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Generatív/rekogniciós modell

szituáció / környezet

objektumok

objektum elhelyezkedése |  
méret, hely, helyzet, világítás

objektum tulajdonságai | 
élek, felületi mintázatok

stimulus

Modell definició -> generáció:
P(x | z)

Inferencia igénye -> rekogníció:
P(z | x)
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Lineáris modellek

4

objektum tulajdonságai | 
élek, felületi mintázatok

stimulus

x = A z + eps

x = c (A z) + eps

V1 receptive mezők:
• orientált
• sáváteresztő
• lokalizált

V1 stimulus-függés
• kontraszt invariancia
• extra-klasszikus 

receptív mezők
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Gauging V2 responses so far

• gratings 

• contours 

• angles 

• other forms of second order stats 

• border ownership
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Learning about the stats of an image

• Registering the responses of linear filters (simple cells) 

• Registering the responses of energy filters (complex cells) 

• Marginal statistics: variance, kurtosis, skewness 

10

• Registering correlations between orientations 

• Registering correlations between spatial frequencies 

• Registering correlations across positions

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben 2016 tavaszhttp://golab.wigner.mta.hu

Synthetic textures
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A R T I C L E S

of the between-subject variability being captured by differences in 
overall performance ( 0). As expected, the simpler V1 model required 
a smaller scaling to generate metameric images. Specifically, critical  
scaling values for the V1 model were 0.26  0.05 (mean  s.d.), 
whereas values for the mid-ventral model were roughly twice as  
large (0.48  0.02).

Estimation of physiological locus
We then compared the psychophysically estimated scaling parameters 
to physiological estimates of receptive field size scaling in different 
cortical areas. Functional magnetic resonance imaging has been used 
to measure population receptive fields in humans by estimating the 
spatial extent of a stimulus that contributes to the hemodynamic 
response across different regions of the visual field13. Although these 
sizes grow with eccentricity, and across successive visual areas, they 
include additional factors, such as variability in receptive field posi-
tion and non-neural hemodynamic effects, which may depend on 
both eccentricity and visual area. We chose to compare our results 

Figure 2 Mid-ventral model, example metameric stimuli and experimental task. (a) In each spatial pooling region, the image was first decomposed 
using a population of model V1 cells (both simple and complex), varying in their preferred orientation and spatial frequency. Model responses were 
computed from products of the filter outputs across different positions, orientations and scales, averaged over each of the pooling regions.  
(b) An original photograph of the Brunnen der Lebensfreude in Rostock, Germany. (c,d) Synthetic image samples, randomly selected from the set of 
images that generated model responses identical to those of the original (b). The value of the scaling parameter (used to determine the pooling regions 
of the model) was selected to yield 75% correct performance in discriminating such synthetic images (see Fig. 4). The two images, when viewed with 
fixation at the center (red dot), should appear to be nearly identical to the original and to each other, despite gross distortions in the periphery (for 
example, a woman’s face is scrambled and dissolves into the spray of the fountain). (e) Psychophysical ABX task. Human observers viewed a sequence 
of two synthetic stimuli ABX, each randomly selected from the set of all images having model responses matched to an original image, followed by a 
third image that was identical to one of the first two. Observers indicated which of the first two images matched the third.
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Figure 3 Metamer experiment results. Each graphs shows, for an 
individual observer, the proportion of correct responses in the ABX task 
as a function of the scaling parameter (ratio of receptive field diameter 
to eccentricity) of the model used to generate the stimuli. Data were 
averaged over stimuli drawn from four naturalistic images. Dark gray 
indicates the mid-ventral model (see Fig. 2), whereas light gray  
indicates the V1 model (see Supplementary Fig. 2). Shaded region 
indicates the 68% confidence interval obtained using bootstrapping.  
The gray horizontal lines indicate chance performance. Black lines 
indicate performance of observer model with critical scaling and gain 
parameters chosen to maximize the likelihood of the data for each 
individual observer (see Online Methods). r 2 values for the fits are 
indicated at the bottom of each plot.
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We performed an additional experiment to determine directly 
whether our mid-ventral model could predict recognition performance 
in a crowding task. The experimental design was inspired by a previous 
study linking statistical pooling in the periphery to crowding24. First, 
we measured observers’ ability to recognize target letters presented 
peripherally (6 deg) between two flanking letters, varying the target-
to-flanker spacing to obtain a psychometric function (Fig. 6a). We 
then used the mid-ventral model to generate synthetic metamers for 
a subset of these peripherally presented letter stimuli and measured 
the ability of observers to recognize the letters in these metamer 
stimuli under foveal viewing. Recognition failure (or success) for a 
single metamer cannot alone indicate crowding (or lack thereof), but 
the average performance across an ensemble of metamer samples 
 quantifies the limitations on recognizability imposed by the model.

Average recognition performance for the metamers is well matched 
to that of their corresponding letter stimuli (Fig. 6a) for metamers 
synthesized with scaling parameter s = 0.5 (the average critical scaling 
estimated for our human observers). For metamers synthesized with 
scaling parameters of s = 0.4 or s = 0.6, performance was significantly 
higher or lower, respectively (P < 0.0001, two-tailed paired t test across 
observers and conditions). These results are consistent across all obser-
vers, at all spacings, and for two different eccentricities (Fig. 6b).

DISCUSSION
We constructed a model for visual pattern representation in the 
mid-level ventral stream that computes local correlations amongst 

V1 responses in eccentricity-dependent pooling regions. In addition, 
we developed a method for generating images with identical model 
responses and used these synthetic images to show that when the 
pooling region sizes of the model are set correctly, images with iden-
tical model responses are indistinguishable (metameric) to human 
observers, despite severe distortion of features in the periphery. We 
found that the critical pooling size required to produce metamericity 
is robust to bottom-up and top-down manipulations of discrimina-
tion performance; that critical pooling sizes are consistent with the 
 eccentricity dependence of receptive field sizes of neurons in ventral 
visual area V2; and that the model can predict degradations of peri-
pheral recognition known as crowding, as a function of both spacing  
and eccentricity.

Perceptual deficits in peripheral vision have been recognized for cen-
turies. Most early studies focused on the loss of acuity that results from 
eccentricity-dependent sampling and blurring in the earliest visual 
stages. Crowding is a more complex peripheral deficit39. In 1976, Jerome 
Lettvin gave a subjective account of this phenomenon, describing  
 letters embedded in text as having “lost form without losing crispness,” 
and concluding that “the embedded [letter] only seems to have a ‘statis-
tical’ existence.”20. This article seems to have drifted into obscurity, but 
these ideas have been formalized in recent reports that explain crowd-
ing in terms of excessive averaging or pooling of features21–24. One 
study in particular hypothesized that crowding is a manifestation of the 
representation of peripheral visual content with local summary statis-
tics24, and showed that human recognition performance for crowded 
letters was matched to that of foveally viewed images synthesized to 
match the statistics of the original stimulus (computed over a localized 
region containing both the letter and flankers).

Our model provides an instantiation of these pooling hypotheses 
that operates over the entire visual field, which, in conjunction with 
the synthesis methodology, enabled several scientific advances. First, 
we validated the model with a metamer discrimination procedure, 
which provides a more direct test than comparisons to recognition 
performance in a crowding experiment. Second, the parameterization 
of eccentricity dependence allowed us to estimate the size of pooling 
regions and to associate the model with a distinct stage of ventral 
stream processing. Third, the full-field implementation allowed us 
to examine crowding in stimuli extending beyond a single pooling 
region and to account for the dependence of recognition on both 
eccentricity and spacing, the defining properties of crowding18.

Finally, the fact that our model operates on arbitrary photographic 
images allows generalization of the laboratory phenomenon of crowd-
ing to complex scenes and everyday visual tasks. For example, crowd-
ing places limits on reading speed, as only a small number of letters 
around each fixation point are recognizable40. Model-synthesized 
metamers can be used to examine this ‘uncrowded’ window (Fig. 7a). 
We envision that our model could be used to optimize fonts, letter 
spacing or line spacing for robustness to crowding effects, potentially 
improving reading performance. There is also some evidence linking 
dyslexia to crowding with larger-than-normal critical spacing18,41,42, 
and the model might serve as a useful tool for investigating this 
hypothesis. Model-synthesized images also show how camouflaged 
objects, which are already difficult to recognize foveally, blend into 
the background when viewed peripherally (Fig. 7b,c).

The interpretation of our experimental results relies on assumptions 
about the representation of, and access to, information in the brain. 
This is perhaps best understood by analogy to trichromacy14. Color 
metamers occur because information is lost by the cones and cannot 
be recovered in subsequent stages. However, color appearance judg-
ments clearly do not imply direct conscious access to the responses of 
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Figure 6 Crowding experiment. (a) Recognition performance for two 
different kinds of stimuli: peripherally viewed triplets of letters and 
foveally viewed stimuli synthesized to produce model responses identical 
to their corresponding letter triplets. Black dots represent the average 
recognition performance for a peripheral letter between two flankers, 
as a function of letter-to-letter spacing (n = 5 observers). The black 
line represents the best fitting Weibull function. The gray shaded 
region represents the 95% confidence interval for fit obtained through 
bootstrapping. Synthetic stimuli were generated for spacings yielding 
approximately 50%, 65% and 80% performance, based on the average 
psychometric function. Colored dots indicate average recognition 
performance for model-synthesized stimuli (foveally viewed). Different 
colors indicate the scaling parameter used in the model (purple, 0.5; 
orange, 0.6; green, 0.4). Error bars represent s.d. across observers.  
(b) Comparison of recognition performance for the peripheral letter  
triplets (from the psychometric function in a) and the foveally viewed 
synthetic stimuli (colored dots from a). Each point represents data from 
a single observer for a particular spacing and scaling. Two observers 
performed an additional condition at a larger eccentricity (not shown in a) 
to extend the range of performance levels (the six left-most points).

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben 2016 tavaszhttp://golab.wigner.mta.hu 14

http://people.brandeis.edu/~ogergo


Gergő Orbán – 2 July 2013http://golab.wigner.mta.hu/

Synthetising images
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V2 responses to Portilla textures
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V2 responses to Portilla textures
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fMRI responses to Portilla textures
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Perceptual correlates
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The mechanical Turk challenge
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The mechanical Turk challenge
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