
Functional modelling of cortical

macro-networks

Theses of the doctoral dissertation
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About the dissertation

The topic of my dissertation is the study of cortical macro-
networks using mathematical models. The basic computational
unit of the nervous system is the neuron, and the collective elec-
tric activity of such units implements all functionality expressed
during behaviours of organisms. The neurons form larger organ-
isational and computational units in the cortex in a hierarchical
manner, and the largest scale network of such organisations is
that of cortical areas. These ensembles, consisting of millions of
cells, can be differentiated on an anatomical basis, and one can
often determine the functionalities that they take part in the im-
plementation of. Such information can be collected by anatom-
ical and histological methods, and also by functional imaging,
such as fMRI measurements. The knowledge, gathered by such
methods about the structure and function of the large-scale cor-
tical network, can be related to human and animal behavioural
forms using mathematical models.
My dissertation consists of two main parts. In the first half I
investigate the interaction between large-scale cortical structure
and function using graph theoretical methods, and in the sec-
ond, the cortical implementation of behavioural function and its
dysfunctions, using dynamic statistical models. I put an empha-
sis on the role of the prefrontal area, responsible for high-level
cognitive functions, in both parts.

Signal flow in directed networks

Preliminaries to the study

The static component of the network of cortical areas is anatomi-
cal connectivity. The construction of a precise connectivity map
requires histological investigations in addition to the imaging
studies. Such a map was created of the macaque visuo-tactile
cortex, of which probabilistic graph theoretical analysis was able
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to make predictions [13]. The investigation of this graph from
a signal propagation point of view, with an approach related to
the one described here, was also conducted [14]. The methods
presented here are built upon multiple trends, as present in the
literature, of structurally characterising networks.
Random graphs greatly contribute to the understanding of real-
world networks by describing the formation mechanisms of net-
works by sampling statistical generative models. They reproduce
statistical properties of the real networks, such as degree distri-
bution [15].
The hierarchical organisational principle bears a great impor-
tance in the formation of biological and artificial networks. [10].
Characterising graphs and their vertices in this regard can add
an important point of view to understanding function.
The graphical representation of a network consisting of vertices
and edges provides limited information about the functional role
of vertices, and it is unsuitable for comparison of network struc-
ture. In the literature, one can found such a representation that
maps graphs with the same structure to the same figure [1],
but there has been no such representation available so far that
contains functional information in an intuitive way.

Goals

My goal was to investigate what implications can be inferred
from the structure of networks regarding the signal flow on them.
I wanted to achieve this using a method that meets the following
criteria:

1. Uses the information that can be gathered from the global
structure of the graph to characterise individual edges.

2. Is able to determine the role played by a single vertex in
the signal flow.

3. Enables the comparison of real-world and model networks
and the definition of a classification more precise than
available previously, also on small networks.
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I intended to apply this method for testing an algorithm that
generates a precise model of the cortical area network.

Methods

On a directed graph, G(V,E), I defined an edge-based measure
that describes the role of the given edge in the global signal
flow, using shortest paths. These paths constitute the structural
skeleton of the graph, and they determine the interaction of the
vertices primarily.

Convergence degree. Given all shortest paths passing through
the edge connecting vertices i and j, let the set of vertices
that these paths originate from denoted by In(i, j), and
the set of vertices they terminate on by Out(i, j). Then the
convergence degree (CD) of the edge is 1, and its overlap
measure is 2.

CD(i, j) =
|In(i, j)| − |Out(i, j)|

|In(i, j) ∪Out(i, j)|
(1)

Ovl(i, j) =
|In(i, j) ∩Out(i, j)|

|In(i, j) ∪Out(i, j)|
(2)

A positive convergence degree means that the edge trans-
mits information by the shortest paths passing through it
from a larges set of nodes to a smaller van, and a nega-
tive vice versa. The overlap is always positive, and char-
acterises the participation of the edge in the feedback, cir-
cular component of the signal flow. Instead of the global
characterisation, on can give a local one too, by only con-
sidering the paths leading to neighbours of the two end-
point vertices of the edge. or the position taken between
these two extremes can be controlled by imposing restric-
tions on the lengths of the shortest paths.
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Flow representation. To be able to determine the roles ver-
tices played in signal flow, I defined multiple vertex-based
measures using CD.

σ−
in(i) =

1

din(i)

∑
(j,i)∈E

min(0, CD(j, i)) (3)

σ+
out(i) =

1

dout(i)

∑
(i,j)∈E

max(0, CD(i, j)) (4)

din and dout mean the incoming and outgoing degrees
of vertices. Quantities σ+

in(i), σ
−
out(i), σ

+
ovl(i), σ

−
ovl(i) can

be defined similarly. If we plot these numbers on a two-
dimensional figure (using colours for overlap), we get a
visual representation of the graph that is invariant on its
automorphism group.

The role vertices play in signal flow can be described by
the ratio of the measures above. If the sum CD on the
incoming edges of a vertex is positive, then it behaves as
a source of information in the network, in the opposite
case, as a sink. These functions correspond to the positions
assumed by the vertex in the quarter planes II and IV on
the figure, to the extent of the distance from the origin.
This property allows us to imply the role of the vertex
in the hierarchy of the network: source vertices tend to
assume a lower position than sinks do.

Modified small world algorithm. One can construct a pre-
cise model of the cortical area network in the aspect of in-
formation flow using a modified version of the small-world
algorithm of Watts and Strogatz [18]. The algorithm con-
sists of the following steps:

1. Choose the number of vertices of the graph (n), and
add n edges so they form a closed circle.
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2. Determine the in-degree of each vertex (din).

3. By normalising degrees, determine the probability
that a vertex will become the target of a new edge.

4. If reciprocity or the clustering coefficient is to be con-
trolled, distort the distribution accordingly.

5. By sampling the resulting distribution, determine the
endpoints of the new edge, and add it to the graph.

6. If the desired number of edges is reached, the algo-
rithm terminates, otherwise continue at step 2.

If there are several Hamiltonian circles in the network to
be modelled, deletion of the edges in the original circle is
unnecessary, as it only adds one Hamiltonian circle to the
model graph.

Results

T 1/1. I showed that the convergence degree measure is suit-

able for investigating the structurally determined signal flow

properties of directed networks, can be used to create more re-

fined classification systems than traditional graph theoretical

measures, and also to give a more precise definition of the signal

processing roles of individual vertices and edges.

T 1/2. I devised a preferential rewiring graph generation al-

gorithm that gives a better model of the cortical macro-network

than previously defined random graph models in the sense of

reproducing more structural properties.

T 1/3. I determined the role of the prefrontal area in cortical

signal processing quantitatively using the convergence degree:

the information flowing between cortical areas shows a strong

convergence on the dorsolateral prefrontal cortex.

Related publications for thesis points T 1/1., T 1/2., T 1/3.:
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• Bányai M., Négyessy L., Bazsó F.: Organisation of signal
flow in directed networks. J Stat Mech, P06001, 2011.

• Négyessy L., Bányai M., Bazsó F.: What makes the pre-
frontal cortex so appealing in the era of brain imaging? A
network analytical perspective. Acta Biologica Hungarica,
63(S1):38–53, 2012.

• Bányai M., Nepusz T., Négyessy L., Bazsó F.: Conver-
gence properties of some random networks. In: IEEE Pro-
ceedings of the 7th International Symposium on Intelligent
Systems and Informatics, Subotica, Serbia, 2009, pp. 241–
245.

Application of the results described in the theses

The application described in thesis 1/3. is illustrated in Fig-
ure 1. Furthermore, the method is applicable in the structural
comparison of real-world networks. From these I conducted the
analysis of the visuo-tactile cortical network of the macaque and
an intracellular signal transmission protein network, showing a
strong hierarchical structure in the latter. I evinced that, where
known, the signal transmission roles of the vertices determined
by convergence degree is consistent with biological function [11].
For the vertices with unknown function, the method provides a
prediction.
A further application is the analysis of aggregated networks.
These are large-scale representations of big networks, where we
replace the more strongly connected sets of vertices by a single
vertex. I analysed the aggregated version of the protein network
mentioned above, the road network of a city and the procedure
call graph of the kernel of an operating system. In the latter, I
showed that control flow converges on low-level system calls. I
showed the statistical connection between the sizes of clusters
represented by the vertices and their convergence degree.
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Figure 1: Depiction of prefrontal cortical areas in flow represen-
tation. From the position of the dorsolateral prefrontal cortex
(Brodmann Area 46) assumed in quarter plane II, a role as an
information sink can be implied.

By comparing the grouping of vertices based on signal flow prop-
erties and connectivity, I showed that these two kinds of clus-
tering reveal different structural properties, and one can make
implications about the regular or random nature of the organi-
sational principle of the network based on their similarity.

Conclusion

I defined the measure of convergence degree to investigate the
effect of network structure on function. Using this I provided
a more precise classification of real-world and model networks
than available so far, and validated the algorithm that produces
the random model of the cortical area network. Using conver-
gence degree I determined that the prefrontal cortex is a target
of the cortical information convergence. Further research may
derive the structural constants of dynamical models defined on
graphs, and their properties, from convergence degree.
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Model-based dynamical analysis of functional

disconnection in schizophrenia

Preliminaries to the study

The spatially detailed investigation of the functional networks of
the whole cortex was made possible by fMRI technology. With
this, a functional measurement about the whole brain can be
conducted with the temporal resolution of 1-2 seconds and spa-
tial resolution of 3 millimetres. From the voxel activations mea-
sured this way, the time series corresponding to certain corti-
cal areas can be extracted utilising anatomical information and
task-dependent activity. A drawback of the technology is that
it measures neural activity in an indirect manner, as the sensor
captures the relative concentration of deoxyhemoglobin in the
space compartment corresponding to the voxels (BOLD signal).
This is tightly coupled to neural activity, but the relationship is
nonlinear, and its exact form is hard to determine. Functional
subnetworks can be investigated by the estimation of connectiv-
ity between active regions.
Schizophrenia is a psychiatric disease affecting the lives of many,
and its biological background is largely undiscovered. Experi-
enced alterations of higher-order cognitive functions make it el-
igible to serve as a basis of a differential approach to the in-
vestigation of functional cortical subnetworks. A prevalent hy-
pothesis attributes the symptoms of schizophrenia to the dis-
connection of such networks [5]. Additional to macro-network
dysfunction, the intrinsic network dynamics of the prefrontal
cortex is also altered during the disease [2],

The experimental paradigm. The experiment described by
[3] investigates alterations of associative learning in schizophre-
nia patients using fMRI measurements. The 11 patients
and 11 healthy controls had the task of memorising the po-
sition of simple objects on a grid. During the eight encod-
ing and retrieval periods, 288 measurements were made of
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the activity of the whole brain of each subject. The learn-
ing performance of patients was significantly lower than
that of the controls, however, they were able to complete
the task.

Dynamic causal models. Dynamic causal models (DCM) en-
able the complete statistical description of functional sub-
networks [7].

ẋ = (A+

N∑
i=1

ujB
j)x+ Cu (5)

y = λ(x, θh) (6)

The unobserved neural activity of the areas is described
by a bilinear formula 5, where u denotes the time series
representation of the conditions constituting the experi-
mental paradigm. A, B and C are coupling matrices that
describe the interaction of areas, the direct effects of the
inputs on the areas and the modulatory effects of inputs
on intrinsic connections.

The λ nonlinear mapping describes the way the BOLD
signal is emerging from the neural activity according to
the Balloon model. Details of this are given in [6].

Prefrontal synaptic model. To investigate the intrinsic dy-
namics of the prefrontal cortex, one can define a synaptic
model for integrate-and-fire neural networks [12].

dx

dt
=

1− x

τd
− uxδ(t− tsp) (7)

du

dt
=

U − u

τf
− U(1− u)δ(t− tsp) (8)
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In formulae 7 and 8, x denotes the transmitter release
probability, and u the amount of transmitter available on
the presynaptic side. The ratio of time constants τd and
τf determines the facilitatory or depressive nature of the
synapses.

The model can give descriptions of the functional mech-
anism of working memory in multiple dynamical regimes
[12].

Goals

My goal was to define a model space based on fMRI measure-
ments to investigate cortical subnetworks of associative learn-
ing that is suitable to reveal functional alterations related to
schizophrenia using statistical parameter estimation and model
comparison. My primary intention was to capture the role and
alterations of control signals that are transmitted from the higher-
level areas towards sensory areas. In addition, I wanted to in-
vestigate the possible effects of intrinsic structural alterations of
the prefrontal cortex on learning and memory processes.

Methods

The first step in the analysis of cortical subnetworks is the selec-
tion of the areas that participate in the implementation of the
task. For the associative learning task the following five areas
serve as vertices in the model network: primary visual cortex
(V1), that receives sensory input due to the visual nature of the
task, inferior temporal cortex (IT), responsible for object recog-
nition and encoding in the ventral stream of the visual system,
superior parietal cortex (SP), encoding location information in
the dorsal stream, hippocampus (HPC), responsible for com-
bining the partial information from the two streams and writ-
ing the pattern to the associative memory, and the dorsolateral
prefrontal cortex (PFC), responsible for the cognitive control
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of memory processes. The selection of the voxels associated to
these areas were made combining task-dependent activity and a
probabilistic anatomical atlas.

Definition of the model space. The models to compare can
contain different interaction networks of the five brain ar-
eas and different effects of the experimental conditions.
For the definition I assumed the existence of two kinds of
information flow in the cortex: a data flow from the sen-
sory areas towards the higher-level areas and a control flow
from high-level cognitive areas towards sensory systems.
The model space represented different disconnections in
the control flow and different deficiencies of the effects of
experimental inputs, and also contained the model describ-
ing the fully connected flow. The inputs of the models were
defined as the experimental conditions (presence of a vi-
sual input, encoding period, retrieval period, number of
learning epochs so far).

Parameter estimation. The parameter sets of the models con-
sist of the coupling matrices and hemodynamic parameters
(9). These were fit to the data based on the Bayes rule
(10) pairing each model (M) with each measurement. The
prior distribution of the parameters contained fixed zeros
for connections not included in the given model and a zero-
mean Gaussian distribution with a low variance (N (0, Cp))
for the rest. The likelihood is given by the model (5, 6) and
a zero-mean Gaussian noise model (p(ǫ) = N (0, Cǫ)), this
way the posterior distribution also turns out to be Gaus-
sian.

θ = {A,B,C, θh} (9)

p(θ | y,M) =
p(y | θ,M)p(θ | M)

p(y | M)
(10)
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The estimation of the posterior distribution is done by
a numerical algorithm of the Expectation Maximisation
(EM) type, that estimates the expectation and the covari-
ance matrix of the posterior (θy, Cθ|y) and the covariance
matrix of the noise model (Cǫ) in an alternating fashion
using an iterative gradient method [8]. The parameter val-
ues produced this way have been compared between the
control and patient groups using a frequentist t-test and
Bayesian model averaging as well.

Model comparison. The most consistent way of comparing
model structures is when we can infer a complete prob-
ability distribution over the set of the k models. In the
case of DCM-s this can be done by the definition of a hi-
erarchical generative model, that describes the emergence
of the measurement data of a whole group of n subjects
in a probabilistic way. On the lower level of the model
we use the distribution of the data series given a specific
model structure, which is the marginal likelihood or evi-
dence distribution of the DCM (11). For this we define the
prior over different models as a multinomial distribution
(12). Here parameters r mean the expectation of the data
series of a given subject being generated by a given model.
The expected value of these quantities over subjects gives
the expected value of the posterior probability of models
(13).

p(yj | M) =

∫
p(y | θ,M)p(θ | M) dθ (11)

p(M | r) =
k∏

i=1

rMk (12)

E(rk) = E(p(M | y1 . . . yn)) (13)

The parameters of the hierarchical model can be estimated
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by a variational method that only requires the values of
the logarithm of the evidence distribution for the mod-
els. Approximations of these values are created during the
parameter estimation, so this step is less computationally
expensive [16].

I conducted the estimation of the probability distribution
over the models for the patient and control groups sep-
arately, for two sets of models, one with varying combi-
nations of connections in the control flow and one with
varying effects of experimental inputs on those. To sep-
arate the variation caused by the differences in learning
performance and the illness, I conducted the estimation of
the model distribution separately for the subjects in the
control group with learning performances no better than
that of the subjects in the patient group.

Synaptic modulation To compare the normal and disordered
functioning of the intrinsic dynamics in the PFC, I inves-
tigated the parameter dependence of the synaptic model
described by 7 and 8. According to [9], calcium dynamics
is altered in schizophrenia, which results in differences in
short-term plasticity. To investigate possible causes of al-
terations in the working memory, I determined the effect
of the change in parameters τd and τf on the recallable
duration of memory patterns.

Results

T 2/1. I discovered using dynamic causal models that in pa-

tients with schizophrenia, the information flow between pre-

frontal and hippocampal areas during learning, responsible for

cognitive control, is significantly damaged.

T 2/2. I showed that dynamic causal models are able to grasp

the physiological differences caused by the illness independently
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from the task performance of the experimental subjects.

T 2/3. I showed, using a cellular network model of short term

plasticity that the alteration of prefrontal synaptic dynamics, as

observed in schizophrenia, drives the recall duration of working

memory to a pathological regime.

Related publications for thesis points T 2/1., T 2/2., T 2/3.:

• Bányai M., Diwadkar V., Érdi P.: Model-based dynam-
ical analysis of functional disconnection in schizophrenia.
NeuroImage, 58(3):870–877, 2011.

• Bányai M., Diwadkar V., Érdi P.: Pathological Effects of
Cortical Architecture on Working Memory in Schizophre-
nia. Pharmacopsychiatry, 43(S1):592–597, 2010.

Application of the results described in the theses

Results of model comparison are depicted in Figure 2. The dif-
ference between the functional subnetworks of schizophrenic and
control subjects is expressed in a decrease of cognitive control
exerted by higher-level areas over the behaviour of the temporal
lobe and the hippocampal area, responsible for memory forma-
tion, in the patient group. This is consistent with the results
of earlier models described in the literature, like the theory ex-
plaining auditory hallucinations by a cognitive deficit in agency
determination [17].
The determination of the functional macro-network and the
deficit model of the intrinsic connectivity of the prefrontal cortex
both support the area interaction model of associative learning
[3], in which the prefrontal cortex implements a switching mech-
anism between encoding and recall modes of memory.
As the mapping of the task-dependent, effective connectivity
patterns between cortical areas is far from complete, the most
important application of the results described in the theses is
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Figure 2: The result of Bayesian model comparison shows that
the effect of the prefrontal cognitive control on the hippocampal
areas is decreased in schizophrenia.

the formation of new hypotheses and testing them on data with
a similar methodology. The results further the emergence of a
diagnostic application, but are not sufficient for such themselves,
as the use of the described alterations as biomarkers would re-
quire the integration of much more data and the implementation
of meta-studies. For therapy and drug discovery applications,
the results indicate a promising direction of development [4].

Conclusion

Based on measurement data, I showed that during schizophre-
nia, the cognitive control exerted by higher-level cortical ar-
eas over temporal lobe areas is diminished, especially in the
prefrontal-hippocampal connection. I supported this finding with
Bayesian model selection and parameter estimation. I demon-
strated that the results of the procedure are independent from
the learning performance of the subjects, and reflect physio-
logical alterations. I showed that the alteration of the intrinsic
connections of prefrontal neural networks can also contribute to
the dysfunction. The application of the results in diagnosis and
therapy may be the subject of further research.
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gence properties of some random networks. In: IEEE Pro-
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Publications related to the theses
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Bányai M., Procyk E., Barone P., Bazsó F.: From neu-
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7. Érdi P., Bányai M., Ujfalussy B., Diwadkar V.: The schi-
zophrenic brain: A broken hermeneutic circle. Some new
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USA, pp. 3024–3027.

8. Bányai M., Ujfalussy B., Diwadkar V., Érdi P.: Impair-
ments in the prefronto-hippocampal interactions explain
associative learning deficit in schizophrenia.BMC Neuro-

science, 12(S1):93, 2011.
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143(11):505–507, 2012.

Other publications

10. Lončar-Turukalo T., Minich J., Bányai M., Bazsó F.,
Odry P., Négyessy L., Bajić D.: On Ramp Statisics in ISI
Time Series. In: Proceedings of the 5th European Con-
ference of the International Federation for Medical and
Biological Engineering, Budapest, 2011.

11. Somogyvári Z., Bányai M., Huhn Z., Kiss T., Érdi P.:
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tional and systems neuroscience, 2009.
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