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Hierarchikus grafikus modellek

• Nehéz a nemlineáris optimalizálás hierarchikus 
rendszerekben:

• Amennyiben erős függéseket tételezek fel, akkor lokális 
minimumokban ragad meg a tanulás

• Amennyiben gyenge függéseket tételezek fel, akkor a 
grádiensek a rétegek között egészen elenyészővé válnak és  
a hálózat számára nincsen “szignál” ami alapján tanulni 
tudna
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Deep Belief Networks

3

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

 o
n 

Ju
ne

 1
0,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

Hinton & Salakhutdinov, 2006

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben 2013 tavaszhttp://golab.wigner.mta.hu

Deep Belief Networks
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X
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X
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bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X
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j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Deep Belief Networks

3

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X
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j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X
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j
X

i, j
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ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Deep Belief Networks - pretraining

4

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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*To whom correspondence should be addressed; E-mail:
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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4

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Energia függvény:

Aktivációs függvény:

Kontrasztív divergencia:

adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[ images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[ is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Energia függvény:

Aktivációs függvény:

Kontrasztív divergencia:

adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[ images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[ is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.
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Konfabuláció:

a kontrasztív divergencia második tagjában a látens
súlyokat is frissíteni kell a konfabulált ‘v’-knek megfelelően
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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• Rétegről rétegre végzem a tanulást
• Újabb réteg hozzáadásával a tréning adat 

likelihoodjának alsó korlátja növekszik 
(ha a látensek számát nem csökkentjük)

• Folytonos adat esetén a legalsó rétegben
Normál eloszlású neuronokat lehet
használni (egység variancia esetén 
a látens frissítése megegyezik a 
bináris esettel)

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben 2013 tavaszhttp://golab.wigner.mta.hu

Deep Belief Networks - fine tuning

6

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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• Az RBM előtréningezés jó kezdeti feltételeket ad további 
tréningezéshez

• Sztenderd back propagation algoritmussal tréningezhető innen 
a hálózat
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by
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where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by
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where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels
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j
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i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1

k
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ
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s2
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y
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e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2
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1
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2
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1
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2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1

k
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2
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1
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1+s2

2

m2 ð2Þ

1

s2
3
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s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1

k
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to
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Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to
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Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to

25
20

A
ct

iv
ity 15

P
(r

1 
+ 
r 2

 s
)

10
5
0

25
20

A
ct

iv
ity 15

10
5
0

0 45 90 135
Preferred stimulus

25
20

A
ct

iv
ity 15

10
5
0

45 90 135
Preferred stimulus

0 45 90 135
Preferred stimulus

0.04

0.02

0

0.04

0.02

0

0 135
S

0.04

0.02

0
0 135

S

0 135
S

1

1σ 2
= Kg1

1

3σ 2
1

1σ 2

1

2σ2
= Kg3 = K (g1 + g2) = 

1

2σ 2
= Kg2

C1

C2

+

+

g2

g3 = g1 + g2

g1
P

(r
1 

s)
P

(r
2 

s)

10

8

6

4

2

0

10

5

15

0

10

S
pi

ke
 c

ou
nt

s

5

20

15

25

0
–200 –60 –40 –20–100

Preferred stimulus Preferred stimulus Stimulus

0 0100 200 20–200 –100 0 100 200 –200 –100 0 100 200

Preferred stimulus

F
iri

ng
 r

at
e 

(H
z)

A
ct

iv
iti

es

0

0.02

0.04

0.06

0.08

P
ro

ba
bi

lit
y

a cb d

Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1

k
ðs; gkÞf 0kðs; gkÞ ð5Þ
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to
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Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,
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Y
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ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,
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where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk
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(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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APPLICATION TO VISUAL CORTEX
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16 electrodes with 200 µm spacing

• spontaneous
darkness

• evoked
natural image movies

conditions

S(y) = P�(y)

M(y) =
�

P�(y|x) P�
movie(x) dx

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

RECORDINGS

15

awake behaving ferrets
aged P29 (eye opening) — P151 (mature visual system)
multi-unit recordings from layers 2/3 of V1
16 electrodes with 200 µm spacing

• spontaneous
darkness

• evoked
natural image movies

dynamic block noise

conditions

S(y) = P�(y)

M(y) =
�

P�(y|x) P�
movie(x) dx

N(y) =
�

P�(y|x) P�
noise(x) dx

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

RECORDINGS

15

awake behaving ferrets
aged P29 (eye opening) — P151 (mature visual system)
multi-unit recordings from layers 2/3 of V1
16 electrodes with 200 µm spacing

• spontaneous
darkness

• evoked
natural image movies

dynamic block noise

drifting full-field gratings

conditions

S(y) = P�(y)

M(y) =
�

P�(y|x) P�
movie(x) dx

N(y) =
�

P�(y|x) P�
noise(x) dx

G(y) =
�

P�(y|x) P�
grating(x) dx

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

DATA ANALYSIS

16

time (s)

el
ec

tr
od

es

0 10 20 30 40 50

#1
#16

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

DATA ANALYSIS

16

time (s)

el
ec

tr
od

es

0 10 20 30 40 50

#1
#16

1 1 0 0 0 1 0 1 0 0
1 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 1 0 1
0 1 0 0 0 0 1 1 0 0
1 0 1 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0
1 1 0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 1 0
0 1 1 0 1 0 0 1 0 1
0 1 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0

time

el
ec

tr
od

es

discretisation 
and binarisation

⇤⇥�⌅
2 ms

y

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

DATA ANALYSIS

16

time (s)

el
ec

tr
od

es

0 10 20 30 40 50

#1
#16

1 1 0 0 0 1 0 1 0 0
1 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 1 0 1
0 1 0 0 0 0 1 1 0 0
1 0 1 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0
1 1 0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 1 0
0 1 1 0 1 0 0 1 0 1
0 1 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0

time

el
ec

tr
od

es

discretisation 
and binarisation

⇤⇥�⌅
2 ms

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
01

00
00

00
00

00
00

00
10

00
00

00
00

00
00

00
11

11
11

11
11

11
11

11
11

y

y

P(y)

collecting
histograms

…

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

DATA ANALYSIS

16

time (s)

el
ec

tr
od

es

0 10 20 30 40 50

#1
#16

1 1 0 0 0 1 0 1 0 0
1 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 1 0 1
0 1 0 0 0 0 1 1 0 0
1 0 1 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0
1 1 0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 1 0
0 1 1 0 1 0 0 1 0 1
0 1 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0

time

el
ec

tr
od

es

discretisation 
and binarisation

⇤⇥�⌅
2 ms

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
01

00
00

00
00

00
00

00
10

00
00

00
00

00
00

00
11

11
11

11
11

11
11

11
11

y

y

P(y)

collecting
histograms

implicit marginalisation

rather than explicitly computing 

we collect evoked activity under each condition
without regard to the actual ongoing stimulus

…

Pevoked(y) =
�

P�(y|x) P�
stim(x) dx

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

DATA ANALYSIS

16

time (s)

el
ec

tr
od

es

0 10 20 30 40 50

#1
#16

1 1 0 0 0 1 0 1 0 0
1 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 1 0 1
0 1 0 0 0 0 1 1 0 0
1 0 1 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0
1 1 0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 1 0
0 1 1 0 1 0 0 1 0 1
0 1 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0

time

el
ec

tr
od

es

discretisation 
and binarisation

⇤⇥�⌅
2 ms

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
01

00
00

00
00

00
00

00
10

00
00

00
00

00
00

00
11

11
11

11
11

11
11

11
11

y

y

P(y)

collecting
histograms

implicit marginalisation

rather than explicitly computing 

we collect evoked activity under each condition
without regard to the actual ongoing stimulus

…

Pevoked(y) =
�

P�(y|x) P�
stim(x) dx

comparing
histograms

KL[P1(y) �P2(y)]

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

DEVELOPMENTAL CHANGES

17

P29
S(

y)

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

DEVELOPMENTAL CHANGES

17

P29

P129

S(
y)

M(y)

S(
y)

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

!"!#$ %%!%& '#!"! (!"!(&(
$

($$

!$$

#$$

%$$

&$$

)$$

*$$

+

++

,-./01/12314536718.9

:
;
36
<
=/
.
>.
5
?
9

DEVELOPMENTAL CHANGES

17

P29

P129

S(
y)

M(y)

S(
y)

M

S

ρ=-0.70, p<0.005

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

SPATIAL CORRELATIONS

18

P̃(y) =
16�

i=1

P(yi)destroying spatial dependencies:

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel


XV. Magyar Látás Szimpózium, Szeged, 2009. december 18. http://www.eng.cam.ac.uk/~m.lengyel

!"!#$ %%!%& '#!"! (!"!(&(
$

!$$

%$$

)$$

'$$

($$$

(!$$

* **

*

* *

**

**

+,-./0.01203425607-8

9
:
25
;
<.
-
=-
4
>
8

SPATIAL CORRELATIONS

18

P̃(y) =
16�

i=1

P(yi)destroying spatial dependencies:

within-condition correlations

M
M̃

S
S̃

ρ = -0.76
p < 0.005

ρ = 0.73
p < 0.005
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SPATIAL CORRELATIONS

18

P̃(y) =
16�

i=1

P(yi)destroying spatial dependencies:

within-condition correlations importance of correlations
for match between conditions 
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state-transition distributions: P(yt+⌧ |yt)
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control:

state-transition distributions: P(yt+⌧ |yt)

P̃(yt+⌧ |yt) = P(y)
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