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Gradient descent

• General scheme for  
parameter optimization

• At each point, we  
calculate the derivative of the error 
function with respect to the weights

• We move the weights towards the 
negative of the gradient

• Finds a local minimum wb = wb � ✏
@E

@wb
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Looking for the best weight values
• given a specific dataset and a set of values for the 

synaptic weights, the network will misclassify a number of 
data samples

• we are looking for the weight values that minimize this error

• setting the many weights  
parallelly is a hard  
optimization problem

• the back propagation  
algorithm is a gradient  
search that finds an  
approximate optimum



Deep networks
• Deep learning is a highly successful 

machine learning framework which 
is employed in a variety of computer 
tasks, including object recognition 

• It employs a computational 
architecture in which the basic 
element is a simplified model 
neuron 

• the basic elements are organised 
into layers, connected by weights 

• each layer performs a 
transformation of an input image  

• network weights are tuned to 
perform classification of the inputs 
into categories - each category is 
an object



Visual features acquired by deep learning



Convolutional networks

• Step1: a set of translation-invariant feature extractions 
• Step 2: Subsampling the result to a lower-dimensional 

space 
• repeat



Similarities to the visual cortex
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Human against machine

5.1
Andrej “the human benchmark” Karpathy
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Yamins et al 2014 for V1: Cadena et al 2019



Deep convolutional networks’ 
predictions of neural activity

• The inferotemporal 
cortex (IT) is thought to 
be involved in object 
recognition 

• A deep network is 
trained to recognise 
objects from images 

• The top layer of the 
network is compared to 
measured activity in IT

Object recognition performance
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Population-level representational similarity



Predicting V4 activity
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Biologically realistic error 
backpropagation?

• BP has multiple elements that are 
questionable from a biological point 
of view

• explicit computation of the error 
term

• feed-forward and feed-back 
weights are tied together

• derivative of the activation 
function

• …

• All major issues have solution by now 
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Problems with deep 
network models

MONKEY STRIATE CORTEX
showed little or no directional preference. Even when responses were highly
asymmetrical, the less effective direction of movement usually evoked
some minimal response (see Text-fig. 2), but there were a few examples in
which the maintained activity was actually suppressed.

Individual complex cells differed markedly in their relative responsive-
ness to slits, edges, or dark bars. The majority responded very much better
to one than to the other two, but some reacted briskly to two of them, and
a few to all three. For a cell that was sensitive to slits, but not to edges, the
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Text-fig. 2. Responses of a complex cell in right striate cortex (layer IV A) to
various ori6ntations of a moving black bar. Receptive field in the left eye indicated
by the interrupted rectangles; it was approximately i x I' in size, and was situated
40 below and to the left of the point offixation. Ocular-dominance group 4. Duration
of each record, 2 sec. Background intensity 1-3 log10 cd/M2, dark bars 0.0 log cd/M2.

responses increased as slit width was increased up to some optimal value,
and then they fell off sharply; the optimum width was always a small
fraction of the width of the whole field. For complex cells that responded
best to edges, some reacted to one configuration and also to its mirror
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moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).

Response Reliability in Different V1 Layers

To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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Figure 2. Distributions of Fano factors in individual V1 layers. The medians (gray bars)
and the interquartile ranges (error bars) are displayed. The number of cells sampled
from each layer is displayed to the right of each bar.
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Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
show responses without compensation for eye position while the upper plots show responses with timing computationally adjusted for eye position post hoc. (A) Responses to
repeated forward and back sweeps of an optimally oriented bar (120! from horizontal, tr. 13) across the receptive field of a complex cell located in layer 2/3. There were no
saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
were near threshold and were quite variable. Other conventions are as in Figure 1.
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shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).
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To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the
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counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.
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There have been conflicting reports from experiments con-
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(Tolhurst et al., 1983) as response amplitude increases. To
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a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
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and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
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Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
show responses without compensation for eye position while the upper plots show responses with timing computationally adjusted for eye position post hoc. (A) Responses to
repeated forward and back sweeps of an optimally oriented bar (120! from horizontal, tr. 13) across the receptive field of a complex cell located in layer 2/3. There were no
saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
were near threshold and were quite variable. Other conventions are as in Figure 1.
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window over the duration of the trial. The 
Fano factor has been used extensively to 
characterize neural variability (for example, 
see refs. 17–19). The Fano factor is influenced 
both by variability arising from spiking noise 
and by across-trial variability in the under-
lying firing rate20. Most prior work assumes 
that the underlying firing rate is similar 
across trials and uses the Fano factor to 
assess the statistics of spiking noise, which 
are roughly Poisson (Fano factor 1) for 
most of cortex. We began with the assump-
tion that spiking noise is roughly Poisson and 
we used the Fano factor to assess across-trial 
 variability in the underlying rate. We inter-
preted a Fano factor greater than 1 as being 
an indication of across-trial firing-rate vari-
ability. We interpreted changes in the Fano 
factor as reflecting changes in across-trial 
firing-rate variability9,20,21. Although this 
approach assumes Poisson spiking noise, 
it is reasonably robust to violations of that 
assumption (it is sufficient that spiking-noise 
variance scale linearly with the mean; the 
slope needn’t be unity). To begin, we exam-
ined how the Fano factor behaves across a 
variety of cortical areas.

We computed the mean firing rate and the 
Fano factor for ten datasets from seven cortical  
areas of the macaque monkey (Fig. 3): V1, V4, 
MT, the lateral intra-parietal area (LIP), the 
parietal reach region (PRR), dorsal premotor 
cortex (PMd) and orbitofrontal cortex (OFC). Responses were to 
 various visual stimuli or, for OFC, to juice reward. For each area, the 
Fano factor was averaged across neurons and conditions. This is similar 
to what was done for the membrane potential analysis and reflects both 
a desire for statistical power and the expectation that variability may 
change for both preferred and nonpreferred stimuli (as in Fig. 2a,b).

In every case, stimulus onset drove a decline in firing-rate vari-
ability as assessed by the Fano factor (all P < 0.02). This is notable, 
given the diversity of areas, stimuli and behavioral states. Variability 
declined during responses to simple visual stimuli, during operantly 

conditioned responses (PRR and PMd) and during reward-driven 
responses (OFC). The variability decline was present regardless of 
whether the monkey was anaesthetized (V1 and two of the four the 
MT datasets; Fig. 3, bottom), passively viewing (V4) or performing 
a task (the other six datasets). For two of the MT datasets (Fig. 3,  
bottom), stimulus onset occurred in two stages: pattern onset and 
motion onset. Both events drove a decline in variability, although only 
the more effective moving stimulus drove a sustained decline.

We previously proposed that declining variability in premotor  
cortex is related to the progress of motor preparation9. The changes 
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Figure 3 Changes in firing-rate variability for 
ten datasets (one per panel). Insets indicate 
stimulus type. Data are aligned on stimulus 
onset (arrow). For the two bottom panels  
(MT area/direction and MT speed), the dot 
pattern appeared at time zero (first arrow)  
and began moving at the second arrow. The 
mean rate (gray) and the Fano factor (black  
with flanking s.e.) were computed using a  
50-ms sliding window. For OFC, where response 
amplitudes were small, a 100-ms window was 
used to gain statistical power. Analysis included 
all conditions, including nonpreferred. The 
Fano factor was computed after mean matching 
(Fig. 4). The resulting stabilized means are 
shown in black. The mean number of trials  
per condition was 100 (V1), 24 (V4),  
15 (MT plaids), 88 (MT dots), 35 (LIP),  
10 (PRR), 31 (PMd), 106 (OFC), 125 (MT direction 
and area) and 14 (MT speed).

cell 1 (z-score)

algorithm (Chandler 1969) to minimize the
combined ! 2 error between the model predic-
tions and the data. From the fitted equation, we
defined the optimal stimulus parameter as that
which would evoke the strongest predicted re-
sponse. The difference between the preferred
spatial and temporal frequencies of the two cells
was then defined in octaves as follows:

! log2"Preferred frequency of cell 1

Preferred frequency of cell 2#! .

(11)

To measure the receptive field overlap of the
two cells, we determined the receptive field cen-
ter by hand, using a small (!0.3°) patch of op-
timal grating. We then measured responses to
gratings of increasing size and fit the data with a
difference-of-error function, using the STEPIT
algorithm. The receptive field size of each cell was defined as the maxi-
mum of the function in the range tested, and the overlap was defined as
the percentage of the smaller RF that was included in the larger RF. The
mean receptive field size provided by this approach is approximately
twice that provided by hand maps using small bars of light (Cavanaugh et
al., 2002). As a result, our estimate of RF overlap is substantially higher
than that which would result from mapping with small stimuli.

In our regression analysis, we only used data from pairs for which the
fits for both cells accounted for at least 50% of the variance (123 of 133
pairs for the spatial and temporal frequency data; 114 of 133 pairs for the
area data). The variance accounted for by the fits in these cells was on
average 90 –92% for each parameter.

Results
We recorded from 147 pairs of single units in 12 anesthetized,
paralyzed macaque monkeys. Because our primary objective was
to measure the stimulus dependence of neuronal correlation, we
recorded from nearby neurons (typically "500 "m apart) that
had similar receptive field properties, because distant or dissim-
ilar neurons tend to fire independently (Nelson et al., 1992; Lee et
al., 1998; DeAngelis et al., 1999; Nowak et al., 1999; Bair et al.,
2001) and have weak correlation in response variability (Zohary
et al., 1994, Lee et al., 1998; Bair et al., 2001; Averbeck and Lee,
2003). We recorded in all cortical layers but biased our popula-
tion toward complex neurons (76% of the population) (Skottun
et al., 1991). The receptive field properties of the neurons com-
prising each pair were similar, with a mean difference of 37° in
orientation preference, 0.37 octaves in spatial frequency prefer-
ence, 0.36 octaves in temporal frequency preference, and a mean
receptive field overlap of 75%. The ocular dominance of the two
cells was also similar, with a mean difference of 0.83 on the seven-
point scale of Hubel and Wiesel (1962).

Orientation dependence of spike count correlation
We evaluated the orientation dependence of rsc, the correlation of
evoked spike counts (Eq. 1 in Materials and Methods), by mea-
suring responses to 2.56 s presentations of full-contrast gratings
of five orientations. Figure 1A shows the orientation tuning and
range of orientations (thick line) used to measure correlation for
an example pair. We chose orientations that spanned a range
from driving the pair strongly [geometric mean response of 33
impulses per second (ips)] to evoking a relatively weak response
(8.6 ips). Scatter plots of the response of the two cells to multiple
presentations of each stimulus are shown in Figure 1B–E as
Z-scores relative to the mean response for each stimulus. The
value of rsc (text in scatter plots) varied among stimulus condi-

tions but did not depend in an obvious way on stimulus orienta-
tion or the evoked firing rate. For instance, the correlation for the
stimulus that drove both cells strongly (0.24) (Fig. 1D) was sim-
ilar to that for a stimulus that drove one cell but not the other
(0.30) (Fig. 1F).

The data presented in Figure 2 show frequency histograms for
rsc in our population of pairs (n # 100), arranged for each pair
from the orientation that was most effective at driving the two
cells to that which was least effective. We found little relationship
between the efficacy of the stimulus and the magnitude of spike
count correlation (ANOVA; p # 0.45). Stimuli that drove the
pair most strongly (42 $ 2 ips) had an average correlation of
0.18 $ 0.03 (Fig. 2A), similar to the average rsc value of 0.19 $
0.02 for stimuli that evoked the weakest response (12 $ 1 ips)
(Fig. 2E). The mean rsc collapsing across all conditions and pairs
was 0.20, a value consistent with previous measurements in the
visual system, including those in V1 [0.22 in Gawne et al. (1996)
and !0.25 in Reich et al. (2001)], middle temporal visual area
(MT) [0.19 in Zohary et al. (1994) and 0.20 in Bair et al. (2001)],
and inferior temporal cortex [0.23 in Gawne and Richmond
(1993)]. Because strong trends between stimulus efficacy and rsc

in individual pairs may go undetected in a population analysis,
we also calculated the relationship between the evoked firing rate
and rsc for each pair individually. We found a significant correla-
tion ( p " 0.05) in only 7 of 100 pairs, three of which were posi-
tively correlated and four of which were negatively correlated.

We conclude that there is little relationship between the effi-
cacy of an oriented stimulus and the correlation in trial-to-trial
variability of evoked spike count, suggesting that this variability
arises from orientation-independent variations in trial-to-trial
cortical excitability.

Orientation dependence of spike timing correlation
Whereas the orientation independence of rsc agrees well with
previous studies (Zohary et al., 1994; Bair et al., 2001), a related
form of correlation, spike timing synchrony, has been shown to
depend on stimulus drive. However, most studies investigating
synchrony between single V1 cortical neurons have focused ei-
ther on the effect of altering the “gestalt” characteristics of the
stimulus (Livingstone, 1996) or have used indirect measurements
such as the synchrony of multiunit activity (MUA) (Lamme and
Spekreijse, 1998) or the strength of oscillations in single-unit
activity, MUA, or the local field potential (LFP) (Gray et al., 1989;
Gray and Viana Di Prisco, 1997; Friedman-Hill et al., 2000; Frien
et al., 2000). The relationship between the synchronous firing of
single neurons and these measurements is unclear. For MUA

Figure 1. Example of the independence of spike count correlation and orientation. A, Tuning curves for two V1 neurons. Range
of orientations used to measure correlation are indicated by thick lines; letters indicate the stimulus used for each scatter plot.
B–F, Scatter plots of responses of V1 pair to 100 presentations of each stimulus. The response of each cell is normalized by
subtracting the mean response to that stimulus and dividing by the SD of the responses. The rsc values are indicated. deg, Degrees.
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Problems with deep 
network models

MONKEY STRIATE CORTEX
showed little or no directional preference. Even when responses were highly
asymmetrical, the less effective direction of movement usually evoked
some minimal response (see Text-fig. 2), but there were a few examples in
which the maintained activity was actually suppressed.

Individual complex cells differed markedly in their relative responsive-
ness to slits, edges, or dark bars. The majority responded very much better
to one than to the other two, but some reacted briskly to two of them, and
a few to all three. For a cell that was sensitive to slits, but not to edges, the
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Text-fig. 2. Responses of a complex cell in right striate cortex (layer IV A) to
various ori6ntations of a moving black bar. Receptive field in the left eye indicated
by the interrupted rectangles; it was approximately i x I' in size, and was situated
40 below and to the left of the point offixation. Ocular-dominance group 4. Duration
of each record, 2 sec. Background intensity 1-3 log10 cd/M2, dark bars 0.0 log cd/M2.

responses increased as slit width was increased up to some optimal value,
and then they fell off sharply; the optimum width was always a small
fraction of the width of the whole field. For complex cells that responded
best to edges, some reacted to one configuration and also to its mirror

219

) by guest on February 13, 2011jp.physoc.orgDownloaded from J Physiol (

moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).

Response Reliability in Different V1 Layers

To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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Figure 2. Distributions of Fano factors in individual V1 layers. The medians (gray bars)
and the interquartile ranges (error bars) are displayed. The number of cells sampled
from each layer is displayed to the right of each bar.
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Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
show responses without compensation for eye position while the upper plots show responses with timing computationally adjusted for eye position post hoc. (A) Responses to
repeated forward and back sweeps of an optimally oriented bar (120! from horizontal, tr. 13) across the receptive field of a complex cell located in layer 2/3. There were no
saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
were near threshold and were quite variable. Other conventions are as in Figure 1.
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moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).

Response Reliability in Different V1 Layers

To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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Figure 2. Distributions of Fano factors in individual V1 layers. The medians (gray bars)
and the interquartile ranges (error bars) are displayed. The number of cells sampled
from each layer is displayed to the right of each bar.

A

B

0

-50

0

50

3000 4000 5000200010000
Time (ms)

Ey
e 

po
si

tio
n 

(m
in

ar
c)

-50

50

0 50 100 150

0 50 100 150
Time (ms)

Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
show responses without compensation for eye position while the upper plots show responses with timing computationally adjusted for eye position post hoc. (A) Responses to
repeated forward and back sweeps of an optimally oriented bar (120! from horizontal, tr. 13) across the receptive field of a complex cell located in layer 2/3. There were no
saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
were near threshold and were quite variable. Other conventions are as in Figure 1.
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window over the duration of the trial. The 
Fano factor has been used extensively to 
characterize neural variability (for example, 
see refs. 17–19). The Fano factor is influenced 
both by variability arising from spiking noise 
and by across-trial variability in the under-
lying firing rate20. Most prior work assumes 
that the underlying firing rate is similar 
across trials and uses the Fano factor to 
assess the statistics of spiking noise, which 
are roughly Poisson (Fano factor 1) for 
most of cortex. We began with the assump-
tion that spiking noise is roughly Poisson and 
we used the Fano factor to assess across-trial 
 variability in the underlying rate. We inter-
preted a Fano factor greater than 1 as being 
an indication of across-trial firing-rate vari-
ability. We interpreted changes in the Fano 
factor as reflecting changes in across-trial 
firing-rate variability9,20,21. Although this 
approach assumes Poisson spiking noise, 
it is reasonably robust to violations of that 
assumption (it is sufficient that spiking-noise 
variance scale linearly with the mean; the 
slope needn’t be unity). To begin, we exam-
ined how the Fano factor behaves across a 
variety of cortical areas.

We computed the mean firing rate and the 
Fano factor for ten datasets from seven cortical  
areas of the macaque monkey (Fig. 3): V1, V4, 
MT, the lateral intra-parietal area (LIP), the 
parietal reach region (PRR), dorsal premotor 
cortex (PMd) and orbitofrontal cortex (OFC). Responses were to 
 various visual stimuli or, for OFC, to juice reward. For each area, the 
Fano factor was averaged across neurons and conditions. This is similar 
to what was done for the membrane potential analysis and reflects both 
a desire for statistical power and the expectation that variability may 
change for both preferred and nonpreferred stimuli (as in Fig. 2a,b).

In every case, stimulus onset drove a decline in firing-rate vari-
ability as assessed by the Fano factor (all P < 0.02). This is notable, 
given the diversity of areas, stimuli and behavioral states. Variability 
declined during responses to simple visual stimuli, during operantly 

conditioned responses (PRR and PMd) and during reward-driven 
responses (OFC). The variability decline was present regardless of 
whether the monkey was anaesthetized (V1 and two of the four the 
MT datasets; Fig. 3, bottom), passively viewing (V4) or performing 
a task (the other six datasets). For two of the MT datasets (Fig. 3,  
bottom), stimulus onset occurred in two stages: pattern onset and 
motion onset. Both events drove a decline in variability, although only 
the more effective moving stimulus drove a sustained decline.

We previously proposed that declining variability in premotor  
cortex is related to the progress of motor preparation9. The changes 
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Figure 3 Changes in firing-rate variability for 
ten datasets (one per panel). Insets indicate 
stimulus type. Data are aligned on stimulus 
onset (arrow). For the two bottom panels  
(MT area/direction and MT speed), the dot 
pattern appeared at time zero (first arrow)  
and began moving at the second arrow. The 
mean rate (gray) and the Fano factor (black  
with flanking s.e.) were computed using a  
50-ms sliding window. For OFC, where response 
amplitudes were small, a 100-ms window was 
used to gain statistical power. Analysis included 
all conditions, including nonpreferred. The 
Fano factor was computed after mean matching 
(Fig. 4). The resulting stabilized means are 
shown in black. The mean number of trials  
per condition was 100 (V1), 24 (V4),  
15 (MT plaids), 88 (MT dots), 35 (LIP),  
10 (PRR), 31 (PMd), 106 (OFC), 125 (MT direction 
and area) and 14 (MT speed).

cell 1 (z-score)

algorithm (Chandler 1969) to minimize the
combined ! 2 error between the model predic-
tions and the data. From the fitted equation, we
defined the optimal stimulus parameter as that
which would evoke the strongest predicted re-
sponse. The difference between the preferred
spatial and temporal frequencies of the two cells
was then defined in octaves as follows:

! log2"Preferred frequency of cell 1

Preferred frequency of cell 2#! .

(11)

To measure the receptive field overlap of the
two cells, we determined the receptive field cen-
ter by hand, using a small (!0.3°) patch of op-
timal grating. We then measured responses to
gratings of increasing size and fit the data with a
difference-of-error function, using the STEPIT
algorithm. The receptive field size of each cell was defined as the maxi-
mum of the function in the range tested, and the overlap was defined as
the percentage of the smaller RF that was included in the larger RF. The
mean receptive field size provided by this approach is approximately
twice that provided by hand maps using small bars of light (Cavanaugh et
al., 2002). As a result, our estimate of RF overlap is substantially higher
than that which would result from mapping with small stimuli.

In our regression analysis, we only used data from pairs for which the
fits for both cells accounted for at least 50% of the variance (123 of 133
pairs for the spatial and temporal frequency data; 114 of 133 pairs for the
area data). The variance accounted for by the fits in these cells was on
average 90 –92% for each parameter.

Results
We recorded from 147 pairs of single units in 12 anesthetized,
paralyzed macaque monkeys. Because our primary objective was
to measure the stimulus dependence of neuronal correlation, we
recorded from nearby neurons (typically "500 "m apart) that
had similar receptive field properties, because distant or dissim-
ilar neurons tend to fire independently (Nelson et al., 1992; Lee et
al., 1998; DeAngelis et al., 1999; Nowak et al., 1999; Bair et al.,
2001) and have weak correlation in response variability (Zohary
et al., 1994, Lee et al., 1998; Bair et al., 2001; Averbeck and Lee,
2003). We recorded in all cortical layers but biased our popula-
tion toward complex neurons (76% of the population) (Skottun
et al., 1991). The receptive field properties of the neurons com-
prising each pair were similar, with a mean difference of 37° in
orientation preference, 0.37 octaves in spatial frequency prefer-
ence, 0.36 octaves in temporal frequency preference, and a mean
receptive field overlap of 75%. The ocular dominance of the two
cells was also similar, with a mean difference of 0.83 on the seven-
point scale of Hubel and Wiesel (1962).

Orientation dependence of spike count correlation
We evaluated the orientation dependence of rsc, the correlation of
evoked spike counts (Eq. 1 in Materials and Methods), by mea-
suring responses to 2.56 s presentations of full-contrast gratings
of five orientations. Figure 1A shows the orientation tuning and
range of orientations (thick line) used to measure correlation for
an example pair. We chose orientations that spanned a range
from driving the pair strongly [geometric mean response of 33
impulses per second (ips)] to evoking a relatively weak response
(8.6 ips). Scatter plots of the response of the two cells to multiple
presentations of each stimulus are shown in Figure 1B–E as
Z-scores relative to the mean response for each stimulus. The
value of rsc (text in scatter plots) varied among stimulus condi-

tions but did not depend in an obvious way on stimulus orienta-
tion or the evoked firing rate. For instance, the correlation for the
stimulus that drove both cells strongly (0.24) (Fig. 1D) was sim-
ilar to that for a stimulus that drove one cell but not the other
(0.30) (Fig. 1F).

The data presented in Figure 2 show frequency histograms for
rsc in our population of pairs (n # 100), arranged for each pair
from the orientation that was most effective at driving the two
cells to that which was least effective. We found little relationship
between the efficacy of the stimulus and the magnitude of spike
count correlation (ANOVA; p # 0.45). Stimuli that drove the
pair most strongly (42 $ 2 ips) had an average correlation of
0.18 $ 0.03 (Fig. 2A), similar to the average rsc value of 0.19 $
0.02 for stimuli that evoked the weakest response (12 $ 1 ips)
(Fig. 2E). The mean rsc collapsing across all conditions and pairs
was 0.20, a value consistent with previous measurements in the
visual system, including those in V1 [0.22 in Gawne et al. (1996)
and !0.25 in Reich et al. (2001)], middle temporal visual area
(MT) [0.19 in Zohary et al. (1994) and 0.20 in Bair et al. (2001)],
and inferior temporal cortex [0.23 in Gawne and Richmond
(1993)]. Because strong trends between stimulus efficacy and rsc

in individual pairs may go undetected in a population analysis,
we also calculated the relationship between the evoked firing rate
and rsc for each pair individually. We found a significant correla-
tion ( p " 0.05) in only 7 of 100 pairs, three of which were posi-
tively correlated and four of which were negatively correlated.

We conclude that there is little relationship between the effi-
cacy of an oriented stimulus and the correlation in trial-to-trial
variability of evoked spike count, suggesting that this variability
arises from orientation-independent variations in trial-to-trial
cortical excitability.

Orientation dependence of spike timing correlation
Whereas the orientation independence of rsc agrees well with
previous studies (Zohary et al., 1994; Bair et al., 2001), a related
form of correlation, spike timing synchrony, has been shown to
depend on stimulus drive. However, most studies investigating
synchrony between single V1 cortical neurons have focused ei-
ther on the effect of altering the “gestalt” characteristics of the
stimulus (Livingstone, 1996) or have used indirect measurements
such as the synchrony of multiunit activity (MUA) (Lamme and
Spekreijse, 1998) or the strength of oscillations in single-unit
activity, MUA, or the local field potential (LFP) (Gray et al., 1989;
Gray and Viana Di Prisco, 1997; Friedman-Hill et al., 2000; Frien
et al., 2000). The relationship between the synchronous firing of
single neurons and these measurements is unclear. For MUA

Figure 1. Example of the independence of spike count correlation and orientation. A, Tuning curves for two V1 neurons. Range
of orientations used to measure correlation are indicated by thick lines; letters indicate the stimulus used for each scatter plot.
B–F, Scatter plots of responses of V1 pair to 100 presentations of each stimulus. The response of each cell is normalized by
subtracting the mean response to that stimulus and dividing by the SD of the responses. The rsc values are indicated. deg, Degrees.
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Probabilistic models vs. deep networks
• probabilistic models provide detailed predictions of stimulus statistics 

• most deep learning architectures don’t explicitly account for variability 

• probabilistic models are explicitly formalised hypotheses about neural computation 

• deep learning models are generic, very flexible computing architectures with no 
easy interpretation 

• in probabilistic models it is often hard to implement inference, and each one is 
different 

• there are powerful existing methods to train deep learning models  

• it is nontrivial to build a generative model if images that performs acceptably in an 
object recognition task 

• deep learning models do object recognition very well 

• they can be combined to yield more powerful predictions











Bányai & Orbán, 2019, Curr Opin Neurobiol



Semantic compression of the visual input



Variational autoencoders and compression



Variational autoencoders and compression



Neural representation of textures



Neural representation of textures

Ziemba et al, 2016, PNAS
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High-dimensional hierarchical generative models
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Semantic compression of textures
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Representation of texture families in  the model
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Predicting reward
Pavlovian - classical conditioning
• unconditioned stimulus, conditioned stimulus

actionunconditioned 
stimulus: smell & 

view of food 

reward

conditioned 
stimulus: sound 

of bell

instrumental - operant conditioning
• the actions of the animal determine the reward



Knowledge

Motor control

Decision making

Perception

Inferred information from 
actual observation

Past events Learned regularities 
of the world

Consciousness 
?



How to build a decision making 
model on top of the perceptual one?

• We need to choose a target variable from the model that 
we will try to optimise - this will be called the reward 

• Motor output will be modelled a fixed set of possible 
actions that make modifications in the environment 

• A combination of inferred values for the latent variables is 
called a (perceived) state of the environment  

• We have to figure out which action to choose in every 
state



Basic types of learning problems
• Supervised

• data: input-output pairs

• approximate the mapping between them

• discrete output: classification

• continuous: regression

• Unsupervised

• data: set of values

• fit a predefined structure on it

• find the optimal representation: clustering, filtering

• Reinforcement

• data: state information and sparse reward

• learn optimal strategies

• active learning



Reward encoding in the cortex

• Dopamin neurons in the monkey’s cortex 
respond according to the learned 
association between indicator variables 
and reward

• Activity is proportional to surprise



Agent-environment framework

• The environment communicates towards the 
agent which state it’s in

• Reward is given in some states to the agent

• The agent pushes the environment to new 
states by its actions



Learning the value of states
• Simplest case: there is a finite number of 

states of the environment 

• each state s is a combination of inferred 
values for the latent variables of the mental 
model (e.g. we take the a posteriori most 
probable values) 

• for each state we assign a value, V(s), that 
encodes the desirability of that state 

• after each decision, at time t, we update the 
estimation of state values using previous 
estimations and the reward 

• intuition: a value of a state is determined by 
the reward, and the value of other states that 
are accessible from it through a few actions Russell & Norvig, 1995

 https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html


Reinforcement learning

• The goal of RL is to maximize reward in 
the long run

• We have to learn how useful certain 
states and actions are to do that

• Trial and error

• Set values based on reward

• Propagate value to states without 
reward



Temporal Difference learning

• We learn from prediction error

• The value of the state we stepped on 
makes the previously visited state more 
similar to itself

• We can propagate to earlier states too



Action selection



Action selection
• Now we have the state value function
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• Now we have the state value function

•  V: s -> R

• In order to choose an action, we need to know that 
from the current state, which action leads to which 
other state

• M: (s,a) -> s

• or more generally, M: (s1,s2,a) -> P

• this function, M, is called the model of the 
environment

• In each RL setting in which we learn a state-value 
function, we have to learn a model function as well

• these are called model-based solutions
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Model-free RL

• Instead of learning the model of the 
environment, we can learn the value of 
state-action pairs directly

• the function Q: (s,a) -> R

• the TD rule applies nicely here as well

• action selection only requires the Q 
function, not the model

Qt+1(st, at) = Qt(st, at) + ✏
h
rt+1 + �max

a
Qt(st + 1, a)�Qt(st, at)

i
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Exploration vs. exploitation

• When we don’t know anything about the 
environment yet, it doesn’t make sense to 
repeat the first series of actions that led to 
some reward

• When we know more, we can just use the 
best strategy we found

• Usual way: act randomly in the beginning, 
gradually increase of probability of 
choosing the action we think is best



Representation of the value function

• If there are not so many, we can use a table

• With large and continuous spaces

• we can only represent state variables

• we need to generalise to states never 
visited

• feedforward neural networks are a good 
choice

• we have to construct a desired output for 
backpropagation at each step from the 
prediction error



TD learning with a neural network
● Gerald Tesauro: TD-

Gammon 
● feed-forward neural network 
● Input: states attainable by  

possible actions 
● Output: state value (winning 

probability) 
● At each step, we have to 

calculate an output error for 
the network 
● based on the reward signal 

● Result: comparable to best 
human players 

● Total training time today: 5s



TD using a neural representation
● Using the prediction error for learning 
● Update of the state value in the neural 

representation: 
 

● Calculating the prediction error 
● Ideally we’d need the sum of future rewards  
● We use a single-step local approximation 
 

● If the environment is observable, this converges to an 
optimal strategy 

● We can propagate the error back to previous states 
too

w(⌧) w(⌧) + "�(t)u(t� ⌧) �(t) =
X

t

r(t+ ⌧)� v(t)

X

t

r(t+ ⌧)� v(t) ⇡ r(t) + v(t+ 1)
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Learning physical movement with RL



The effect of reward 
in dopaminerg cell  

of basal ganglia
An interpretation: 

Dopamine cells signals the difference 
between the expected and received 
reward. 



● Glascher, Daw 
Dayan, 
O'Doherty, 
Neuron, 2010. 

● Correlation of 
brain activity with 
model-based and 
model-free 
reinforcement 
learning 
algorithms 

 



Strategy learning in the cortex

• Model-based and 
model-free RL

• correlates of 
quantities related 
to both can be 
found with fMRI
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