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Augmenting dimensionality reduction

* When looking for a lower dimensional representation of

your data, you typically enforce generic principles about
the latent variables

e Independence, orthogonality, sparsity, etc.
e these may correspond to stimulus features or
experimental conditions, but not necessarily (especially

given the structure of your model, e.g. linear mappings)

* Another approach is to put conditions explicitly in the
model



Review of PCA

e goal: explain as much variance i
with as few variables (components)
as possible

* parameter estimation: eigenvectors
of data covariance matrix

e Or an iterative Expectation
Maximisation parameter X
estimation algorithm
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Data

e four different datasets from the labs of Romo, Constantinidis
and Mainen

 monkey PFC, rat OFC

e decision tasks, in each trial there is a stimulus (tactile, visual
or oltactory) and the animal makes a binary decision

* they always use the peristimulus time histogram as data

* they average over trials (needed because cells are not
recorded simultaneously, and have diff. number of trials too)

* data dimension: #cells x (#stim - #dec - #timebin)
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Decomposition of variance

e |f we decompose the data by marginalising over
different parameters, the covariance matrix can be given
as a sum of the decomposed covariances

x(t,s) = p+ 2(t) + z(s) + z(t, s).

z2(t) = (x(t,s) — p)s - z(s) = (x(t, ) — ), - z(t,s) = x(t,s) — p — z(t) — z(s).

Var(xz(t,s)) = Var(z(t)) + Var(z(s)) + Var(z(t, s)).

* Instead of regular principal components, we are looking
for ones that describe variance only in the direction of
the eigenvectors of one of the decomposed covariances




Selectivity of neurons and
principal components
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Generative model of dPCA

 An EM algorithm can be derived to find the
components by adding constraints to the standard
PCA inference



Firing rate
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INnsignts

Linear demixing of the population activity is possible

Most of the variance is explained by components not
related to any conditions

Some components are the derivatives of each other ->
similar activity patterns arise in the population with
temporal shitts

Using decision-related components as fixed linear
decoders, one can decode the decision from the
population activity with ~75% accuracy
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L Imitations

e Needs lots of neurons

e All parameter combinations need to be present in
the data

* Applied only to PSTH here, in theory it might be
applicable to trial-to-trial covariabillity, but not tested



Functional generative models vs.
demixed dimensionality reduction

* (Generative models of perception
* neural activation / latent causes -> stimulus
 emphasis on prediction of neural activity statistics
 Demixed dimension reduction
e stimulus / conditions -> neural activation
 emphasis on identification of variable mappings

* Hypotheses about neural representations are formalisable in
both frameworks



