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1. Bevezetés - G

2. Perceptron, előrecsatolt hálózatok

3. Rekurrens hálózatok, a Hopfield hálózat 

4. Rejtett változós modellek 

5. Reprezentációs tanulás 

6. Eloszlások tanulása, a Boltzmann-gép

7. MAP paraméterbecslés, bayesi 
modelösszehasonlítás

8. Az EM-algoritmus, keverékmodellek

9. Az EM speciális esetei

10.PCA, ICA, divisive normalisation 

11.Bayes nets, Helmholtz machine

12.DBN, kontrasztiv divergencia 

13.Sampling
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Olshausen & Field ‘96

Natural images
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• A filterek/receptiv mezok fuggenek a kepek 
statisztikajatol
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Miért tudjuk ezt elvégezni?

• Linearitás

• Irányított generatív modell
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Markov lepedő:
• szülők
• gyermekek
• gyermekek szülei
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Helmholtz machine

• Sztochasztikus

• Bináris

• Nemlineáris

• Irányított

• Lehetőség szerint többrétegű (hierarchikus)
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generatív súlyok rekogníciós súlyok
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generatív súlyok rekogníciós súlyok

Probléma: tanulni szeretnénk ebben a modellben, de inferencia nehéz
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generatív súlyok rekogníciós súlyok

Probléma: tanulni szeretnénk ebben a modellben, de inferencia nehéz

generatív modell nem invertálható
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Közelítő rekogníciós modell:
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Közelítő rekogníciós modell:

eredeti:
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Közelítő rekogníciós modell:

eredeti:

közelítés:

EM-et konstruálunk a tanuláshoz
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eredeti:

közelítés:

reguláris EM
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eredeti:

közelítés:

reguláris EM

közelített EM
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Helmholtz machine
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eredeti:

közelítés:

reguláris EM

közelített EM

E lépés:
• mintavételezés z-ből
• generatív súlyok tanulása
M lépés
• mintavételezés x-ből
• rekogníciós súlyok állítása
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Unsupervised learning

10

Input:

Gól:

összefoglaló néven: adat - 
vizuális, auditoros, szöveg

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben 2013 tavaszhttp://golab.wigner.mta.hu

Unsupervised learning

10

Input:

Gól:

(Reinforcement learning: 
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összefoglaló néven: adat - 
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Bonyolult!

Miért is?

Egyszerűsítés:

• az adatot a “z”-k terében reprezentáljuk
• kategorizáció, dimenzió redukció
• általánosabban a feladat: predikció,  döntéshozatal, kommunikáció
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PCA
• A oszlopvektorai ortogonalisak
• D(x) = D(z)
• Izotróp zaj
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1.1 Receptor arrays 
 
We first consider the state-space of a receptor array such as the photoreceptors in the 
retina. Consider an array composed of N receptors each of which can represent any 
value within a range of luminance (light level).  Each possible image can then be 
represented as a single point in the N dimensional state-space with each dimension 
corresponding to one receptor’s luminance level. The entire state represents the set of 
all possible images which the array can encode. For example, for a small array 
consisting of receptors arranged in a 10 10u grid each able to measure 8 grey scale 
levels, the states space can represent (10 10) 908 10u | different grey scale images. If we 
consider the retina with 100 million receptors responding to a near continuous range of 
luminance levels (even excluding the specialisation of the receptors for colours) the 
possible set of images is enormous.  
 
Although the state-space of possible images is vast it turns out that typical images we 
see do not span the entire state-space. It is enlightening to consider how natural images 
are distributed within the states-space. Are they randomly located over the whole space 
or clumped together in a systematic way? Consider the state-space for a two-pixel 
image with luminance values L1 and L2 (Figure 1, left). 
 

 
Figure 1. The state-space of two pixel images and some representative images in the state-
space (left). With 3 greyscale levels there would be 32=9 possible states. The distribution of 
random images in which there is no correlation between the adjacent pixels (middle) and 
for a structured image in which a correlation exists between the pixels (right). 
 

If natural images tended to occupy restricted regions of state-space (e.g. Figure 1, right 
with each dot representing an image) then the visual system could take advantage of 
this structure to increase efficiency—that is represent the structure in the image with 
fewer neurons. If images occupied random locations (Figure 1, middle) then there 
would be no statistical structure for the visual system to exploit.  
 
If we take random adjacent pixels from natural images we would get a plot similar to 
Figure 1, right. What does that tell us about natural images? 
 

L1 

L2 

L1 

L2 

L1 

L2 

State space of two pixel images Random images Structured images 
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PCA tulajdonságok

• Kompakt kódot eredményez

• Egy adatponért leírásáért általában a teljes hálózat felel
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• “z”-k függetlenek
• y priorja “ritka”( P(z) )
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Sparse kódolás, ICA

Komputációs kritériumok:

• Hiteles rekonstrukció
költség egy adatpontra (képre):

• Kis “energiafelhasználás (kevés szimultán aktiv neuron)
további költség a kód “ritkasága”:

S a Gauss-nál nagyobb kurtózissal bíró eloszlás

• teljes költség (~energia):

13

• “z”-k függetlenek
• y priorja “ritka”( P(z) )
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Sparse kód tanulása: E-M
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Algoritmus:
• Itáráció EM lépésekkel
• Random kezdeti feltételek
• Adott konnektivitási mátrixnál az aktiviások segítségével a költség 

minimalizálása
• Adott aktivitásokkal a költség minimalizálása a súlyok adaptálásával
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Adott konnektivitási mátrix esetén a legjobb aktivitások megtalalása:
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19allows a system with limited response
range to handle a wider dynamic range of
input. Divisive normalization achieves
this goal, producing sigmoidal con-
trast–response functions similar to those
seen in neurons. In addition, it seems
advantageous for tuning curves in stim-
ulus parameters such as orientation to
retain their shape at different contrasts,
even in the presence of response satura-
tion20. Previous models have accom-
plished this by computing a normalization
signal that is independent of parameters
such as orientation (achieved with a uni-
formly weighted sum over the entire neur-
al population). A consequence of this
design is that the models can account for
the response suppression that occurs, for example, when a grat-
ing of non-optimal orientation is superimposed on a stimulus.

Model simulations versus physiology
We compared our model with electrophysiological measurements
from single neurons. To simulate an experiment, we chose a pri-
mary filter and a set of neighboring filters that would interact
with this primary filter. We pre-computed the optimal normal-
ization weights for an ensemble of natural signals (see Methods).
We then simulated each experiment, holding all parameters of
the model fixed, by computing the normalized responses of the
primary filter to the experimental stimuli. We compared these
responses to the physiologically measured average firing rates of
neurons. Our extended normalization model, with all parame-
ters chosen to optimize statistical independence of responses,
accounted for those nonlinear behaviors in V1 neurons previ-
ously modeled with divisive normalization (see above). Figure 5
shows data and model simulations demonstrating preservation
of orientation tuning curves and cross-orientation inhibition.

Our model also accounted for nonlinear behaviors not pre-
viously modeled using normalization. Figure 6a shows data from
an experiment in which an optimal sinusoidal grating stimulus
was placed inside the classical receptive field of a neuron in pri-
mary visual cortex of a macaque monkey24. A mask grating was
placed in an annular region surrounding the classical receptive
field. Each curve in the figure indicates the response as a func-

Fig. 3. Examples of variance dependency in
natural signals. (a) Responses of two filters to
several different signals. Dependency is strong
for natural signals, but is negligible for white
noise. Filters as in Fig. 1. (b) Responses of dif-
ferent pairs of filters to a fixed natural signal.
The strength of the variance dependency
depends on the filter pair. For the image, the
red × represents a fixed spatial location on
the retina. The ordinate response is always
computed with a vertical filter, and the
abscissa response is computed with a vertical
filter (shifted 4 pixels), vertical filter (shifted
12 pixels) and horizontal filter (shifted 12 pix-
els). For the sound, the red × represents a
fixed time. Temporal frequency of ordinate fil-
ter is 2000 Hz. Temporal frequencies of
abscissa filter are 2000 Hz (shifted 9 ms in
time), 2840 Hz (shifted 9 ms) and 4019 Hz
(shifted 9 ms).

tion of the center contrast for a particular surround contrast. The
sigmoidal shape of the curves results from the squaring nonlin-
earity and the normalization. Presentation of the mask grating
alone does not elicit a response from the neuron, but its presence
suppresses the responses to the center grating. Specifically, the
contrast response curves are shifted to the right (on a log axis),
indicative of a divisive gain change. When the mask orientation is
parallel to the center, this shift is much larger than when the mask
orientation is orthogonal to the center (Fig. 6b).

Our model exhibits similar behavior (Fig. 6a and b), which
is due to suppressive weighting of neighboring model neurons
with the same orientation preference that is stronger than that
of neurons with perpendicular orientation preference (see also
ref. 25). This weighting is determined by the statistics of our
image ensemble, and is due to the increased likelihood that adja-
cent regions in natural images have similar rather than orthogo-
nal orientations. For example, oriented structures in images (such
as edges of objects) tend to extend along smooth contours, yield-
ing strong responses in linear filters that are separated from each
other spatially, but lying along the same contour (see also refs.
26, 27). This behavior would not be observed in previous nor-
malization models, because the parallel and orthogonal surround
stimuli would produce the same normalization signal.

An analogous effect is seen in the auditory system. Figure 6
shows example data recorded from a cat auditory nerve fiber, in
which an optimal sinusoidal tone stimulus is combined with a
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
�
x;Ay, �

2

x

I

�
(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �

2

x

is the variance
of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
u

z

y

x

Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
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(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �
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is the variance
of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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is the variance
of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
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zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.
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the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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2

x

is the variance
of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
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the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
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zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
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the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
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(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
�
x;Ay, �

2

x

I

�
(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �

2

x

is the variance
of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
u

z

y

x

Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
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the exact shape of this prior does not substantially influence our
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P(u) = N (u;0,C) (3)
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where C is the M ⇥ M covariance matrix of the Gaussian ran-
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parameters of the Gamma prior over z, respectively.
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We spell out the sampling hypothesis in the context of a well-known class of natural image models,
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(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.
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where C is the M ⇥ M covariance matrix of the Gaussian ran-
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parameters of the Gamma prior over z, respectively.
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neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
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spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.
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rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.
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contrast has been suggested as a means of maximizing marginal
entropy, thus providing a functional explanation for gain con-
trol in the retina35. Our work differs conceptually in the choice
of statistical criteria (independence between filters, as opposed
to marginal statistics of one filter). In audition, outer hair cells
have been implicated in providing gain control8,36, and some of
the behaviors we describe at the level of the auditory nerve have
also been documented in recordings from basilar membrane.

Our model is based on a mechanism that is fundamentally
suppressive, but a number of authors have reported facilitative
influences in both vision and audition14,37–39. Some of these
facilitative effects might be explained by the use of masking
stimuli that inadvertently excite the receptive field of the neu-
ron13,40, thus causing suppression to overcome facilitation only
at high contrasts or sound pressure levels of the mask. Facilita-
tive effects might also be explained by dis-inhibition, in which
a third cell inhibits a second cell, thus releasing its inhibition
of the recorded cell. As mentioned above, our current model
does not use a recurrent implementation and thus cannot pre-
dict such effects.

The relationship between the model and perception should
also be explored. For example, psychophysical experiments sug-
gest that visual detectability is enhanced along contours41. At first
glance, this might seem to be inconsistent with our model, in
which neurons that lie along contours will suppress each other.
But the apparent contradiction is based on the unsubstantiated
intuition that a reduction in the neural responses implies reduced
detectability. Presumably, any difference in relative activity of
neurons along the contour, as compared with the activity of neu-
rons in other regions, could be used for contour detection. More
generally, examination of the implications of our model for per-
ception requires a method of extracting a percept from a popu-
lation of neural responses. Although this has not been done for
contour detection, we find it encouraging that other basic per-
cepts have been explained in the context of a population of neu-
rons performing gain control (for example, detectability of a
grating in the presence of a mask42 and perceptual segregation
of visual textures43).

There are many directions for further refinement of the con-
nection between natural signal statistics and neuronal process-
ing. We have optimized our model for a generic signal ensemble,
and neurons may be specialized for particular subclasses of sig-
nals44. Moreover, mechanisms and associated timescales (that is,
evolution, development, learning and adaptation) by which the
optimization occurs could be modeled. For example, some visu-
al adaptation effects have been explained by adjusting model
parameters according to the statistical properties of recent visu-
al input45,46. A more complete theory also requires an under-
standing of which groups of neurons are optimized for
independence. A sensible assumption might be that each stage
of processing in the system takes the responses of the previous
stage and attempts to eliminate as much statistical redundancy
as possible, within the limits of its computational capabilities. It
remains to be seen how much of sensory processing can be
explained using such a bottom-up criterion.

Future work should also be directed toward testing the effi-
cient coding hypothesis experimentally. Some support for the
hypothesis has been obtained through recordings from groups
of neurons47,48 under naturalistic stimulation conditions. We
believe that improvements in both experimental techniques and
statistical models of natural signals will continue to provide new
opportunities to test and extend the efficient coding hypothesis
proposed by Barlow forty years ago.

METHODS
For the auditory simulations, we used a set of Gammatone filters as the
linear front end49. We chose a primary filter with center frequency of
2000 Hz, and a neighborhood of filters for the normalization signal: 16
filters with center frequencies 205 to 4768 Hz, and replicas of all filters
temporally shifted by 100, 200 and 300 samples. For the visual simula-
tions, linear receptive fields were derived using a multi-scale oriented
decomposition known as the steerable pyramid50. The primary filter
was vertically oriented with peak spatial frequency of 1/8 cycles/pixel.
The filter neighborhood included all combinations of two spatial fre-
quencies, four orientations, two phases and a spatial extent three times
the diameter of the primary filter. Responses were horizontally and ver-
tically subsampled at four-pixel intervals. To reduce the dimensionality
of the weight vector that needs to be optimized, we assumed that weights
for two filters with differing phase were the same, thus guaranteeing a
phase-invariant normalization signal. We also assumed vertical and hor-
izontal symmetry. We verified that these simplifications did not sub-
stantially alter the simulation results.

Our ensemble of natural sounds consisted of nine animal and speech
sounds, each approximately six seconds long. The sounds were
obtained from commercial compact disks and converted to sampling
frequency of 22050 Hz. The natural image ensemble consisted of 10
images obtained from a database of standard images used in image
compression benchmarks (known as boats, goldhill, Einstein, Feyn-
man, baboon, etc.). We obtained similar results using an intensity cal-
ibrated image set6.

For a pair of filters, we modeled the variance of response of the first
filter given the response of the second filter to a visual/auditory stimu-
lus as follows.

(1)

Here, L1 and L2 are the linear responses of the two filters. This condi-
tional variance dependency is eliminated by dividing the following.

(2)

We assumed a generalization of this dependency to a population of fil-
ters. We modeled the variance dependency of the response of filter Li
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(4)

We wanted to choose the parameters of the model (the weights wji, and
the constant σ) to maximize the independence of the normalized
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generally, examination of the implications of our model for per-
ception requires a method of extracting a percept from a popu-
lation of neural responses. Although this has not been done for
contour detection, we find it encouraging that other basic per-
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
�
x;Ay, �

2

x

I

�
(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �

2

x

is the variance
of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
u

z

y

x

Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

large number of variables, such as those describing the position, pose, colour, and other attributes of
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neurons to probabilistic inference under a statistical model of natural images containing a high num-
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on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
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(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.
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results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.
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Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
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on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
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spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.
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and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
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rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
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Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
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our approach.
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results)
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P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.
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contrast has been suggested as a means of maximizing marginal
entropy, thus providing a functional explanation for gain con-
trol in the retina35. Our work differs conceptually in the choice
of statistical criteria (independence between filters, as opposed
to marginal statistics of one filter). In audition, outer hair cells
have been implicated in providing gain control8,36, and some of
the behaviors we describe at the level of the auditory nerve have
also been documented in recordings from basilar membrane.

Our model is based on a mechanism that is fundamentally
suppressive, but a number of authors have reported facilitative
influences in both vision and audition14,37–39. Some of these
facilitative effects might be explained by the use of masking
stimuli that inadvertently excite the receptive field of the neu-
ron13,40, thus causing suppression to overcome facilitation only
at high contrasts or sound pressure levels of the mask. Facilita-
tive effects might also be explained by dis-inhibition, in which
a third cell inhibits a second cell, thus releasing its inhibition
of the recorded cell. As mentioned above, our current model
does not use a recurrent implementation and thus cannot pre-
dict such effects.

The relationship between the model and perception should
also be explored. For example, psychophysical experiments sug-
gest that visual detectability is enhanced along contours41. At first
glance, this might seem to be inconsistent with our model, in
which neurons that lie along contours will suppress each other.
But the apparent contradiction is based on the unsubstantiated
intuition that a reduction in the neural responses implies reduced
detectability. Presumably, any difference in relative activity of
neurons along the contour, as compared with the activity of neu-
rons in other regions, could be used for contour detection. More
generally, examination of the implications of our model for per-
ception requires a method of extracting a percept from a popu-
lation of neural responses. Although this has not been done for
contour detection, we find it encouraging that other basic per-
cepts have been explained in the context of a population of neu-
rons performing gain control (for example, detectability of a
grating in the presence of a mask42 and perceptual segregation
of visual textures43).

There are many directions for further refinement of the con-
nection between natural signal statistics and neuronal process-
ing. We have optimized our model for a generic signal ensemble,
and neurons may be specialized for particular subclasses of sig-
nals44. Moreover, mechanisms and associated timescales (that is,
evolution, development, learning and adaptation) by which the
optimization occurs could be modeled. For example, some visu-
al adaptation effects have been explained by adjusting model
parameters according to the statistical properties of recent visu-
al input45,46. A more complete theory also requires an under-
standing of which groups of neurons are optimized for
independence. A sensible assumption might be that each stage
of processing in the system takes the responses of the previous
stage and attempts to eliminate as much statistical redundancy
as possible, within the limits of its computational capabilities. It
remains to be seen how much of sensory processing can be
explained using such a bottom-up criterion.

Future work should also be directed toward testing the effi-
cient coding hypothesis experimentally. Some support for the
hypothesis has been obtained through recordings from groups
of neurons47,48 under naturalistic stimulation conditions. We
believe that improvements in both experimental techniques and
statistical models of natural signals will continue to provide new
opportunities to test and extend the efficient coding hypothesis
proposed by Barlow forty years ago.

METHODS
For the auditory simulations, we used a set of Gammatone filters as the
linear front end49. We chose a primary filter with center frequency of
2000 Hz, and a neighborhood of filters for the normalization signal: 16
filters with center frequencies 205 to 4768 Hz, and replicas of all filters
temporally shifted by 100, 200 and 300 samples. For the visual simula-
tions, linear receptive fields were derived using a multi-scale oriented
decomposition known as the steerable pyramid50. The primary filter
was vertically oriented with peak spatial frequency of 1/8 cycles/pixel.
The filter neighborhood included all combinations of two spatial fre-
quencies, four orientations, two phases and a spatial extent three times
the diameter of the primary filter. Responses were horizontally and ver-
tically subsampled at four-pixel intervals. To reduce the dimensionality
of the weight vector that needs to be optimized, we assumed that weights
for two filters with differing phase were the same, thus guaranteeing a
phase-invariant normalization signal. We also assumed vertical and hor-
izontal symmetry. We verified that these simplifications did not sub-
stantially alter the simulation results.

Our ensemble of natural sounds consisted of nine animal and speech
sounds, each approximately six seconds long. The sounds were
obtained from commercial compact disks and converted to sampling
frequency of 22050 Hz. The natural image ensemble consisted of 10
images obtained from a database of standard images used in image
compression benchmarks (known as boats, goldhill, Einstein, Feyn-
man, baboon, etc.). We obtained similar results using an intensity cal-
ibrated image set6.

For a pair of filters, we modeled the variance of response of the first
filter given the response of the second filter to a visual/auditory stimu-
lus as follows.

(1)

Here, L1 and L2 are the linear responses of the two filters. This condi-
tional variance dependency is eliminated by dividing the following.

(2)

We assumed a generalization of this dependency to a population of fil-
ters. We modeled the variance dependency of the response of filter Li
given the responses of a population of filters Lj in a neighborhood Ni.
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following.

(4)

We wanted to choose the parameters of the model (the weights wji, and
the constant σ) to maximize the independence of the normalized
response to an ensemble of natural images and sounds. Such an opti-
mization was computationally prohibitive. To reduce the complexity of
the problem, we assume a Gaussian form for the underlying condition-
al distribution.
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to marginal statistics of one filter). In audition, outer hair cells
have been implicated in providing gain control8,36, and some of
the behaviors we describe at the level of the auditory nerve have
also been documented in recordings from basilar membrane.
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suppressive, but a number of authors have reported facilitative
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facilitative effects might be explained by the use of masking
stimuli that inadvertently excite the receptive field of the neu-
ron13,40, thus causing suppression to overcome facilitation only
at high contrasts or sound pressure levels of the mask. Facilita-
tive effects might also be explained by dis-inhibition, in which
a third cell inhibits a second cell, thus releasing its inhibition
of the recorded cell. As mentioned above, our current model
does not use a recurrent implementation and thus cannot pre-
dict such effects.

The relationship between the model and perception should
also be explored. For example, psychophysical experiments sug-
gest that visual detectability is enhanced along contours41. At first
glance, this might seem to be inconsistent with our model, in
which neurons that lie along contours will suppress each other.
But the apparent contradiction is based on the unsubstantiated
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lation of neural responses. Although this has not been done for
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a third cell inhibits a second cell, thus releasing its inhibition
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statistical models of natural signals will continue to provide new
opportunities to test and extend the efficient coding hypothesis
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2000 Hz, and a neighborhood of filters for the normalization signal: 16
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tions, linear receptive fields were derived using a multi-scale oriented
decomposition known as the steerable pyramid50. The primary filter
was vertically oriented with peak spatial frequency of 1/8 cycles/pixel.
The filter neighborhood included all combinations of two spatial fre-
quencies, four orientations, two phases and a spatial extent three times
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for two filters with differing phase were the same, thus guaranteeing a
phase-invariant normalization signal. We also assumed vertical and hor-
izontal symmetry. We verified that these simplifications did not sub-
stantially alter the simulation results.

Our ensemble of natural sounds consisted of nine animal and speech
sounds, each approximately six seconds long. The sounds were
obtained from commercial compact disks and converted to sampling
frequency of 22050 Hz. The natural image ensemble consisted of 10
images obtained from a database of standard images used in image
compression benchmarks (known as boats, goldhill, Einstein, Feyn-
man, baboon, etc.). We obtained similar results using an intensity cal-
ibrated image set6.

For a pair of filters, we modeled the variance of response of the first
filter given the response of the second filter to a visual/auditory stimu-
lus as follows.

(1)

Here, L1 and L2 are the linear responses of the two filters. This condi-
tional variance dependency is eliminated by dividing the following.

(2)

We assumed a generalization of this dependency to a population of fil-
ters. We modeled the variance dependency of the response of filter Li
given the responses of a population of filters Lj in a neighborhood Ni.

(3)

Again, the conditional variance dependency is eliminated by dividing the
following.

(4)

We wanted to choose the parameters of the model (the weights wji, and
the constant σ) to maximize the independence of the normalized
response to an ensemble of natural images and sounds. Such an opti-
mization was computationally prohibitive. To reduce the complexity of
the problem, we assume a Gaussian form for the underlying condition-
al distribution.
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contrast has been suggested as a means of maximizing marginal
entropy, thus providing a functional explanation for gain con-
trol in the retina35. Our work differs conceptually in the choice
of statistical criteria (independence between filters, as opposed
to marginal statistics of one filter). In audition, outer hair cells
have been implicated in providing gain control8,36, and some of
the behaviors we describe at the level of the auditory nerve have
also been documented in recordings from basilar membrane.

Our model is based on a mechanism that is fundamentally
suppressive, but a number of authors have reported facilitative
influences in both vision and audition14,37–39. Some of these
facilitative effects might be explained by the use of masking
stimuli that inadvertently excite the receptive field of the neu-
ron13,40, thus causing suppression to overcome facilitation only
at high contrasts or sound pressure levels of the mask. Facilita-
tive effects might also be explained by dis-inhibition, in which
a third cell inhibits a second cell, thus releasing its inhibition
of the recorded cell. As mentioned above, our current model
does not use a recurrent implementation and thus cannot pre-
dict such effects.

The relationship between the model and perception should
also be explored. For example, psychophysical experiments sug-
gest that visual detectability is enhanced along contours41. At first
glance, this might seem to be inconsistent with our model, in
which neurons that lie along contours will suppress each other.
But the apparent contradiction is based on the unsubstantiated
intuition that a reduction in the neural responses implies reduced
detectability. Presumably, any difference in relative activity of
neurons along the contour, as compared with the activity of neu-
rons in other regions, could be used for contour detection. More
generally, examination of the implications of our model for per-
ception requires a method of extracting a percept from a popu-
lation of neural responses. Although this has not been done for
contour detection, we find it encouraging that other basic per-
cepts have been explained in the context of a population of neu-
rons performing gain control (for example, detectability of a
grating in the presence of a mask42 and perceptual segregation
of visual textures43).

There are many directions for further refinement of the con-
nection between natural signal statistics and neuronal process-
ing. We have optimized our model for a generic signal ensemble,
and neurons may be specialized for particular subclasses of sig-
nals44. Moreover, mechanisms and associated timescales (that is,
evolution, development, learning and adaptation) by which the
optimization occurs could be modeled. For example, some visu-
al adaptation effects have been explained by adjusting model
parameters according to the statistical properties of recent visu-
al input45,46. A more complete theory also requires an under-
standing of which groups of neurons are optimized for
independence. A sensible assumption might be that each stage
of processing in the system takes the responses of the previous
stage and attempts to eliminate as much statistical redundancy
as possible, within the limits of its computational capabilities. It
remains to be seen how much of sensory processing can be
explained using such a bottom-up criterion.

Future work should also be directed toward testing the effi-
cient coding hypothesis experimentally. Some support for the
hypothesis has been obtained through recordings from groups
of neurons47,48 under naturalistic stimulation conditions. We
believe that improvements in both experimental techniques and
statistical models of natural signals will continue to provide new
opportunities to test and extend the efficient coding hypothesis
proposed by Barlow forty years ago.

METHODS
For the auditory simulations, we used a set of Gammatone filters as the
linear front end49. We chose a primary filter with center frequency of
2000 Hz, and a neighborhood of filters for the normalization signal: 16
filters with center frequencies 205 to 4768 Hz, and replicas of all filters
temporally shifted by 100, 200 and 300 samples. For the visual simula-
tions, linear receptive fields were derived using a multi-scale oriented
decomposition known as the steerable pyramid50. The primary filter
was vertically oriented with peak spatial frequency of 1/8 cycles/pixel.
The filter neighborhood included all combinations of two spatial fre-
quencies, four orientations, two phases and a spatial extent three times
the diameter of the primary filter. Responses were horizontally and ver-
tically subsampled at four-pixel intervals. To reduce the dimensionality
of the weight vector that needs to be optimized, we assumed that weights
for two filters with differing phase were the same, thus guaranteeing a
phase-invariant normalization signal. We also assumed vertical and hor-
izontal symmetry. We verified that these simplifications did not sub-
stantially alter the simulation results.

Our ensemble of natural sounds consisted of nine animal and speech
sounds, each approximately six seconds long. The sounds were
obtained from commercial compact disks and converted to sampling
frequency of 22050 Hz. The natural image ensemble consisted of 10
images obtained from a database of standard images used in image
compression benchmarks (known as boats, goldhill, Einstein, Feyn-
man, baboon, etc.). We obtained similar results using an intensity cal-
ibrated image set6.

For a pair of filters, we modeled the variance of response of the first
filter given the response of the second filter to a visual/auditory stimu-
lus as follows.

(1)

Here, L1 and L2 are the linear responses of the two filters. This condi-
tional variance dependency is eliminated by dividing the following.
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We assumed a generalization of this dependency to a population of fil-
ters. We modeled the variance dependency of the response of filter Li
given the responses of a population of filters Lj in a neighborhood Ni.

(3)

Again, the conditional variance dependency is eliminated by dividing the
following.

(4)

We wanted to choose the parameters of the model (the weights wji, and
the constant σ) to maximize the independence of the normalized
response to an ensemble of natural images and sounds. Such an opti-
mization was computationally prohibitive. To reduce the complexity of
the problem, we assume a Gaussian form for the underlying condition-
al distribution.
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masking tone. As in the visual data, the rate–level curves of the
auditory nerve fiber shift to the right (on a log scale) in the pres-
ence of the masking tone (Fig. 6c and d). This shift is larger when
the mask frequency is closer to the optimal frequency for the cell.
Again, the model behavior is due to variations in suppressive
weighting across neurons tuned for adjacent frequencies, which
in turn arises from the statistical properties illustrated in Fig. 3b.

As mentioned above, a motivating characteristic of normal-
ization models has been the preservation of the shape of the tun-
ing curve under changes in input level. However, the shapes of
physiologically measured tuning curves for some parameters
exhibit substantial dependence on input level in both audition16

and vision17,18. Figure 7a shows an example of this behavior in a
neuron from primary visual cortex of a macaque monkey24. The
graph shows the response of the cell as a function of the radius of
a circular patch of sinusoidal grating, at two different contrast lev-
els. The high-contrast responses are generally larger than the low-
contrast responses, but in addition, the shape of the curve changes.
Specifically, for higher contrast, the peak response occurs at a
smaller radius. The same behavior is seen in our model neuron.

Analogous results were obtained for a typical cell in the audi-
tory nerve fiber of a squirrel monkey16 (Fig. 7b). Responses are
plotted as a function of frequency, for a number of different sound
pressure levels. As the sound pressure level increases, the frequency
tuning becomes broader, developing a ‘shoulder’ and a secondary
mode (Fig. 7b). Both cell and model show similar behavior,
despite the fact that we have not adjusted the parameters to fit
these data; all weights in the model are chosen by optimizing the
independence of the responses to the ensemble of natural sounds.
The model behavior arises because the weighted normalization
signal is dependent on frequency. At low input levels, this fre-
quency dependence is inconsequential because the additive con-
stant dominates the signal. But at high input levels, this frequency
dependence modulates the shape of the frequency tuning curve

that is primarily established by the numerator kernel of the model.
In Fig. 7b, the high contrast secondary mode corresponds to fre-
quency bands with minimal normalization weighting.

DISCUSSION
We have described a generic nonlinear model for early sensory
processing, in which linear responses were squared and then
divided by a gain control signal computed as a weighted sum of
the squared linear responses of neighboring neurons and a con-
stant. The form of this model was chosen to eliminate the type
of dependencies that we have observed between responses of pairs
of linear receptive fields to natural signals (Fig. 2). The parame-
ters of the model (in particular, the weights used to compute the
gain control signal) were chosen to maximize the independence
of responses to a particular set of signals. We demonstrated that
the resulting model accounts for a range of sensory nonlinearities
in ‘typical’ cells. Although there are quantitative differences
among individual cells, the qualitative behaviors we modeled
have been observed previously. Our model can account for phys-
iologically observed nonlinearities in two different modalities.
This suggests a canonical neural mechanism for eliminating the
statistical dependencies prevalent in typical natural signals.

The concept of gain control has been used previously to explain
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ber of mechanisms. For example, feedforward synaptic depres-
sion mechanisms have been documented and have been shown to
exhibit gain control properties30. Although such mechanisms
may account for suppressive behaviors within the classical recep-
tive field, they seem unlikely to account for such behaviors like
those shown in Fig. 6. It has also been proposed that normaliza-
tion could result from shunting inhibition driven by other neu-
rons31–33. This type of implementation necessarily involves
recursive lateral or feedback connections and thus introduces
temporal dynamics. Some researchers have described recurrent
models that can produce steady-state responses consistent with
divisive normalization in primary visual cortex10,20.

Some of the gain control behaviors we describe may be attrib-
uted to earlier stages of neural processing. Gain control occurs
at the level of the retina9,34, although selectivity for orientation
does not arise before cortical area V1. In fact, division by local

Fig. 7. Nonlinear changes in tuning curves at different input levels. 
(a) Mean response rate of a V1 neuron as a function of stimulus radius
for two different contrasts. The peak response radius for both cell and
model is smaller for the higher contrast24. (b) Mean response rate of an
auditory nerve fiber as a function of stimulus frequency for a range of
sound pressure levels16. Tuning curve broadens and saturates at high
levels. For all plots, maximum model response has been rescaled to
match that of the cell.

nonlinear behaviors of neurons. For example, a number of audi-
tory models have incorporated explicit gain control mecha-
nisms8,28,29. Visual models based on divisive normalization have
been developed to explain nonlinear effects in cortical area V1
within the classical receptive field10,20. The standard model
assumes that the response of each neuron is divided by an equal-
ly weighted sum of all other neurons and an additive constant.
Our model uses a weighted sum for the normalization signal, and
is thus able to account for a wider range of nonlinear behaviors. In
addition, our model provides an ecological justification, through
the efficient coding hypothesis2, for such gain control models.

Our model accounts for nonlinear changes in tuning curve
shape at different levels of input. Such behaviors have been gen-
erally interpreted to mean that the fundamental tuning proper-
ties of cells depend on the strength of the input signal. But in our
model, the fundamental tuning properties are determined by a
fixed linear receptive field, and are modulated by a gain control
signal with its own tuning properties. Although such behaviors
may seem to be artifacts, our model suggests that they occur nat-
urally in a system that is optimized for statistical independence
over natural signals.

Our current model provides a functional description, and
does not specify the circuitry or biophysics by which these func-
tions are implemented. Our normalization computation is done
instantaneously and we have only modeled mean firing rates.
Normalization behavior could potentially arise through a num-

Fig. 6. Suppression of responses to optimal stimuli by masking stimuli.
(a) Vision experiment24. Mean response rate of a V1 neuron of an audi-
tory nerve fiber as a function of contrast of an optimally oriented grat-
ing presented in the classical receptive field, in the presence of a
surrounding parallel masking stimulus. Curves on cell data plots are fits
of a Naka–Rushton equation with two free parameters24. (b) Mean
response rate versus center contrast, in the presence of an orthogonal
surround mask. (c) Auditory experiment11. Mean response rate of an
auditory nerve fiber versus sound pressure level, in the presence of a
non-optimal mask at 1.25 times the optimal frequency. (d) Mean
response rate versus sound pressure level, in the presence of a non-
optimal mask at 2.08 times the optimal frequency. For all plots, maxi-
mum model response has been rescaled to match that of the cell.
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