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Integrating evidence with prior knowledge
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Bayesian inference
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Bayes rule

Coin tossing: an example
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Evidence integration in sensorimotor learning 
Körding & Wolpert (2004) Nature
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Evidence integration in sensorimotor learning 
Körding & Wolpert (2004) Nature
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Evidence integration in sensorimotor learning 
Körding & Wolpert (2004) Nature
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Evidence integration in sensorimotor learning 
Körding & Wolpert (2004) Nature
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Expectations and uncertainty
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Reason #1

sparse information
⤳

uncertainty in inferences
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Expectations and uncertainty
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Reason #2

degraded information (a.k.a. noise)
⤳

uncertainty in inferences
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Expectations and uncertainty
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Reason #3

3D — 2D projection

⤳

uncertainty in inferences
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Expectations and uncertainty
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Reason #4

multiple interpretations
⤳

uncertainty in inferences
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Expectations and uncertainty
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Reason #4

aperture problem / occlusions
⤳

uncertainty in inferences
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sok és/vagy 
megbízható adat

evidenciára (likelihoodra) 
hagyatkozhatunk

kevés és/vagy nem 
megbízható adat prior dominál

Honnan van a prior?

• Előzetes ismeretekből
• Tapasztalatok statisztikáját tükrözi
• Természetes stimulusok statisztikája  

megjelenik benne
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a világ/környezet  
statisztikája szerint:

• A környezet 3 dimenziós 

• Felületek többnyire konvexek 

• Fény felülről jön 

• Szín és fényesség invariancia 

• Kisebb sebesség preferálása

15
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“Rules of thumb” in the nervous system:  
Gestalt principles

• In the 1910’s Gestalt psychology was the major tool for explaining  
the ability of ‘form-forming’, and thus  object perception 

• Gestalt was developed parallel with but independent of cubism 
(c.f. the relationship between Picasso & Max Werteimer) 

• Gestalt rules are supposedly acquired through learning 

If Gestalt rules can be treated as acquired priors of the nervous 
system, then we can expect Gestalt-illusions 

16
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Gestalt elvek és illúziók
• Közelség (proximity)

17
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• Hasonlóság (similarity)
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Gestalt elvek és illúziók
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• Folytonosság (good continuity)

19

Gestalt elvek és illúziók

http://golab.wigner.mta.hu


http://golab.wigner.mta.huGergő Orbán, BSCS, 27 — 31 July, 2015

• Közös sors (‘common fate’)
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Gestalt elvek és illúziók
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Industrial Gestalt 
Camouflage

• In WWI the necessity to hide became acute 

• Gestalt psychologists were inducted in military industry: 
French army established its first camouflage division in 1915 

• Two strategies for making figure-ground separation tough: 

• fading into the environment (pattern matching) 

• brake down contours

21
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Illúziók, mint Bayes-i komputációk 
Weiss, Simoncelli & Adelson (2002)

Milyen mozgásokkal konzisztens?
(mik a stimulus alapján a valószínű mozgások?) 

a b c

d

30
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v v
Milyen mozgásokkal konzisztens?

(mik a stimulus alapján a valószínű mozgások?) 

Illúziók, mint Bayes-i komputációk 
Weiss, Simoncelli & Adelson (2002)
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vy

vx

Milyen mozgásokkal konzisztens?
(mik a stimulus alapján a valószínű mozgások?) 

Weiss, Simoncelli & Adelson (2002)

Illúziók, mint Bayes-i komputációk 
Weiss, Simoncelli & Adelson (2002)
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‘Ideális megfigyelő analízis’
•  optimális viselkedés meghatározható
• emberi viselkedésnek egy korlát állítható
• optimális viselkedés: expektáció (prior)  

és stimulus kombinálása

33

Determining the shape of the likelihood and the prior: 
Stocker, A. A. & Simoncelli, E. P. Noise characteristics and prior expectations in human visual speed perception. Nat Neurosci 9, 578–585 (2006).

Illúziók, mint Bayes-i komputációk 
Weiss, Simoncelli & Adelson (2002)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben 2016 tavaszhttp://golab.wigner.mta.hu

Subjective distribution

34

P (stimulus | feature)P (feature | stimulus) P (feature)⇥/

posterior: inference likelihood: evidence prior : expectations

minden emberre egyedi!

Hogyan tudjuk ezeket a szubjektív eloszlásokat megtanulni?
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Sampling!

• human választás és a Metropolis-Hastings mintavételezés 
között ekvivalencia állítható fel

35
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4 Testing the MCMC algorithm with known categories

To test whether the procedure outlined in the previous section will produce samples that accurately
reflect people’s mental representations, we trained people on a variety of category distributions and
attempted to recover those distributions using MCMC. A simple one-dimensional categorization
task was used, with the height of schematic fish (see Figure 1) being the dimension along which
category distributions were defined. Subjects were trained on two categories of fish height – a
uniform distribution and a Gaussian distribution – being told that they were learning to judge whether
a fish came from the ocean (the uniform distribution) or a fish farm (the Gaussian distribution).
Four between-subject conditions tested different means and variances for the Gaussian distributions.
Once subjects were trained, we collected MCMC samples for the Gaussian distributions by asking
subjects to judge which of two fish came from the fish farm.

4.1 Method

Fifty subjects were recruited from the university community via a newspaper advertisement. Data
from one subject was discarded for not finishing the experiment, data from another was discarded
because the chains reached a boundary, and the data of eight others were discarded because their
chains did not cross (more detail below). There were ten observers in each between-subject con-
dition. Each subject was paid $4 for a 35 minute session. The experiment was presented on a
Apple iMac G5 controlled by a script running in Matlab using PsychToolbox extensions [23, 24].
Observers were seated approximately 44 cm away from the display.

Each subject was trained to discriminate between two categories of fish: ocean fish and fish farm
fish. Subjects were instructed, “Fish from the ocean have to fend for themselves and as a result they
have an equal probability of being any size. In contrast, fish from the fish farm are all fed the same
amount of food, so their sizes are similar and only determined by genetics.” These instructions were
meant to suggest that the ocean fish were drawn from a uniform distribution and the fish farm fish
were drawn from a Gaussian distribution. The mean and the standard deviation of the Gaussian were
varied in four between-subject conditions, resulting from crossing two levels of the mean, µ = 3.66
cm and µ = 4.72 cm, with two levels of the standard deviation, æ = 3.1 mm and æ = 1.3 mm.
The uniform distribution was the same across training distributions and was bounded at 2.63 cm and
5.76 cm.

The stimuli were a modified version of the fish used in [25]. The fish were constructed from three
ovals, two gray and one black, and a circle on a black background. Fish were all 9.1 cm long with
heights drawn from the Gaussian and uniform distributions in training. Examples of the smallest and
largest fish are shown in Figure 1. During the the MCMC trials, the range of possible fish heights
was expanded to be from 0.3 mm to 8.35 cm.

Subjects saw two types of trials. In a training trial, either the uniform or Gaussian distribution was
selected with equal probability, and a single sample was drawn from the selected distribution. The
sampled fish was shown to the subject, who chose which distribution produced the fish. Feedback
was then provided on the accuracy of this choice. In an MCMC trial, two fish were presented on
the screen. Subjects chose which of the two fish came from the Gaussian distribution. Neither fish
had been sampled from the Gaussian distribution. Instead, one fish was the state of a Markov chain
and the other fish was the proposal. The state and proposal were unlabeled and they were randomly
assigned to either the left or right side of the screen. Three MCMC chains were interleaved during
the MCMC trials. The start states of the chains were chosen to be 2.63 cm, 4.20 cm, and 5.76 cm.
Relative to the training distributions, the start states were overdispersed, facilitating assessment of

Figure 1: Examples of the largest and smallest fish stimuli presented to subjects during training. The
relative size of the fish stimuli are shown here; true display sizes are given in the text.

4
Subject response

Barker dynamics:
A(x⇤
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P (x⇤)
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Paradigm

• két halat mutatunk a résztvevőnek: x1, és x2 méretűek 

• pontosan az egyik eleme egy megadott (és korábban 
megtanított) c kategóriának 

• ‘válaszd ki a c kategóriába tartozó halat’ 

• egy ideális megfigyelő két hipotézist hasonlít össze:  
h1: x1 a p(x | c) eloszlásból, x2 a g(x) eloszlásból való 
h2: fordítva

40

2 Markov chain Monte Carlo

Models of physical phenomena used by scientists are often expressed in terms of complex prob-
ability distributions over different events. Generating samples from these distributions can be an
efficient way to determine their properties, indicating which events are assigned high probabilities
and providing a way to approximate various statistics of interest. Often, the distributions used in
these models are difficult to sample from, being defined over large state spaces or having unknown
normalization constants. Consequently, a great deal of research has been devoted to developing so-
phisticated Monte Carlo algorithms that can be used to generate samples from complex probability
distributions. One of the most successful methods of this kind is Markov chain Monte Carlo. An
MCMC algorithm constructs a Markov chain that has the target distribution, from which we want
to sample, as its stationary distribution. This Markov chain can be initialized with any state, being
guaranteed to converge to its stationary distribution after many iterations of stochastic transitions
between states. After convergence, the states visited by the Markov chain can be used similarly to
samples from the target distribution (see [5] for details).

The canonical MCMC algorithm is the Metropolis method [6], in which transitions between states
have two parts: a proposal distribution and an acceptance function. Based on the current state, a
candidate for the next state is sampled from the proposal distribution. The acceptance function gives
the probability of accepting this proposal. If the proposal is rejected, then the current state is taken
as the next state. A variety of acceptance functions guarantee that the stationary distribution of the
resulting Markov chain is the target distribution [7]. If we assume that the proposal distribution is
symmetric, with the probability of proposing a new state x

§ from the current state x being the same
as the probability of proposing x from x

§, we can use the Barker acceptance function [8], giving

A(x§;x) =
º(x§)

º(x§) + º(x)
(1)

for the acceptance probability, where º(x) is the probability of x under the target distribution.

3 An acceptance function from human behavior

While our approach can be applied to any subjective probability distribution, our experiments fo-
cused on sampling from the distributions over objects associated with different categories. Cate-
gories are central to cognition, reflecting our knowledge of the structure of the world, supporting
inferences, and serving as the basic units of thought. The way people group objects into cate-
gories has been studied extensively, producing a number of formal models of human categorization
[3, 4, 9, 10, 11], almost all of which can be interpreted as defining a category as a probability dis-
tribution over objects [4]. In this section, we consider how to lead people to choose between two
objects in a way that would correspond to a valid acceptance function for an MCMC algorithm with
the distribution over objects associated with a category as its target distribution.

3.1 A Bayesian analysis of a choice task

Consider the following task. You are shown two objects, x1 and x2, and told that one of those
objects comes from a particular category, c. You have to choose which object you think comes from
that category. How should you make this decision?

We can analyze this choice task from the perspective of a rational Bayesian learner. The choice
between the objects is a choice between two hypotheses: The first hypothesis, h1, is that x1 is
drawn from the category distribution p(x|c) and x2 is drawn from g(x), an alternative distribution
that governs the probability of other objects appearing on the screen. The second hypothesis, h2, is
that x1 is from the alternative distribution and x2 is from the category distribution. The posterior
probability of the first hypothesis given the data is determined via Bayes’ rule,

p(h1|x1, x2) =
p(x1, x2|h1)p(h1)

p(x1, x2|h1)p(h1) + p(x1, x2|h2)p(h2)

=
p(x1|c)g(x2)p(h1)

p(x1|c)g(x2)p(h1) + p(x2|c)g(x1)p(h2)
(2)

2

egy ideális megfigyelő
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Figure 2: The four rows are subjects from each of the between-subject conditions. The panels in the
first column show the behavior of the three Markov chains per subject. The black lines represent the
states of the Markov chains, the dashed line is the mean of the Gaussian training distribution, and the
dot-dashed lines are two standard deviations from the mean. The second column shows the densities
of the training distributions. These training densities can be compared to the MCMC samples, which
are described by their kernel density estimates and Gaussian fits in the last two columns.

convergence. The proposal was chosen from a symmetric discretized pseudo-Gaussian distribution
with a mean equal to the current state. The probability of proposing the current state was set to zero.

The experiment was broken up into blocks of training and MCMC trials, beginning with 120 training
trials, followed by alternating blocks of 60 MCMC trials and 60 training trials. Training and MCMC
trials were interleaved to keep subjects from forgetting the training distributions. A block of 60 test
trials, identical to the training trials but without feedback, ended the experiment.

4.2 Results

Subjects were excluded if their chains did not converge to the stationary distribution or if the state of
any chain reached the edge of the parameter range. We used a heuristic for determining convergence:
every chain had to cross another chain.1 Figure 2 shows the chains from four subjects, one from each
of the between-subject conditions. Most subjects took approximately 20 trials to produce the first
crossing in their chains, so these trials were discarded and the remaining 60 trials from each chain
were pooled and used in further analyses.

The distributions on the right hand side of Figure 2 show the training distribution, best fit Gaussian
to the MCMC samples, and kernel density estimate based on the MCMC samples. The distributions
estimated for the subjects shown in this figure match well with the training distribution. The mean, µ,
and standard deviation, æ, were computed from the MCMC samples produced by each subject. The
average of these estimates for each condition is shown in Figure 3. As predicted, µ was higher for
subjects trained on Gaussians with higher means, and æ was higher for subjects trained on Gaussians
with higher standard deviations. These differences were statistically significant, with a one-tailed
Student’s t-test for independent samples giving t(38) = 7.36, p < 0.001 and t(38) = 2.01, p < 0.05
for µ and æ respectively. The figure also shows that the means of the MCMC samples corresponded
well with the actual means of the training distributions. The standard deviations of the samples
tended to be higher than the training distributions, which could be a consequence of either perceptual

1Many heuristics have been proposed for assessing convergence. The heuristic we used is simple to apply
in a one-dimensional state space. It is a necessary, but not sufficient, condition for convergence.
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category distributions were defined. Subjects were trained on two categories of fish height – a
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Four between-subject conditions tested different means and variances for the Gaussian distributions.
Once subjects were trained, we collected MCMC samples for the Gaussian distributions by asking
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Fifty subjects were recruited from the university community via a newspaper advertisement. Data
from one subject was discarded for not finishing the experiment, data from another was discarded
because the chains reached a boundary, and the data of eight others were discarded because their
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amount of food, so their sizes are similar and only determined by genetics.” These instructions were
meant to suggest that the ocean fish were drawn from a uniform distribution and the fish farm fish
were drawn from a Gaussian distribution. The mean and the standard deviation of the Gaussian were
varied in four between-subject conditions, resulting from crossing two levels of the mean, µ = 3.66
cm and µ = 4.72 cm, with two levels of the standard deviation, æ = 3.1 mm and æ = 1.3 mm.
The uniform distribution was the same across training distributions and was bounded at 2.63 cm and
5.76 cm.

The stimuli were a modified version of the fish used in [25]. The fish were constructed from three
ovals, two gray and one black, and a circle on a black background. Fish were all 9.1 cm long with
heights drawn from the Gaussian and uniform distributions in training. Examples of the smallest and
largest fish are shown in Figure 1. During the the MCMC trials, the range of possible fish heights
was expanded to be from 0.3 mm to 8.35 cm.

Subjects saw two types of trials. In a training trial, either the uniform or Gaussian distribution was
selected with equal probability, and a single sample was drawn from the selected distribution. The
sampled fish was shown to the subject, who chose which distribution produced the fish. Feedback
was then provided on the accuracy of this choice. In an MCMC trial, two fish were presented on
the screen. Subjects chose which of the two fish came from the Gaussian distribution. Neither fish
had been sampled from the Gaussian distribution. Instead, one fish was the state of a Markov chain
and the other fish was the proposal. The state and proposal were unlabeled and they were randomly
assigned to either the left or right side of the screen. Three MCMC chains were interleaved during
the MCMC trials. The start states of the chains were chosen to be 2.63 cm, 4.20 cm, and 5.76 cm.
Relative to the training distributions, the start states were overdispersed, facilitating assessment of

Figure 1: Examples of the largest and smallest fish stimuli presented to subjects during training. The
relative size of the fish stimuli are shown here; true display sizes are given in the text.
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Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.
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The internal model
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3. extensive subjective experience
4. experience is subjective
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The internal model
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How to measure the internal model?
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Report
Cognitive Tomography Reveals Complex,
Task-Independent Mental Representations

Neil M.T. Houlsby,1,4 Ferenc Huszár,1,4

Mohammad M. Ghassemi,1 Gerg}o Orbán,1,2
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of Engineering, University of Cambridge, Cambridge CB2
1PZ, UK
2Wigner Research Institute for Physics, Hungarian Academy of
Sciences, Budapest 1121, Hungary
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University, Budapest 1023, Hungary

Summary

Humans develop richmental representations that guide their
behavior in a variety of everyday tasks. However, it is un-
known whether these representations, often formalized as
priors in Bayesian inference, are specific for each task or
subserve multiple tasks. Current approaches cannot distin-
guish between these two possibilities because they cannot
extract comparable representations across different tasks
[1–10]. Here, we develop a novel method, termed cognitive
tomography, that can extract complex, multidimensional
priors across tasks. We apply this method to human judg-
ments in two qualitatively different tasks, ‘‘familiarity’’ and
‘‘odd one out,’’ involving an ecologically relevant set of stim-
uli, human faces. We show that priors over faces are struc-
turally complex and vary dramatically across subjects, but
are invariant across the taskswithin each subject. The priors
we extract from each task allow us to predict with high preci-
sion the behavior of subjects for novel stimuli both in the
same task as well as in the other task. Our results provide
the first evidence for a single high-dimensional structured
representation of a naturalistic stimulus set that guides
behavior in multiple tasks. Moreover, the representations
estimated by cognitive tomography can provide indepen-
dent, behavior-based regressors for elucidating the neural
correlates of complex naturalistic priors.

Results

Human performance in a wide range of individual perceptual
tasks has been shown to be close to that of an ideal observer
that combines sensory evidence with prior expectations ac-
cording to the rules of Bayesian inference [11]. Moreover,
many perceptual illusions have been shown to arise from the
influence of priors in the face of sensory uncertainty or ambi-
guity [12]. Thus, characterizing priors for natural stimuli and
understanding how they are used is central to the study of hu-
man perception.

The priors we use for simple one-dimensional variables,
such as speed of movement for visual objects [3] or direction

of sunlight [13], have each been carefully characterized in the
context of a specific perceptual task. However, surprisingly
little is known about the nature of priors for complex, high-
dimensional real-life stimuli, such as faces, and whether
such priors depend on the task in which they are employed.
The task dependence of priors, in particular, addresses a
fundamental assumption of the Bayesian paradigm that has
so far gone untested: to allow for efficient learning and power-
ful generalization, natural priors should be shared across tasks
such that the same prior can be used in many different situa-
tions, predicting task independence. Conversely, demonstra-
tion of a prior in only a single task leaves open the possibility
that the behavioral effects attributed to that prior are instead
caused by idiosyncratic response strategies elicited by the
task and thus the real prior may be different from that assumed
[14, 15]. In order to test the task independence of priors, we
need to compare the priors used in different tasks that operate
on the same stimulus set. To do so requires us to overcome a
major obstacle: the lack of any method for extracting poten-
tially complex, high-dimensional priors for naturalistic stimuli
across different tasks.

Cognitive Tomography
Herewe develop a novel Bayesian approach, cognitive tomog-
raphy, that can be applied to a wide variety of behavioral tasks
by allowing simple discrete choices to be used to reveal
detailed and quantitative information about a subject’s per-
sonal, potentially complex and high-dimensional mental repre-
sentations. The term ‘‘cognitive tomography’’ is motivated by
the isomorphism with traditional structural tomography in
which a detailed high-dimensional physical structure is recon-
structed from a sequence of low-dimensional measurements
(derived from mathematical integrals over the underlying
structure) by solving the ‘‘inverse problem’’ [16]. Analogously,
our method reconstructs an individual subject’s representa-
tional structure using a sequence of simple discrete choices
(arising frommathematical integrals over the underlying struc-
ture) by explicit inversion of a model describing how re-
sponses depend on mental representations.
We start with the idea that objects can be described by

multidimensional features, and a subject’s prior over a class
of objects is a probability distribution over those features
[17, 18]. For example, the feature space we use is based on
the physical appearance of a large sample of human faces
scanned in three dimensions and is constructed along the first
two principal components of their geometrical structure [19].
Figure 1A (top) shows this feature space as well as the prior
of a hypothetical subject plotted in this space: gray scale indi-
cates the probability, according to the subject, with which a
face represented by each location belongs to the class of
familiar faces. To avoid terminological confusion later, we
will refer to a subject’s prior as their ‘‘subjective distribution,’’
and in line with other studies of perceptual priors, we assume
that it affects perceptual decisions without necessarily being
explicitly accessible by the subject. The key element of our
approach is that we explicitly treat the subjective distribution
as an unknown quantity that cannot be observed directly
and thus needs to be inferred from observable behavior. For
this, we use ‘‘ideal observer’’ models that link subjective distri-
butions to behavior, and by inverting these models using

4These authors contributed equally to this work
5These authors contributed equally to this work
*Correspondence: m.lengyel@eng.cam.ac.uk
This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source
are credited.
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A Bayesian challenge

Observer’s inference

• stimulus is noisy

• stimulus is ambiguous

Experimenter’s inference 

• responses are noisy 

• attentional lapses 

• biases 

• uncertainty in subjective distribution
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Cognitive tomography
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Paradigm

a

-4 0 4

0

4

-4

Dimension 1

D
im

en
si

on
 2

0

0.1

Hypothesis Hypothesis1 2

1 2

b FAMILIARITY

HypothesisHypothesisHypothesis 21 3

321

c ODD-ONE-OUT

a

-4 0 4

0

4

-4

Dimension 1

D
im

en
si

on
 2

0

0.1

Hypothesis Hypothesis1 2

1 2

b FAMILIARITY

HypothesisHypothesisHypothesis 21 3

321

c ODD-ONE-OUT

a

-4 0 4

0

4

-4

Dimension 1

D
im

en
si

on
 2

0

0.1

Hypothesis Hypothesis1 2

1 2

b FAMILIARITY

HypothesisHypothesisHypothesis 21 3

321

c ODD-ONE-OUT

FA
M

IL
IA

R
IT

Y
O

D
D

-O
N

E-
O

U
T

c

Original basis Transformed basis
rotated by −45°

Center panel
rotated by +45°

b

Si
m

ul
at

io
n 

1
Si

m
ul

at
io

n 
2

a FAMILIARITY ODD-ONE-OUTSubjective distribution  
is task independent

FA
M

IL
IA

R
IT

Y
O

D
D

-O
N

E-
O

U
T

c

Original basis Transformed basis
rotated by −45°

Center panel
rotated by +45°

b

Si
m

ul
at

io
n 

1
Si

m
ul

at
io

n 
2

a FAMILIARITY ODD-ONE-OUT

48

http://people.brandeis.edu/~ogergo


     |

Statisztikus tanulás az idegrendszerben 2015 tavaszhttp://golab.wigner.mta.hu

Paradigm

• 1000 trials in each tasks

• 800 randomly chosen trials used to infer the subjective 
distribution

• 100 random trials repeated to test consistency

• 200 trials for prediction
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Unveiling the internal model
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Unveiling the internal model
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Across-task & across-subject comparison
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Predicting decisions
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Predicting decisions
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Complex priors: context

57

Beau Lotto
kékség × átlátszóság = szürkeség

 sárgaság × (1 - átlátszóság) = 
szürkeség
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