Master

Freeway |}

Time Pilot

Enduro — 3

Fishing Derby
Up and Down

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

River Raid

:
g

Amidar

Alien

Venture
Seaquest
Double Dunk
Bowling

Ms. Pac-Man
Asteroids
Frostbite
Gravitar

Private Eye |

Montezuma's Revenge
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Learning Montezuma's
Revenge from a Single
Demonstration

;
TR

il

or

=

B we've trained an agent to achieve a high score of
it}

= 74,500 on Montezuma'’s Revenge from a single

@& - human demonstration, better than any previously
:; published result. Our algorithm is simple: the agent
% plays a sequence of games starting from carefully
g%  chosen states from the demonstration, and learns
I};:% from them by optimizing the game score using PPO,
L:: the same reinforcement learning algorithm that

% underpins OpenAT Five.
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Learning physical movement with RL




The effect of reward
in dopaminerg cell
of basal ganglia

An interpretation:

Dopamine cells signals the difference

between the expected and received
reward.

» The Basal Ganglia

No prediction
Reward occurs
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- Glascher, Daw

Dayan, REWARD
O'Doherty, STATE
Neuron, 2010.

» Correlation of State PE ¥
brain activity with ( Sj
model-based and | T(s,a,s')
model-free VRS men ‘F _y
reinforcement g ( w :
learning 2| N Oaanss (5:9) : Qmn(s.a)
algorithms | §

| HYBRID learner

/ softmax



Strategy learning in the cortex

State Prediction Error

e Model-based and

model-free RL

e correlates of
guantities related

to both can be

found with fMRI




Neural correlates of RL solutions
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Neural correlates of RL solutions

Reactive model-free RL
subcortical structures
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Neural correlates of RL solutions
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Neural correlates of RL solutions
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Neural correlates of RL solutions
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