Statisztikus tanulás az idegrendszerben Prior tanulása

Török Balázs

golab.wigner.mta.hu

Orbán Gergő diái

Integrating evidence with prior knowledge

Bayesian inference

$P(\text{feature} | \text{stimulus}) \propto P(\text{stimulus} | \text{feature}) \times P(\text{feature})$

posterior: inference

http://golab.wigner.mta.hu

Reason #1

sparse information

Uncertainty in inferences

Reason #2 degraded information (a.k.a. noise)

uncertainty in inferences

✓ uncertainty in inferences

Reason #4 multiple interpretations \$ uncertainty in inferences

Reason #4

aperture problem / occlusions

Uncertainty in inferences

Honnan van a prior?

- Előzetes ismeretekből
- Tapasztalatok statisztikáját tükrözi
- Természetes stimulusok statisztikája megjelenik benne

a világ/környezet statisztikája szerint:

- A környezet 3 dimenziós
- Felületek többnyire konvexek
- Fény felülről jön
- Szín és fényesség invariancia
- Kisebb sebesség preferálása

"Rules of thumb" in the nervous system: Gestalt principles

- In the 1910's Gestalt psychology was the major tool for explaining the ability of 'form-forming', and thus object perception
- Gestalt was developed parallel with but independent of cubism (c.f. the relationship between Picasso & Max Werteimer)
- Gestalt rules are supposedly acquired through learning

If Gestalt rules can be treated as acquired priors of the nervous system, then we can expect Gestalt-illusions

• Közelség (proximity)

• Hasonlóság (similarity)

• Folytonosság (good continuity)

• Közös sors ('common fate')

Industrial Gestalt Camouflage

- In WWI the necessity to hide became acute
- Gestalt psychologists were inducted in military industry: French army established its first camouflage division in 1915
- Two strategies for making figure-ground separation tough:
 - fading into the environment (pattern matching)
 - brake down contours

movement directions consistent with observation

movement directions consistent with observation

movement directions consistent with observation

Illúziók, mint Bayes-i komputációk Weiss, Simoncelli & Adelson (2002)

Milyen mozgásokkal konzisztens? (mik a stimulus alapján a valószínű mozgások?)

Illúziók, mint Bayes-i komputációk Weiss, Simoncelli & Adelson (2002)

Illúziók, mint Bayes-i komputációk Weiss, Simoncelli & Adelson (2002)

http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

Statisztikus tanulás az idegrendszerben

http://golab.wigner.mta.hu

Determining the shape of the likelihood and the prior:

Stocker, A. A. & Simoncelli, E. P. Noise characteristics and prior expectations in human visual speed perception. *Nat Neurosci* **9**, 578–585 (2006). Statisztikus tanulás az idegrendszerben 2016 tavasz 33

Subjective distribution

Hogyan tudjuk ezeket a szubjektív eloszlásokat megtanulni?

Sampling!

 human választás és a Metropolis-Hastings mintavételezés között ekvivalencia állítható fel

Paradigm

- két halat mutatunk a résztvevőnek: x₁, és x₂ méretűek
- pontosan az egyik eleme egy megadott (és korábban megtanított) c kategóriának
- 'válaszd ki a c kategóriába tartozó halat'
- egy ideális megfigyelő két hipotézist hasonlít össze:
 h₁: x₁ a p(x | c) eloszlásból, x₂ a g(x) eloszlásból való
 h₂: fordítva

egy ideális megfigyelő
$$p(h_1|x_1, x_2) = \frac{p(x_1, x_2|h_1)p(h_1)}{p(x_1, x_2|h_1)p(h_1) + p(x_1, x_2|h_2)p(h_2)}$$

 $= \frac{p(x_1|c)g(x_2)p(h_1)}{p(x_1|c)g(x_2)p(h_1) + p(x_2|c)g(x_1)p(h_2)}$

The internal model

- 1. *complex*
- 2. ecologically relevant
- 3. extensive subjective experience
- 4. experience is *subjective*

The internal model

feature #2

How to measure the internal model?

Current Biology 23, 2169–2175, November 4, 2013 ©2013 The Authors http://dx.doi.org/10.1016/j.cub.2013.09.012

Cognitive Tomography Reveals Complex, Task-Independent Mental Representations

Neil M.T. Houlsby,^{1,4} Ferenc Huszár,^{1,4} Mohammad M. Ghassemi,¹ Gergő Orbán,^{1,2} Daniel M. Wolpert,^{1,5} and Máté Lengyel^{1,3,5,*}

A Bayesian challenge

Observer's inference

- stimulus is noisy
- stimulus is ambiguous

Experimenter's inference

- responses are noisy
- attentional lapses
- biases
- uncertainty in subjective distribution

Cognitive tomography

Paradigm

Paradigm

- 1000 trials in each tasks
- 800 randomly chosen trials used to infer the subjective distribution
- 100 random trials repeated to test consistency
- 200 trials for prediction

Unveiling the internal model

ISMERŐSSÉG

subject #2

BÖKJ-A-NEMODAILLŐRE

subject #2

Unveiling the internal model

Across-task & across-subject comparison

Predicting decisions

http://golab.wigner.mta.hu

Prediction

Complex priors: context

kékség *× átlátszóság* = *szürkeség* sárgaság *×* (1 - *átlátszóság*) = *szürkeség*

Cikkek

- Weiss, Simoncelli, Adelson, 2002 http://www.cns.nyu.edu/pub/eero/weiss02-reprint.pdf
- MCMC with People Sanborn, Griffiths, 2007 <u>https://papers.nips.cc/paper/3214-markov-chain-monte-carlo-with-people.pdf</u>
- Cognitive Tomography Reveals Complex, Task-Independent Mental Representations *Houlsby et al, 2013* <u>http://www.cell.com/current-biology/fulltext/</u> <u>50960-9822%2813%2901128-7</u>