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Abstract

This dissertation is about interaction networks of cortical areas, macroscopic
ensembles of neurons connected by synapses, implementing behavioural func-
tionalities such as perception, action and cognition. Different mathematical
modelling approaches can be used to test hypotheses about such networks’
structure, function, and the relation of the two.

The first part of the dissertation studies the structure of cortical macro-
networks: by introducing a graph theoretical measure applicable for directed
networks, I identify roles of vertices in information processing and introduce
a network comparison and classification method. To create a random graph
model of the cortical network, I propose a graph generation algorithm. I use
the introduced methodology to investigate the information processing role of
the prefrontal areas.

The second part of the dissertation studies functional subnetwoks of the
cortex: a model consisting five areas, implementing associative learning, is
proposed, and tested against measurement data using statistical model in-
version and comparison. I investigate alterations of the connectivity mo-
del in schizophrenia to test possible deficits in cognitive control. I study
the intrinsic connectivity changes in the prefrontal neural networks, possibly
contributing to memory dysfunction.
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Kivonat

Disszertációm az agykérgi területek hálózatáról szól. Ezek szinapszisok által
összekötött makroszkopikus neuronegyüttesek, amelyek megvalóśıtják a vi-
selkedéshez szükséges érzékelési, cselekvési és kognit́ıv funkcionalitást. Kü-
lönböző matematikai madellek seǵıtségével tesztelhetünk hipotéziseket ezek
struktúrájáról, funkciójáról és a kettő kapcsolatáról.

A disszertáció első fele a kérgi makrohálózatok struktúráját vizsgálja: egy
iránýıtott hálózatokra alkalmazható gráfelméleti mérték seǵıtségével meg-
határozom az egyes csúcsok hálózati információfeldolgozásban játszott sze-
repét és bemutatok egy módszert hálózatok összehasonĺıtására és osztályo-
zására. A kortikális hálózat randomgráf-modelljének létrehozása céljából új
gráfgeneráló algoritmust javaslok. A bemutatott mdszerek seǵıtségével meg-
vizsgálom a prefrontális területek kérgi infromációfeldolgozásban játszott sze-
repét.

A disszertáció második része a kéreg funkcionális alhálózatait vizsgálja:
egy öt területből álló modellt javaslok, amely az asszociat́ıv tanulás meg-
valóśıtásában vesz részt, majd ezt mérési adatokon ellenőrzöm statisztikai
modellinverzió és -összehasonĺıtás seǵıtségével. Megvizsgálom az összeköt-
tetések skizofrénia esetén tapasztalható elváltozását a kognit́ıv kontroll le-
hetséges hiányosságainak tesztelése céljából. Emellett tanulmányozom a pref-
rontális neurális hálózatok megváltozott belső kapcsolódását, amely szintén
hozzájárulhat memóriaproblémák kialakulásához.
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a kutatás minden aspektusára vonatkozóan.
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dományi, matematikai és egyéb kérdésekről.
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“...Esz az ember a cék reklámja. Régen festő volt, de a nagy
háborúban sújosan megsebesült, amikor megszököt a fetyházból.
Úty ment bele a fejibe neki a golyó, hoty az alvási agyizmát, ami
centrumot képez, megsértette. [...] Ezek a centrumosok soha nem
tudnak aludni, még a legnemesebb regények olvasásától se. [...] A
festő is ilyen: sem aludni, sem tiszteséges lenni nem tud. Mostan
fontos szereplő vigyászásból, mivel a tisztelt bentlévők a rendőrség
mellőzését kéretik. És esz nem alszik, ha kint áll, őrölés köszben.
Mivel ojan golyó érte centrumban asz agyát, hoty sem aludni, sem
józan lenni, sem mosakodni többé nem tud. Viszont verekedési
centrumot nem sérte a golyó. Esztet látam egy jobbkezeséből, de
balkészel megálaṕıtottam, hoty elájulni mék tud. Esz a centruma
1.-ső rangú... ”

Rejtő Jenő (1941): Piszkos Fred közbelép Fülig Jimmy
őszinte sajnálatára,

Albatrosz könyvek, Budapest, 1966.

“...This man is the sign of the company. He used to be a painter,
but he had been gravely wounded during the Great War, when he
broke out of the gaol. The bullet entered his head in such a way,
that his sleeping brain muscle, that constitutes a center, was hurt.
[...] These center people cannot ever sleep, even from reading the
most grand novels. [...] The painter is such: he cannot sleep, nor
be honest. Now he is an important man looking out, as the
revered customers insist not to be contacted by the police. And
this guy doesn’t sleep while guarding. Since such a bullet reached
the center in his brain that he cannot sleep, be sober or bath.
However, no brawling center has been hurt by the bullet. This I
could see from his right hook, but I determined with my left hand,
that he can still pass out. This center of his is 1st class... ”

Jenő Rejtő (1941): Dirty Fred intervenes for the sincere
regrets of Jimmy All-Ears,

Albatrosz books, Budapest, 1966.





1
Introduction

T
his dissertation is about networks in the brain. From the multi-
tude of phenomena that can be addressed as such, I will mostly cover
networks of cortical areas. What do we know about their structure,

what kind of implications can we draw from it regarding their function, and
how can we explain behavioural traits based on their connectivity?

Olaf Sporns coined the term “connectome” [126], in reflection to terms
like “genome”, to describe all kinds of knowledge about the brain that pro-
vides answer to a question on what is connected to what and sometimes
when. The maps resulting from the different approaches organise into a hier-
archical system: the behaviour of the living organism, human or animal, is a
resultant of the interplay between functional units, which correspond to brain
areas or their still-macroscopic subsystems according to our current level of
knowledge, however, keeping in mind the more detailed picture is essential
when interpreting measurements, or trying to explain dysfunctions. Also,
the macro-network picture is necessarily phenomenological, and for creating
mechanistic, procedural ideas about brain function, the appropriate level of
abstraction is quite probably lower. Thus, I begin the introduction to this
work by an overview of this elaborate machinery. This will be necessary to
create a framework for formulating hypotheses about the ultimate topic of
interest, the emergence (or presence, nonetheless) of functionality. As the
essence of scientific understanding is formal reasoning, after looking at the
sources of information about structure, function and their possible relation-
ships, I will review modelling techniques for different types of phenomena.
This will finally enable the formulation of the scientific questions this disser-
tation wishes to answer.
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1.1 Levels of organisation in the brain

As the neuron doctrine states, the morphological, developmental and func-
tional unit of the nervous system, thus of the cortex in the brain, is the
neuron (for a somewhat dissenting opinion see Freeman [54]). The mem-
brane potential dynamics of these spatially extended cells is able to produce
quick spikes of quite invariable height and width, called the action potentials.
These spikes travel along the elongated axons of the cell, and are transmitted
to other cells trough the synapses, chemical connections of variable efficacy.

The neuron and the synapse themselves operate as sophisticated inter-
action networks of proteins and other molecules. This can be regarded as
the lowest level of the cortical hierarchy of networks. However, this level will
only be discussed in this dissertation in an example for the usability of a
general graph analysis method in Section 2.4.1, otherwise, I consider spike
transmission as the basis of all information processing in the brain, sticking
to the neuron doctrine on the functional level.

1.1.1 Neuronal networks

The fundamental role of the connections between individual neurons in the
implementation of any brain function was proposed by Santiago Ramón y
Cajal (see [156] for the original, reviewed in [36]). Current theories of corti-
cal activity agree that neural state can be derived from neuronal firing or a
statistical measure of that, and learned information is stored in the synaptic
efficacies, the connection strengths between neurons. This structure was one
of the central concepts of cybernetics [94], and thus exerted a great influence
on machine learning and pattern recognition techniques. Non-synaptic types
of communication between cells exist, but most of the communication, espe-
cially for longer distances, is realised by spike transmission, according to the
current scientific opinion. Regarding other signalling pathways, the reader is
referred to [142] and [143].

The most precisely known biological neural network is that of the sim-
ple worm, Caenorhabditis elegans, that has 302 neurons, and all connections
between those are mapped [152], as there is no inter-specimen variability
in this nervous system. Although synaptic plasticity is already present in
this network, the examination of such a system does not provide substan-
tial information about more complicated functionality, as such, especially
cognitive behaviour, can only be associated with higher animals. The com-
plete mapping of a vertebrate nervous system is not available to this day, and
measurement techniques only allow the gathering of fragmentary information
about the structural, and even more so about the functional architecture of

2



a cerebral cortex.
In the human cortex there are about 1011 neurons connected by about 1015

synapses. These numbers would call for a higher level approach themselves,
but there is clearly observable structure in the neural tissue that helps to
define a meaningful clustering of neurons.

1.1.2 Area networks

Cortical areas are ensembles of neurons constituting the grey matter of the
cortex, and can be separated from each other based on anatomical measures,
such as the distribution cell types and connectivity, but often also based on
the simultaneous change in neuronal activity related to a certain function, as
detailed in Section 1.2. Distant areas can be connected through axon bundles
through the white matter.

The first systematic area map was provided by Brodmann in 1909 (see
[26] for the original, reviewed in [135], for listing of areas mentioned in this
text see Table A.4), defining 52 regions for the human and monkey cortex.
The area numbering introduced by him is still used in some cases. A more
detailed division of the cortex was given by Economo and Koskinas in 1925
(see [40] for original, reviewed in [137]), which consisted of 103 areas. This
map is depicted in Figure 1.1.

Figure 1.1: Division of the human cerebral cortex into 103 areas by Economo
and Koskinas, from [40].

Nowadays scholars use a cortical area system which is more refined by
improved data collection techniques and the integration of functional mea-
surements, but there is no standard division of the cortex to a fixed number
of areas.

The microscopic method of neural connectivity mapping is axonal tracing.
Certain chemicals are injected into the cells of the neural tissue, and as they

3



are able to move along the axon in an anterograde or retrograde fashion,
the location of the cells connected to the marked neuron can be determined
using microscopic measurements. For a review of axonal tracing techniques,
see [83]. The drawbacks of such methods are that they are highly invasive,
and require many lengthy measurements to determine connections.

As for some mapping techniques non-human brains are much more ac-
cessible, we often have more detailed information about the neural circuitry
of certain animal species. There has been multiple initiatives to facilitate
the efficient integration and sharing of such anatomical data using online
databases. One of such sites is the Brain Architecture Management System
(BAMS)1 database [25].

The species with the closest cortical architecture to humans, thus most
relevant to human neuroscience are primates. Their cortical organisation is
not identical to that of the homo sapiens, but several functions and structures
are homologous, allowing us to draw implications from one species to the
other. A connectivity map of the macaque visuo-tactile cortex was created
in 1991 [49], and refined continuously since then. The data accumulated so
far is accessible from the CoCoMac database2, which also accepts submissions
[130]. A new version of this network is depicted in Figure 1.2.

A non-invasive way to gather information about the brain is through
magnetic resonance (MR) imaging. This technique detects the spatial distri-
bution of certain materials using strong magnetic fields. When tuned to mea-
sure the concentration of water, with an appropriate decoding method, it can
be used to trace axonal fibres in the white matter. This analysis pipeline is
called diffusion tensor imaging (DTI) [77], or with a slightly different method-
ology, diffusion spectrum imaging (DSI) [69, 148], and can provide invaluable
data about structural connectivity between brain regions. However, DTI and
DSI cannot reveal the direction of synaptic connections in the axonal fibres,
and can only reveal bundles of myelinated axons, fine details of connectivity,
including local or close connections cannot be seen through them. Thus, the
microscopic axonal tracing methods remain necessary to discover the cortical
connectome.

1.1.3 Intermediate levels of hierarchy

In order to fully understand cortical computation, it is necessary to define
the intermediate organisational levels between the elementary neuron and
the cortical area responsible for general aspects of behaviour. The main

1http://brancusi.usc.edu/bkms/
2http://cocomac.org
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Figure 1.2: Visuo-tactile area subnetwork of the macaque cortex. Areas
belonging to the tactile subsystem are denoted by circles, areas of the vi-
sual system and higher-level integration with squares. For abbreviated and
numbered areas see Tables A.3 and A.4 respectively.

candidates for such a role are the cortical columns, that can be defined in
several ways.

Micro-columns (or minicolumns) originate from the same progenitor cell
during ontogenetic development, and are thought to encode the same feature
according to the modality of the area they are located in. Such columns
consist of around 80 pyramidal neurons. Cortical macro-columns (or hyper-
columns) are thought to encode all features related to a certain receptive
field, consisting 4-8000 pyramidal neurons. These are expressed more in cer-
tain areas than others, as anatomically in the barrel cortex of the rat, or
functionally in the ocular dominance columns of the mammalian visual cor-
tex. For a review of the topic from Mountcastle, see [100], for a more recent
discussion, see [117].

A significant field of interest is the possible definition of a computational
unit of the cortex, named the canonical microcircuit. This is supposed to be

5



replicated in most of the cortical areas carrying out computations using the
same basic rules. Although consensus has not been reached on this matter,
there have been attempts to give a joint anatomical-mathematical candidate
for such units [18].

1.1.4 Bridging the levels

The natural goal of neuroscience is to integrate all levels of the hierarchy
mentioned above into a model that can give a mechanistic explanation of
brain functions. Although a widely accepted framework is still lacking this
day, many attempts were made to incorporate certain levels into a model on
different grounds. One direction is to define networks of neuron models (see
Section 1.3.4) large enough to test hypotheses on the cortical area level [78].

Another direction is to use graph theoretical tools to analyse connectiv-
ity(see Section 1.3.1). The attempt to treat the brain as a large hierarchical
network appears in recent reviews about multi-level graph theoretical analy-
sis [29, 87], which also tries to integrate structural networks with information
about functional connectivity. Such integration is inevitable, as the multi-
scale organisation of the neural tissue is ultimately subsumed, and shaped
by the functionality it implements. Thus, I continue this introduction with
the examination of possible data sources and concepts binding structure and
function together.

1.2 Structure and function

We can often associate the implementation of one or more types of tasks,
functionalities to cortical areas. These include primary and associative pro-
cessing of sensory inputs, motor control, working and associative memory,
processing and production of language and cognitive functions, such as con-
trol and decision making.

The analysis of the cortical circuitry from the triple viewpoint of struc-
ture, function and dynamics was given by János Szentágothai and co-authors
in [8].

Quantitative information about functional connectivity in the brain can
be recorded using various techniques. Electroencephalography (EEG) and
magnetoencephalography (MEG) provide good temporal but poorer spatial
resolution, while positron emission tomography (PET) and more recently
functional magnetic resonance imaging (fMRI) record with a good spatial
resolution from the whole brain at the expense of temporal precision.
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The magnetic resonance imaging technique can be used to detect tempo-
ral changes in the cortex by tuning the apparatus to measure the distribution
of deoxyhemoglobin. At the current technical level, fMRI measurements can
record a three dimensional image of the whole brain in every 1-2 seconds with
the spatial resolution of 2-3 millimetres, associating one intensity value of the
blood oxygen level dependent (BOLD) signal to each such cube, called voxel.
Oxygen concentration in blood vessels can be linked to the spiking activity
of neighbouring neural tissue, as the energy consumption of neurons is dom-
inated by the process of restoring equilibrium membrane potential after an
action potential. However, the exact mapping between neuronal dynamics
and BOLD remains to be determined. Comparative parallel measurements
and mathematical models allow the definition of mapping functions of differ-
ent flexibility that can be used to infer neural activity [88].

Using fMRI measurements, we can determine which cortical areas par-
ticipate in the implementation of a certain function [30]. A comprehensive
review about functional subsystems in the brain and the analysis of magnetic
resonance recordings can be found in [51].

1.2.1 Functional connectivity

When we talk about functional connectivity in the cortex, the first two ques-
tions are the following: what are the physical correlates of the vertices be-
tween which we infer the edges, and under what external, sensory circum-
stances do we conduct the measurement. For the first question, the two
typical answers are voxels and cortical areas, and this dissertation focuses on
the latter. We can assign a single time series to each area we are interested in
by merging the intensities of the voxels related to the given area by averag-
ing, taking maximum variance or the first principal component. To determine
which voxels belong to an anatomical area, probabilistic maps of standard-
ised brain coordinates can be used (the two major coordinate systems used
are MNI3 and Talairach4), and inter-subject variance in anatomical layouts
can be accounted for by considering simultaneous, sensory input-related ac-
tivation of voxels.

For the second question, we have to answer by specifying an experimental
paradigm, which is selective to the function(s) of which we want to deter-
mine the activated subnetworks. As the co-activation of cortical areas varies
heavily based on the type of information processing going on in the brain,
we can only talk about task-dependent functional subnetworks, instead of

3http://www.loni.ucla.edu/ICBM/Downloads/Downloads Atlases.shtml
4http://www.talairach.org/
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a functional network in general. Such subnetworks can be organised into a
hierarchy as well based on the generality or specificity of the tasks they are
associated with. Detailed characterisation of such subnetworks related to
many different tasks is given in [114].

A special, heavily investigated case of the functional subnetworks is when
we do not apply any sensory input in the experimental paradigm. The brain
remains quite active in this situation also, and the set of activated areas
is called the resting state network. For details of functional resting state
connectivity, see [138].

Psychiatric diseases can often be related to dysfunctions of the cortical
connectome [28]. Alterations of functional connectivity can be either dis-
connection of two or more areas, or over-connectivity, over-synchronisation
of the network elements. Although the investigation of such quantities does
not reveal the “cause” of illnesses, it can provide substantial information
about the mechanism of the disorder, allowing implications about healthy
cortical functions, and possibly directions for new therapies.

We can consider function on many different levels from elementary sen-
sory processing to the highest levels of cognition involving decision making
and strategic planning. As the latter type of functionality is the closest to
human (and animal) behaviour and poses the greatest challenge to achieve
any understanding about its mechanisms, I dedicate a more detailed discus-
sion to the part of the cortex such functions are thought to be located in:
the prefrontal cortex.

1.2.2 Role of the prefrontal cortex

As Elemér Lábos stated about fifteen years ago, “the prefrontal cortex is the
hippocampus of the future”. This refers to the fact that the hippocampus,
with its well known and specific structural connectivity and its involvement in
cognitive processes like spatial navigation or associative memory formation,
has been in the focus of interest of neuroscientists both from the experimental
and theoretical points of view. Lately, the prefrontal cortex proved to be a
similar contender for the interest of the field [104]. This region is the main
centre implementing cognitive control, as it integrates information from most
parts of the cortex that are involved in higher-level, associative processing
and might as well prove be the top of the cortical hierarchy.

The prefrontal cortex is a large part of the frontal lobe, consisting of
multiple regions and several cortical areas. Using the Brodmann notation,
areas 9, 10, 11, 45, 46 and sometimes also 8, 12, 13, 14 and 47 can be
considered as prefrontal. As area 46 in the dorsolateral region is highly
connected to visual and multimodal associative areas, I will accentuate its
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role in the modelling approaches of this work.
Miller and Cohen presented a comprehensive treatment of the structure

and functionality implemented in the prefrontal cortex [95]. They argue that
representations of situation-independent knowledge is located there, thus
control of intentional, cognitive behaviour in the sense of providing top-down
signals towards primary and associative sensory areas to filter information
and drive motion to complete a task. Such behaviour is expressed in the
models of Section 3.2.3. In order to make informed decisions, filtered sen-
sory information must converge in the prefrontal cortex, noted by Miller and
Cohen. The structural basis of this phenomena is studied in Section 2.4.1.

The prefrontal cortex plays a significant role in psychiatric disorders too.
Several decades ago even its complete removal was practised as treatment
[53], but contemporary theories of cognitive disorders, like schizophrenia (as
discussed in Section 3.1.1), also stress the significance of prefrontal alterations
in the mechanism of deficits in patients [67]. These alterations usually affect
the flow of control signals from higher level, prefrontal areas towards lower
levels, where association of sensory data to other modalities and existing
knowledge is implemented, such generating symptoms suggesting an altered
sensation of reality, context and relationships.

To gain understanding about the interplay between cortical structure and
function, we need a mathematical toolset to formulate and test hypotheses
with measurement data. Such frameworks will be discussed in the next sec-
tion.

1.3 Modelling approaches

Mathematical modelling is the core activity of scientific theory formulation.
Its goal is always to predict the behaviour of a physical system, and it proved
to be generally quite successful in it, Eugene Wigner even contemplated on
whether the success rate could be explained [153]. In the physical sciences,
the models are often descriptive, and on a level as low as possible.

As we know extremely little about the human brain given its physical
complexity (and without a radical improvement in measurement techniques,
this will remain the case in the near future), the role of models at high levels
of abstraction is greater that in many other disciplines. Additionally, the evo-
lutionary pressure on living organisms to efficiently maintain specimen and
species, results in a functional specialisation unobserved in physical sciences.
These circumstances sometimes necessitate the application of a normative
approach, that is, to begin the modelling with the information about what
the system is for [17].
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1.3.1 Graph theoretical analysis

The most straightforward mathematical framework to handle network models
is graph theory, in which the system at hand is modelled as a set of vertices
and directed edges connecting pairs of them: G(V,E) (undirected graph
models are also often useful, but will not be covered in this dissertation). The
in- and out-degrees of the vertex i are denoted by dini and douti respectively.
Several measures have been developed to characterise the possible roles of
vertices and edges in implementing function, and also to classify, characterise
and compare whole networks.

Vertex-based measures try to capture the relative importance of certain
vertices in the information (or other quantitative) flow, such as vertex cen-
trality [52], or the identification of hubs in the network [127].

Edge-based measures try to capture the role individual edges play in the
information processing, such as the generalisation of betweenness centrality
to edges [66].

To describe a whole network in a concise manner, the most often used
property is the degree distribution, which proved to be a power law for some
phenomena of interest [15]. For a comparison of other graph metrics, see
[21, 145].

Clusterings, grouping of the vertices of the graph according to some cri-
teria, most commonly connectivity, can reveal interesting macro-structural
information about the network. For an overview of clustering algorithms see
[82].

1.3.2 Random graph models

Random graphs greatly contribute to the understanding of real-world net-
works by describing the formation mechanisms of networks as sampling sta-
tistical generative models. They reproduce statistical properties of the real
networks, such as degree distribution [108].

The simplest random graph model is the Erdős-Rényi graph[46], which
is only defined by the number of vertices and the probability of having an
edge between any two of them. The procedure that generates such graphs
is given in Algorithm 1. Such networks can serve as bases of comparisons,
aiming to detect meaningful structure in real-world or other model networks,
as Erdős-Rényi graphs are meant to be structureless.

Watts and Strogatz introduced the notion of small-world networks [147],
which can be characterised by short average path length and high transitivity.
Networks with such properties are present in many systems, as high tran-
sitivity ensures the presence of densely connected clusters, and short path
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Algorithm 1 The Erdős-Rényi graph generation algorithm

Require: n ≥ 0, 0 ≤ p ≤ 1
1: G := G(V,E), |V | = n, |E| = 0
2: for i = 1 to n do
3: for j = 1 to n do
4: r := random real number between 0 and p
5: if r ≤ p then
6: E := E ∪ {i, j}
7: end if
8: end for
9: end for

10: return G

length ensures that there are edges connecting such clusters. A procedure
that generates graphs with small-world property is given in Algorithm 2 for
the special case when the starting state is a directed circle, as in case we can
start the algorithm from a k-connected regular circle. However, the notion
of small-worldness is quite general, very many networks fit in it, and such
models may serve better as a more structured null hypothesis than an Erdős-
Rényi graph in the case of a network with apparent community structure.

Algorithm 2 The Watts-Strogatz graph generation algorithm

Require: n ≥ 0, 0 ≤ r ≤ n
1: G := G(V,E), |V | = |E| = n, dini = douti = 1 ∀i ∈ V
2: for i = 1 to r do
3: s,q := random integers between 1 and n, inclusive
4: t := target index of edge with source index s
5: E := (E ∪ {s, t})\ {s, q}
6: end for
7: return G

As a model for growing networks, scale-free graphs were introduced by
Barabási and Albert [15]. These give a simple mathematical formulation of
the “rich gets richer” principle, resulting in power-law distributions over ver-
tex degrees. The procedure that generates such networks is called preferential
attachment and is given in Algorithm 3.
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Algorithm 3 The preferential attachment graph generation algorithm

Require: n ≥ 3
1: G := G(V,E), |V | = 2, |E| = 1
2: for i = 3 to n do
3: pi :=

dini∑i−1
j=1 d

in
j

4: r := random real number between 0 and 1
5: t :

∑t−1
j=1 pj ≤ r ≤

∑t
j=1 pj

6: v := V ∪ i
7: E := E ∪ {i, t}
8: end for
9: return G

1.3.3 Statistical generative models

As functional activity in vertices of the cortical area network is measured in
an indirect manner by fMRI, EEG, MEG, etc., network discovery in such
settings is about inferring unobserved quantities of neural activity, and deal-
ing with a considerable amount of uncertainty about those and causal links
between them. For such problems, statistical generative models offer a con-
sistent mathematical framework by the definition of a complete model of the
data generation mechanism and the source and form of uncertainty on the
quantities in it.

The inference of probability distributions of hidden variables (also called
latent or unobserved) of a generative model by considering a set of measure-
ments as values of an observed variable, is called the inversion of the model.
Hidden variables are usually divided to state variables and parameters, dif-
fering in interpretation and characteristic time scales. One can be interested
in any of the two or both. Inference methods are based on analytical or nu-
merical methods of calculating conditional probability distributions, and are
discussed in Section 3.2.4. The main advantage of statistical generative mod-
els is the possibility to make a consistent probabilistic comparison between
different model structures, as outlined in Section 3.2.5.

A subset of statistical models include temporal dynamics, consisting of
deterministic and stochastic components. The structure of such a model is
outlined in Figure 1.3. The observed variables are split into inputs u and
outputs y. Latent variables include state variables x, state noise εx, obser-
vation noise εy, parameters governing the deterministic temporal evolution
of the state θxd and the output θyd, and probability distributions of the
noise variables θxs, θys. The parameters are random variables themselves,
and their distributions are defined by hyperparameters h. We can gener-
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ate synthetic samples of the observed output, or infer the hidden state or
(hyper)parameters, which is called learning. Inference and learning involves
the estimation of conditional distributions during model inversion, which can
be a hard problem in a general case, but can be greatly simplified by mak-
ing linear assumptions (or applying local linearisations) about the temporal
dynamics, and using Gaussians for the probability distributions.

Figure 1.3: General architecture and sampling procedure of a dynamical sta-
tistical model. Arrows denote causal interactions between variables, with for-
mulae given (∼meaning a sample from a distribution, θ = {θxd, θxs, θyd, θys}).
Observed variables are depicted in solid line boxes, latent ones in dashed
line boxes. Shaded boxes show deterministic variables (marginals are always
deltas at the actual value). Assumptions of the model are the formulae for
f , g, px, py, pθ and initial values for x0 and h0.

Network connectivity can be inferred in statistical models as interaction
structure between hidden state variables. In the literature, cortical networks
discovered by data-driven statistical methods, such as correlation maps, are
sometimes called “functional connectivity”, as opposed to ones resulting from
model-based methods, named “effective connectivity” [57, 58]. However, this
nomenclature will not be adopted in this dissertation, where by “functional”
I always mean something related to function, as opposed to structure.
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1.3.4 Simplified neural network models

After Hodgkin and Huxley published their groundbreaking model of the elec-
trical dynamics of neural membranes based on measurements in the giant
axon of the squid [74], several simplified models came into existence relying
on abstractions of different features of the original model’s spiking behaviour.
The type of models that emphasise the importance of the exact time when
spikes are observed (thus promoting the use of a temporal code in the ner-
vous system [140], instead of, for example, a rate or phase code [73]) are
called integrate-and-fire neurons. The idea goes back as far as to Lapicque
(see [84] for original, reviewed in [1]), but developed into a mathematically
practical tool much later [75]. The time dynamics of sub-threshold mem-
brane potential is described by 1.1, where I(t) incorporates all appropriately
scaled synaptic and other inputs to the cell.

τ
dV

dt
= −V (t) +RI(t) (1.1)

When V exceeds a certain threshold, a spike is recorded, and V is set back
to a refractory value, and after the refractory period, a base value. These
models capture the most characteristic property of neurons, namely the spik-
ing behaviour, while remaining simple enough for the dynamic trajectories to
be computed by simple integration schemes. When building networks of such
neurons applying a synapse model, the computational costs are low enough
to handle a larger circuitry with regularly available computers, and simulate
longer time intervals of spiking activity.

1.4 Further reading

Additional details of the topics mentioned here can be found in a recent book
about networks in the brain [125]. About random graph models, the reader
is referred to a paper from Barabási and Albert [2]. A review of several
network analysis methods for fMRI data, mostly ones complementary to the
approach used here, can be found in [122]. The general problem of statistical
modelling together with the most widely used techniques is covered in great
detail by Bishop [22], and applied to model brain function in [116]. One of
the standard guides to neural network modelling is the handbook of Koch
and Segev [80].

The most important source of data about brain networks in the near
future will be the Human Connectome Project of the National Institute of
Health of the USA. Within the project, the MGH/Harvard-UCLA consor-
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tium 5 works on the refinement of structural data collection methods, and
the WU-Minn consortium6 collects structural and functional datasets from
a large number of subjects providing an invaluable freely accessible database
of multimodal data [139].

For an overview of the topics of this dissertation, targeted to the general
audience in Hungarian, see [10].

1.5 Questions to be answered

The main goal of this dissertation is to provide answers to the following sci-
entific questions: (i) What implications can be drawn from the sole structure
of the cortical macro-network regarding information processing functionality,
what kind of procedure can be applied to generate a similar structure, and
how can the role of prefrontal areas in the cortical signal flow be assessed
by structural measures? (ii) What functional subnetwork can be identified
based on a physiological measurement during task completion and how is
this network altered by a psychiatric disease, and what is the possible role of
prefrontal areas is this system, and what kind of dysfunction of those may
lie in the background of the illness? According to the two question groups,
the majority of the dissertation is organised into two chapters: Chapter 2
investigates structure and function based on anatomical data and graph the-
oretical models, while Chapter 3 uses statistical models to analyse functional
physiological data.

5http://www.humanconnectomeproject.org/
6http://www.humanconnectome.org/
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2
Signal flow in directed networks

T
he network of cortical areas can be represented as a directed
graph. The edges are sets of synapses, and information is transmitted
between the vertices as arrays of spike trains. In this chapter, I will

present a graph theoretical approach to the question of interaction between
network structure and function. Especially, the convergence or divergence of
information on certain vertices and edges will be investigated.

As the methods presented here do not only apply to cortical are network,
but have a broader significance regarding directed networks in general, I
formulate all statements in the most general sense, and apply them to many
different networks as well.

2.1 Overview

My goal is to identify functional properties of nodes based on the network
structure. Many attempts were made to find functional signatures in the net-
work structure, such as [76, 128], for a review see [107]. As tagging network
nodes and edges with functional attributes depends on external information

Related publications:
Bányai M., Nepusz T., Négyessy L., Bazsó F.: Convergence properties of some random
networks. 7-th International Symposium on Intelligent Systems and Informatics (SISY),
2009, Subotica, Serbia. 241-245, 2009
Bányai M., Négyessy L., Bazsó F.: Organisation of signal flow in directed networks.
Journal of Statistical Mechanics: theory and experiment P06001, 2011.
Négyessy L., Bányai M., Bazsó F.: What makes the prefrontal cortex so appealing in
the era of brain imaging? A network analytical perspective. Acta Biologica Hungarica,
63(Suppl1):38-53, 2011.
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and is not a completely unique procedure, the original problem needs refor-
mulation which is tractable with graph-theoretical tools.

The function real-world networks perform constrains their structure. Yet,
one often has more detailed information about the network structure than
about the functions it may perform. I focus on systems, either natural or
artificial, which process signals and are comprised of many interconnected
elements. From a signal processing point of view, global information about
network structure is encoded in the shortest paths, i.e. if signal processing
is assumed to be fast, most of network communication is propagated along
the shortest paths. Therefore global and local properties of shortest paths
are relevant for understanding organisation of the signal processing in the
system represented with a suitable network. During signal transmission,
signals are being spread and condensed in the nodes, as well as along network
edges. It was previously shown [102, 103] that in case of cerebral cortex,
using a simplified version of the convergence degree (CD), it was possible
to connect structural and functional features of the network. In complex
networks, signal processing characteristics are also determined by the level of
network circularity (which in biology and especially neural science is known as
reverberation, for obvious reasons). Possibility to go around chordless circles
necessitates simultaneous quantification of signal condensing, spreading along
network edges and edge circularity. Here I generalise edge convergence and
divergence [103], and take into account the existence of circles in the network,
treating their effects separately from the effect of branching. For that reason
I refine the definition of edge convergence and introduce the overlapping set
of an edge, both notions are to be defined in a precise manner later in the
text. My approach may be viewed as generalisation of in-, out and strongly
connected components of a graph to the level of network edges. Notions
introduced have an extra gain, they help clarifying the otherwise murky
notion of network causality. The functional role of a node in a network is
defined by the amount of information it injects to or absorbs from the system,
or passes on to other nodes. In case of real-world networks I test my findings
using external validation, given the existing body of knowledge about each
specific network. I illustrate the advantage of edge-based approach with the
case of strongly connected graphs, where edge-based measures offer deeper
understanding of signal processing and transmitting roles of nodes than an
analysis which concentrates solely on nodes and their properties.

Measures I work with are applicable to networks of all sizes, there is no
assumption about ”sufficient” network size. More precisely, networks I work
with can be small, and applicability to large networks is limited only by
the computational capacity needed to find all shortest paths in the network.
The semantics of my approach is tailored to explain signal flow, though
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my methodology is applicable to directed networks in general. In cases of
information processing, regulatory, transportation or any other network the
appropriate semantics of the approach has to be given.

In Section 2.2 I introduce the notions of convergence degree and over-
lapping set, in Section 2.3 I define the flow representation, in Section 2.4 I
analyse four real-world networks and discuss signal transmission, processing
and control properties of the small-world networks. I compute CD-s and
(nontrivial) overlap probability distributions for three model networks. In
the last section I discuss my results and draw conclusions.

2.2 In-, out and overlapping-sets and the con-

vergence degree

Convergence degree was introduced in [103] for the analysis of cortical net-
works. For application to some random networks see Section 2.4.2. I modify
the measure introduced therein, in order to capture the structure of shortest
paths in a more detailed way. I will discuss both global and local proper-
ties of the shortest paths, relevant notions will be distinguished with self
explanatory indices G and L respectively.

Let SP (G) be the set of all the shortest paths in the graph G. For any
edge ei,j ∈ E(G) we can choose a subset SP (G, ei,j) comprised of all the
shortest paths which contain the chosen edge ei,j. SP (G, ei,j) uniquely de-
termine two further sets: InG(i, j) the set of all the nodes from which the
shortest paths in SP (G, ei,j) originate, and OutG(i, j) the set of all the nodes
in which the shortest paths in SP (G, ei,j) terminate. By using the G index I
indicate that these sets are constructed from the global structure of the graph
through the shortest paths, in contrast with the local definition introduced
later. By definition I assume that node i is in InG(i, j) and node j is in
OutG(i, j). A third set can be defined as Int(i, j) = In(i, j) ∩ Out(i, j), the
intersection of In- and Out sets and call it the overlapping set. Note that
InG(i, j) (OutG(i, j), respectively IntG(i, j)) is the edge-level equivalent of
the in-component (out-component, respectively strongly connected compo-
nent) of the directed network, introduced in [108] and later refined by [39].
Notions relevant for understanding the convergence degree and overlapping
set are shown in Figure 2.1.

From the perspective of the chosen edge, the whole network splits to two,
possibly overlapping sets, both of which have rich structure. Shortest paths
induce natural stratification on the set InG(i, j), nodes at distance 1, 2 and
so on from the node i are uniquely determined. Points at distance m from
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Figure 2.1: Global sets are displayed as shaded regions, local sets are com-
prised of first in-neighbours of node A and first out-neighbours of node B
inside the shaded regions, with the exception of node G, which is contained
in the local and global overlap of In(A,B) and Out(A,B). Note the omission
of points D and E from the global input and output sets.

the tail form the m-th stratum of InG(i, j). Each point in the m-th stratum
is a tail of an edge with a head in the m − 1-th stratum. Edges connecting
m-th stratum with any stratum n < m − 1 are prohibited. Edges from
the In strata to the Out strata are prohibited, since those would alter the
shortest paths between the sets. The set OutG(i, j) is stratified in a similar
fashion. Points in the intersection of InG(i, j) with OutG(i, j) inherit both
stratifications. Stratification of InG and OutG sets is illustrated in Figure
2.2.

Local versions of these sets are defined as follows: InL(i, j) is the set
of all the first predecessors of the node i, while OutL(i, j) is the set of first
successors of the node j. When indices G or L are omitted, either is used. If
the graph has circles, In and Out sets may overlap, thus it makes sense to
introduce strict SIn and SOut sets, which are defined as follows:

SIn(i, j) = In(i, j) \ Int(i, j) (2.1)

SOut(i, j) = Out(i, j) \ Int(i, j) (2.2)

In, Out, SIn and SOut are generalisations of the notion of first prede-
cessors and successors of a node, and accordingly, cardinalities of these sets
are generalisations of the in- and out-degrees of nodes. Note that global and
local versions of the In, Out and overlapping sets are two extremes of two
set families defined as follows. Let In(i, j, r1) be the set of points from which
paths at distance less or equal to r1 from the point i begin, analogously let
Out(i, j, r2) be the set of points at which paths at distance less or equal to
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Figure 2.2: Input strata are labelled with indices i, output strata are labelled
with indices o and overlap strata have double indices l. Examples of prohib-
ited edges are shown with dashed lines, necessary edges are shown with full
line. Strata i0 and o0 are connected with the edge itself and they do not
overlap.

r2 from the point j terminate. The two sets are balls centred at i and j with
radii r1 and r2. Instead of balls, one may consider the surfaces of the balls, in
which case points at distances r1 and r2 are considered. The global In-set is
thus InG(i, j) = In(i, j,∞,∞), whilst the local In-set corresponds to points
at surfaces with radii 1, InL(i, j) = In(i, j, 1, 1).

The notion of strict in-, out- and overlapping sets is important for under-
standing causality relations in network systems. Global signal flow through
an edge ei,j induces separation of network nodes into four classes:

1. SInG(i, j), in which are the causes of the flow.

2. SOutG(i, j), in which the effects of flow are manifested.

3. The overlap, whose elements represent neither cause nor effect. Rela-
tion between elements in the overlap is often described as circular- or
network causality.

4. Points which are not members of InG(i, j)∪OutG(i, j) form the remain-
ing, fourth category which has no causal relationship with the signal
flowing through the given edge.
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I stress that for a generic graph no such partition is possible based on
node properties. E.g. if we tried to define analogous notions based on node
properties, all analogue node classes would coincide for the case of strongly
connected graphs. The In and Out sets would coincide, and all distinction
between different node classes would have been lost.

For each edge, I define three additional measures, namely the relative
size of the strict in-set (RIn(i, j)), the relative size of the strict out-set
(ROut(i, j)), and the relative size of the overlap between in-set and out-set
ROvl(i, j), as follows:

RIn(i, j) =
|SIn(i, j)|

|In(i, j) ∪Out(i, j)|
(2.3)

ROut(i, j) =
|SOut(i, j)|

|In(i, j) ∪Out(i, j)|
(2.4)

ROvl(i, j) =
|In(i, j) ∩Out(i, j)|
|In(i, j) ∪Out(i, j)|

(2.5)

where |S| denotes the cardinality of the set S.
Note that Equation 2.5 is the Jaccard coefficient [79] of the In(i, j) and

Out(i, j) sets. It is possible to generate networks which have edges with
large global overlaps, one simply adds randomly a small number of edges to
an initial oriented circle. This example helps understanding the meaning of
(possibly large) global overlaps: they are characteristic of edges in chordless
circles. More precisely, for and edge to have a nonempty overlapping set it
is necessary, but not sufficient, to be on a chordless circle of length at least
three. I illustrate this by an example. In the graph shown in Figure 2.3, the
only edge with nonempty overlapping set is e1,2, with Int(1, 2) = {3}. e1,2

is on the chordless circle (3,1,2,3), whilst the edges e3,1 and e2,3 on the same
chordless circle have zero overlapping sets.

Figure 2.3: containing edges with
empty and nonempty overlapping sets.

Local overlaps are related to the
clustering coefficient of the graph,
since they define the probability that
the vertices in the neighbourhood of
a given vertex are connected to each
other.

Overlap represents global mutual
relationship and a measure of depen-
dence (in terms of chordless circles)
between In- and Out sets. This de-
pendence is inherent in the network
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structure. Large Jaccard coefficient
of the In(i, j) and Out(i, j) sets is
not detectable with edge between-
ness, as it may obtain large values for edges with non-overlapping sets.

The edge convergence degree CD(i, j) of the edge ei,j is defined as follows:

CD(i, j) = RIn(i, j)−ROut(i, j) =
|SIn(i, j)| − |SOut(i, j)|
|In(i, j) ∪Out(i, j)|

(2.6)

Note that the definition of CD uses the normalised sizes of the strict In-
and Out-sets to make the measure independent of the network size. Further-
more, this formula is related to the complement of the Jaccard coefficient
(denoted as Jacc( , )) of the In- and Out-sets, or equivalently to their
normalised set-theoretic difference, thus connecting the CD to information
theoretical quantities. The following inequality is obvious:

|CD(i, j)| ≤ 1− Jacc(In(i, j), Out(i, j)) = 1−ROvl(i, j) (2.7)

Directionality of the edge gives meaning to cardinality subtraction, as In
and Out sets can be distinguished. If the CD value is close to one, the signal
flow through the edge is originating from many sources and terminating in
very few sinks, while CD values close to -1 indicate flow formed of few sources
and many sinks. This property justifies rough division of edges according
to their CD properties to convergent (condensing), balanced and divergent
(spreading). An oriented circle with at least three nodes has the maximum
possible global overlap for each edge, while the absolute value of the global
CD is the smallest possible, in accordance with the inequality (2.7). I note
that CD in an oriented chain monotonously decreases along the chain, whilst
the overlap is zero along the chain. This simple example again illustrates
how CD and overlap are sensitive to the network topology.

Applicability of the convergence degree is limited by the following facts.
Definition of convergence degree makes sense only if not all connections are
reciprocal, stated otherwise if there is a definite directionality in the network.
If every connection is reciprocal, the network may be considered unoriented.
For fully reciprocal networks, the In and Out sets would coincide. Second,
convergence degree makes sense for a network which is at least weakly con-
nected.
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2.3 Flow representation of the network

Since the number of edges exceeds the number of nodes in a typical connected
network, and in many cases we are interested in the role of individual nodes,
it is desirable to condense primarily edge-based measures to a node-centric
view. The condensed view should reveal several features of interest: local
vs global signal processing properties of network nodes, directionality of the
information, i.e. whether we are interested in the properties of the incoming
or outgoing edges, the third aspect is the statistics, i.e. total or average
property of the edges, and finally we may choose edges according to the sign
of their CD. Condensing the information about overlapping sets follows the
same lines, with the exception of the sign.

I proceed by an example and introduce the following six quantities defined
for each node i. Let σ−,avin,L (i) denote the sum of all incoming negative local

convergence degrees divided by the node’s in-degree, and let σ+,av
in,L (i) denote

the sum of all incoming positive convergence degrees divided by the node’s
in-degree, i.e. σ−,avin,L (i) is the average negative inwards pointing local CD of
the node i.

In a similar way we can also define σ−,avout,L(i) and σ+,av
out,L(i) for outgoing

convergence degrees. For clarity I give formulae for σ−,avin,L (i) and σ−,avout,L(i).
din(i) and dout(i) denote in-degree and out-degree of the node i, θ is the unit
step function continuous from the left. Γin(i) denotes the first in-neighbours
of the node i, the analogous notation Γout(i) is self-explanatory.

σ−,avin,L (i) =
1

din(i)

∑
j∈Γin(i)

θ(−CDL(j, i))CDL(j, i) (2.8)

σ−,avout,L(i) =
1

dout(i)

∑
j∈Γout(i)

θ(−CDL(i, j))CDL(i, j) (2.9)

I also define σovl,avin,L (i), the sum of all incoming local overlaps and σovl,avout,L (i),
the sum of all outgoing local overlaps each being normalised with the corre-
sponding node degree.

σovl,avin,L (i) =
1

din(i)

∑
j∈Γin(i)

ROvlL(j, i) (2.10)

σovl,avout,L (i) =
1

dout(i)

∑
j∈Γout(i)

ROvlL(i, j) (2.11)
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Factors before the sums serve normalisation purposes, each σ should have
a value within the [−1, 1] interval. These quantities are average local CD-s
and relative overlaps corresponding to each node. One is also interested in
the total of the in- and out pointing edges of a given CD sign, and define the
corresponding version of the node-reduced convergence degree. For normali-
sation purposes the sums in σtot’s are divided by n−1, the maximal possible
number of the outgoing (incoming) connections a node can have, where n
denotes the number nodes in the network.

Thus, using the quantities σ
{+,−},{tot,av}
{in,out},{G,L} and σ

ovl,{tot,av}
{in,out},{G,L} one can con-

struct four different CD flow representations of a network, namely CDtot
G ,

CDav
G , CDtot

L and CDav
L .

The incoming node-reduced CD values are understood as coordinates of
the x axis, while the outgoing CD values are interpreted as the coordinates of
the y axis. In order to display overlaps together with the convergence degrees
in a single figure, overlaps are treated as the coordinates of the z axis, the
incoming overlaps being positive and the outgoing understood negative. Each
point is represented in each octant of the flow representation. The points in
the xy plane are not independent, given the values in the diagonal quadrants,
the other two quadrants can be reconstructed with reflections.

Representation of graph nodes in the xy plane is related to the CD flow
through the nodes in the following way. The CD flow φ through the node i
is defined as follows:

φ(i) =

dout(i)∑
j=1

CD(i, j)−
din(i)∑
j=1

CD(j, i) (2.12)

The first sum is equal to ρout(i)
(
σ+
out + σ−out

)
, where ρ(i) is the appropriate

weight, whilst the second sum equals ρin(i)
(
σ+
in + σ−in

)
. The flow can be

rewritten as

φ(i) = ρout(i)σ
+
out(i)− ρin(i)σ−in(i) + ρout(i)σ

−
out(i)− ρin(i)σ+

in(i) (2.13)

If the first difference on the right hand side of Equation (2.13) is large
(small), i.e. the representative point is close to the diagonal y = −x and is
far from the origin in the top left (bottom right) quadrant, and the second
difference is small (large), i.e. the representative point is close to the diagonal
y = −x and is far from the origin in the bottom right (top left) quadrant,
the node i is source (sink) of the CD flow. Analogously, the CD flow can be
written as:
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φ(i) = ρout(i)σ
−
out(i)− ρin(i)σ−in(i) + ρout(i)σ

+
out(i)− ρin(i)σ+

in(i) (2.14)

where the two differences determine the router characteristics of the node
i. In this sense flow representation is a means to independently study different
components of the CD flow. Different circles may have common nodes, thus
the overlap flow defines whether different circles passing through the given
node have more common parts after of before the given node, i.e. whether
a node is a source or sink of circularity. Precise meaning of large and small
depends on the criteria used to classify the representative points of the flow
representation.

Nodes can be classified based on the CD (relative overlap) flow, besides
distinction based on the sign, the scale is continuous, there is no a-priori
grouping of nodes. Further classification can be made based on the structure
of the CD (relative overlap) flow, i.e. based on properties of different terms
defining the CD (relative overlap) flow. Components of the flow representa-
tion for two toy graphs are shown in Figure 2.4. We can observe that same
nodes may be global, but not local CD flow sinks or sources.

Each octant represents different aspect of convergence-divergence rela-
tions in the network. These quantities bring us to the actual interpretation
of edge convergence and divergence as a characterisation of signal flow on the
nodes of a network. To make statements about the signal flow derived from
the CD flow, we have to make an inversion of properties, as nodes which
behave as a sink of convergence, actually inject information to the network,
thus they are sources of signal. Respectively, CD sources are sinks of signal.
Assuming this interpretation we can extract useful information from the flow
representation regarding the signal processing roles of nodes in the network.
Nodes which have incoming edges with cardinalities of the Insets (Outsets)
being larger than cardinalities of the Outsets (Insets), and outgoing edges
with cardinalities of the Outsets (Insets) being larger than cardinalities of
the Insets (Outsets) are, from the signal processing perspective, identified
as sources of signals. The combination of divergent input (negative incoming
CD sum) and convergent output (positive outgoing CD sum) is, considering
the signal flow, equivalent to absorption of signals in the network. This is
represented in the top left quadrant of the xy plane. On the opposite, the
combination of convergent input and divergent output corresponds to the
source characteristics of the nodes (bottom right quadrant of the xy plane).
The top right and bottom left quadrants can be interpreted as a display of
signed relay characteristics of the nodes. Nodes which have incoming edges
with cardinalities of the Outsets (Insets) being larger than cardinalities of
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Figure 2.4: The lower graph differs in two edges from the top graph. The
middle column represents graph nodes with σtotG , the right column represents
graph nodes with σtotL . Every overlapping set is empty for the lower graph,
because all chordless circles are of length two. Some points have the same
coordinates in the flow representation. E.g., point D is is global, but not
local CD flux sink.
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the Insets (Outsets), and outgoing edges with cardinalities of the Outsets
(Insets)being larger than cardinalities of the Insets (Outsets), are called neg-
ative (positive) router nodes. At the same time routing characteristics can
be read from the top right and bottom left quadrants. Routers redistribute
incoming CD of a given sign to outgoing CD of the same sign. Additional
information is obtained from the z coordinate, which gives the average over-
lap of incoming and respectively, outgoing edges. This quantity identifies
the degree of a node’s participation in signal circulation in the network, a
property typically associated with control circuits.

Graphical presentation of a network is not unique, e.g. isomorphic graphs
may look totally different, the Petersen graph being a typical example. Com-
munity structure is not unique, grouping of points, thus presenting a network
can be achieved in a multitude of ways. Yet, the flow representation of a net-
work is unique, though due to possible symmetries it may have a significant
amount of redundancy. This 3D plot of the network is unique in the sense
that there is no arbitrariness in the position of the points in the three di-
mensional space. The flow representation can be considered as a network
fingerprint since isomorphic graphs are mapped to the same plot, and dif-
ferences between flow representations can be attributed to structural and
functional properties of the network. If all edges are reciprocal or the graph
is undirected, the flow representation of the network shrinks to a single point.
The same argument applies to all graphs in which some nodes can not be
distinguished due to symmetries. More precisely, nodes in the orbit of an
element generated by the automorphism group of the graph are represented
with the same point on the flow representation, as all the value of σ-s are
constants on the orbits generated by the automorphism group of the graph.

Usefulness and application of the flow representation will be illustrated
in the analysis of the real-world networks in Section 2.4.1.

2.4 Results

2.4.1 Signal flow characteristics of real-world networks

In this section I analyse functional clusters in real-world networks and the sta-
tistical properties of their interconnection. I analysed two biological and two
artificial networks: macaque visuo-tactile cortex [102, 103], signal-transduction
network of a CA1 neuron [92], the call graph of the Linux kernel version
2.6.12-rc21, and for comparison purposes the street network of Rome2. Nodes

1http://kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.12-rc2/
2http://www.dis.uniroma1.it/∼challenge9/data/rome/rome99.gr
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and edges are defined as follows: in the macaque cortex nodes are cortical
areas and edges are cortical fibres, in the signal-transduction network nodes
are reactants and edges are chemical reactions, in the call graph nodes are
functions and edges are function calls, in the street network the nodes are
intersections between roads and edges correspond to roads or road segments.
The first three networks perform computational tasks, Linux kernel manages
the possibly scarce computational resources, signal-transduction network can
be considered as the operating system of a cell, while cortex is an ubiquitous
example of a system which simultaneously performs many computationally
complex tasks. The street network is an oriented transportation network,
which has a rich structure, as its elements have traffic regulating roles.

The call graph of the Linux kernel was constructed in the following way.
I created the call graph of the kernel source which included the smallest
number of components necessary to ensure functionality. The call graph was
constructed using the CodeViz software3, but it was not identical to the ac-
tual network of the functions calling each other, because the software detects
only calls that are coded in the source and not the calls only realised during
runtime. The resulting call graph had more than 104 vertices. As I wanted
to perform clustering and statistical tests, the original data was prohibitively
large, therefore I applied a community clustering algorithm [113] to create
vertex groups. I generated a new graph in which the vertices represented
the communities of the original call graph and have added edges between
vertices representing communities whenever the original nodes in the com-
munities were connected by any number of edges. Definition of the call graph
nodes and their connections is analogous to the nodes and connections of the
cortical network, as millions of neurons form a cortical area, and two areas
are considered to be connected if a relatively small number of neurons in one
area is connected to a small number of neurons in another area. The call
graph of the Linux kernel will be discussed in Section 2.4.1.

The flow representations of two real-world networks are shown in Figure
2.5 and for comparison, in part A, the Erdős-Rényi network. We can iden-
tify the most important nodes and some general features of the networks as
follows. Part B refers to the macaque visuo-tactile cortex. It is characterised
by the alignment of the nodes along a straight line along the main diagonal,
and hyperbolic-like pattern in the first and third quadrants, showing reverse
ordering in the opposite quadrants, and absence of routers, which refers to
a hierarchical organisation. In part C one can see the signal-transduction
network of a hippocampal neuron. In the signal-transduction network of the
hippocampal neurons, the molecules with the most negative CD flow are in-

3http://freshmeat.net/projects/codeviz/
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Figure 2.5: Components of the total CDG flow are shown in the left column,
components of the average CDL are shown in the right column. Displayed
are: Erdős-Rényi graph (row A), macaque visuo-tactile cortex (row B) and
signal-transduction (row C). Relative overlap flow is indicated by colour in-
tensity. Quantities on the axes are the same as in Figure 2.4.
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volved, among other functions, in the regulation of key participants of the
signal transduction cascade such as the cAMP second messengers. Molecules
with large positive CD flow play function in cell survival and differentiation,
as well as apoptosis. Router-like proteins are involved in diverse functions,
notably the regulation of synaptic transmission in addition to those men-
tioned above. However, it should be noted that partly because of the paucity
of my knowledge about many of the components of this network, as well as
because of redundancy, i.e. overlapping functionality, we could give here only
a very superficial classification. All edges of the signal transduction network
fall in one of the three classes: excitatory, inhibitory and neutral, [92]. CD
and overlap data were unrelated to the inhibitory, excitatory or neutral na-
ture of network edges. Empirical distributions of CD-s and overlaps were
alike for each edge class, see Figure A.1 in the Appendix.

Comparison of local and global structural organisation

I have analysed the flow representations in order to identify different features
of signal processing. Network nodes are points represented in a 6D space of
the flow representation, and in order to identify different signal processing,
transmitting and controlling groups of nodes I performed clustering using
Gaussian mixture and Bayesian information criterion implemented in R4. I
wish to stress that the clustering I performed is not a form of community
detection, but grouping of nodes with respect to their functional signal pro-
cessing properties. Community detection can identify dense substructures,
but it provides no information about the nature of signal processing, trans-
mission or control. In each network I determined local and global, total
and average signal processing clusters, have determined their properties, and
have analysed the nature of CD-s and relative overlaps within and between
clusters.

Clustering of nodes with respect to their functional properties resulted
in contingency tables, with clusters being labels of the contingency table,
and entries in the contingency able being numbers of edges within and be-
tween respective clusters. To estimate the randomness of the contingency
tables I used the Monte Carlo implementation of the two sided Fisher’s ex-
act test. Number of replicates used in the Monte Carlo test was 104 in each
case. The exact Fisher’s test characterises the result of the clustering pro-
cedure, it quantifies how much the distribution of edges within and between
clusters differ. I summarise the results in Table 2.1. For comparison pur-
poses benchmark graphs were generated using algorithms described in [82].

4http://r-project.org
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This algorithm is able to generate random modular networks with a better
defined community structure than the ER-model. These graphs consisted
of 45 vertices, and average and maximum in-degrees were set to 10 and 20
respectively.

Table 2.1: Number of functional clusters (n) and the corresponding p-values
calculated using Fisher’s exact test of the contingency tables. Q denotes
the modularity of the community structure. Two numbers in a single cell
denote the first two moments derived from sample size of 100 graph instances.
Networks are denoted as follows: VTc - macaque visuo-tactile cortex, stn -
signal-transduction network of the hippocampal CA1 neuron, kernel - call-
graph of the Linux kernel, Rome - Rome street network, ER - Erdős-Rényi
graphs and bench - benchmark graphs. Numbers were rounded to minimise
the table size. Definitions of aggregated networks are given in Section 2.4.1.

network ncomm Q nG,tot pG,tot nL,av pL,av
VTc 4 0.332 6 0.48 9 10−4

stn 58 0.530 3 0.75 19 10−4

Rome 39 0.907 18 10−4 19 10−4

ER - µ 3.68 0.114 3.94 0.59 5.39 0.66
σ 1.55 0.020 2.34 0.30 3.34 0.29
benchm. - µ 3.19 0.449 3.83 0.19 5.21 0.10
σ 0.50 0.042 2.07 0.24 3.36 0.20

kernel aggr. 18 0.426 12 0.41 19 0.40
stn aggr. 9 0.34 18 0.38 7 0.05
Rome aggr. 6 0.46 8 0.24 5 0.86

For additional details on the CD distributions of real networks, see Ap-
pendix A.1

Based on Table 2.1, classification of nodes according to their functional
properties does not match the network community structure. Classifying
nodes according to their local and global functional properties differ sub-
stantially, further details are given in Table A.1. The p-values of the global
and local groupings differ in the same way for all the networks analysed,
though the difference is much smaller or absent for call graph of the Linux
kernel. Distribution of edges between different node clusters measured by to-
tal CDG flow in the signal transduction network was highly irregular, whilst
very regular according to other flow measures. Note that the sizes of over-
lapping sets, and also the circularities were largest in the signal transduction
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network, which was a consequence of edge sparseness. Measured by all the
p-values, the street network had very regular structure, and was distinc-
tively different from all other networks. In the case of Erdős-Rényi graphs
there was practically no difference in randomness between local and global
functional clusters, as presence of any community or structure in these net-
works was a matter of pure chance. Erdős-Rényi and benchmark networks
were parametrised to match the macaque visuo-tactile network. The num-
ber of communities was comparable, but the number of functional clusters
and the way in which edges connected functional clusters was different. The
Erdős-Rényi and benchmark graphs were both structureless, but in different
way. As one would expect, Erdős-Rényi graphs had much more randomness
in the connection pattern between functional clusters than the benchmark
graphs. In the macaque visuo-tactile network the connection according to
the total CDG was highly irregular, and resembled the Erdős-Rényi graph,
according to other measures the connection pattern between functional clus-
ters was regular, and differed from the either Erdős-Rényi or benchmark
graphs. Summarising, the CDtot

G flow representation is well suited to distin-
guish properties of signal and information processing networks and captures
the characteristic features of signal transmission, processing and control.

Analysis of a prefrontal area network

As the dorsolateral prefrontal cortex is the area that plays a central role
in the cognitive control of memory formations [23], a focused analysis of
the areas related to this anatomical region is presented. Figure 2.6 shows the
flow representation of an area subnetwork representing the prefrontal system.
Results show that the most important sink of information in this network,
where most of the information converges, is the dorsolateral prefrontal cortex,
denoted by 46 in Brodmann numbering of cortical areas [26].

The other area that exhibits an accentuated sink property is the frontal
eye field (FEF), which implements the control of visual attention, and the
anterior cingulate area (Brodmann Area 24), which plays an important role
in cognitive functions like decision making.

The dysfunction of the dorsolateral prefrontal cortex plays an important
role in psychiatric disorders like schizophrenia [149]. An investigation of such
dysfunctions based on fMRI measurements and statistical modelling is given
in Chapter 3.
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Figure 2.6: Depiction of prefrontal cortical areas in flow representation. From
the position of the dorsolateral prefrontal cortex (Brodmann Area 46) as-
sumed in quarter plane II, a role as an information sink can be implied.
For abbreviated and numbered areas see Tables A.3 and A.4 respectively.
Quantities on the axes are the same as in Figure 2.4.

Analysis of aggregated networks

The amount of data comprised in large networks necessitates community
level understanding of signal flow. Communities themselves perform signal
transmission, processing and control tasks, therefore determination of com-
munity level functional properties based on structural information poses a
relevant problem. Number of communities in the street network and the
hippocampal signal transduction network was large enough to define a non-
trivial aggregated network which was subject of analysis. Each community
in the original network was represented by a node in the aggregated network.
Nodes of aggregated networks had additional structure, namely members of
communities they represented, therefore allowing analysis relating CD and
overlap flow with nodal structure.

The CDG flow of the aggregated networks showed a regular pattern, nodes
with positive CDG flow were numerous and corresponded to small sized clus-
ters in the original network, whilst nodes with negative CDG flow were few
and corresponded to large clusters in the original network, see Figure 2.7.

With some precaution (because of small network size and many unknown
edges) analogous analysis of the whole macaque cortical network [124] can
be performed. The aggregated network had four nodes, see Figure 2.8. Node
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(a) Cellular signal transduction network (b) Linux call graph

Figure 2.7: Relation between CDG flow (vertical axis) of the node in the
aggregated network and the cluster size (horizontal axis) in the original net-
work.

Figure 2.8: CDG flow (vertical axis) of the node in the aggregated network
versus cluster size (horizontal axis) in the macaque cortex. The communi-
ties are: 1- visual related, 2- higher cognitive functions, temporal, parietal
prefrontal and hippocampal formation, 3- sensory-motor related, 4- auditory
related.
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with the largest negative CDG flow corresponded to areas related to higher
cognitive functions, the visual and auditory communities were smaller and
had positive CD flows. Sensory-motor community had small negative CD
flow, and was of intermediate size.

Similar analysis of the circularity flow revealed that nodes which corre-
sponded to largest clusters in the original network had circularities close to
zero. Because in- and out circularities of nodes corresponding to large clus-
ters were nonzero, these nodes were well nested within chordless circles in
the network. This nesting enables efficient performance of control-related
tasks. CD flows of the original networks were mainly positive in the nodes
corresponding to small, positive CD flow clusters. At the same time, only in
nodes representing large clusters which had negative CD flow were numerous
nodes with negative CD flows.Given the different nature of networks anal-
ysed, I conclude that organising principles in large-scale networks manifest
dependence of functional roles on sizes of the network communities.

In case of the Linux call graph the most outlying nodes in the CD flow
representation are the memory initialisation and buffer operators as CD flow
sources, some of the CD flow sink nodes are connected to file system opera-
tions and the task scheduler. Flow properties of the aggregated street- and
hippocampal signal transduction networks differ from the original networks,
and resemble the properties of the macaque visuo-tactile cortex, as shown by
aggregation of points along the y = −x line in the diagonal quadrants, and
grouping of points in the other two quadrants, see Figure 2.9. This is a sig-
nature of different organisation principles of signal transmission, processing
and control properties at the community level, the net CD on the incoming
side of a node is roughly redistributed on the outgoing side with a change of
sign.

Statistical results of the analysis of functional properties were summarised
in the lower part of Table 2.1. Randomness of connections between functional
clusters in the aggregated street network strikingly differs from the original
street network. Functional properties of the aggregated signal transduction
network are similar to the functional properties of the cortical network, mea-
sured by the p-values. A possible explanation is that communities, i.e. func-
tional cellular compartments of the signal transduction network have much
better defined functional roles than single units, thus from the functional
point of view, the role of nodes in the aggregated network is comparable to
the cortex, when cortex is represented as a network of cortical areas.
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Figure 2.9: Components of the total CDG flow are shown in the left column,
components of the average CDL flow are shown in the right column. Dis-
played are: Linux call graph (row A), street network (row B) and hippocam-
pal signal transduction network (row C). Relative overlap flow is indicated
by colour intensity. Quantities on the axes are the same as in Figure 2.4.
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2.4.2 Signal flow in small-world-like networks

Random graphs [24] are useful models of real-world networks, thus one may
ask which mechanism generates a cortical-like graph. Small-world property
is often mentioned in relation to cortical (and other) networks. As CD-
and overlap-related properties describe important features of signal trans-
mission, processing and control, I studied whether signal flow properties can
be obtained by the small-world generating algorithms. Macaque visuo-tactile
cortex is strongly connected, even more, it contains numerous Hamilton cir-
cles. I constructed and analysed random graphs which matched prescribed
properties of the cortical network.

The Watts-Strogatz graphs were generated as described in Algorithm 2,
as given in [106]. If the reciprocity was preset, after each new edge with
the probability defined by the reciprocity, I added an edge from the target
to the source vertex as well. If there are several Hamiltonian circles in the
network to be modelled, deletion of the edges in the original circle is un-
necessary, as it only adds one Hamiltonian circle to the model graph. The
resulting topology corresponds to a small-world network with a binomial de-
gree distribution, indicating that all vertices are roughly equal as they have
approximately the same number of connections. In this sense, small-world
networks constructed this way are closely related to Erdős-Rényi random
networks, the only difference being the Hamiltonian cycle that always exists.
However, if some structure is to result from random addition of edges, the
resulting graph has to differ from the structureless Erdős-Rényi networks.
Therefore, I introduced preferentiality in the edge addition process to obtain
a non-homogeneous graph.

The new algorithm is called preferential small-world (PSW). It combines
the ideas behind Watts-Strogatz and preferential attachment networks, as
when adding random edges to the initial regular circle, the distribution of
the source and target vertices were sampled as defined by the out- and in-
degrees of the vertices respectively. This meant that a higher degree induced
a proportionally higher probability for the vertex to be chosen as source or
target. This procedure is detailed in Algorithm 4.

For statistical comparison I generated 100 graph instances of each net-
work. Some numbers were rounded, in order to optimise the table size. I used
Kolmogorov-Smirnov test to check whether CD-s and relative overlaps of the
cortical and generated graphs originated from the same (statistically indis-
tinguishable) probability density function. For each instance of generated
graph the answer was negative, but the PSW algorithm generates a bimodal
CD-distribution qualitatively resembling that of the VTc (see Figure 2.10).
Statistical results are shown in Table 2.2.
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Algorithm 4 The preferential small-world graph generation algorithm

Require: n ≥ 0, 0 ≤ r ≤ n
1: G := G(V,E), |V | = |E| = n, dini = douti = 1 ∀i ∈ V
2: for i = 1 to r do
3: s,q := random integers between 1 and n, inclusive

4: pi :=
dini∑i−1
j=1 d

in
j

5: r := random real number between 0 and 1
6: t :

∑t−1
j=1 pj ≤ r ≤

∑t
j=1 pj

7: E := (E ∪ {s, t})\ {s, q}
8: end for
9: return G

(a) Watts-Strogatz (b) Visuo-tactile cortex (c) PSW

Figure 2.10: CD histograms of the visuo-tactile cortex and its models
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Table 2.2: ER denotes Erdős-Rényi graph, WS denotes Watts-Strogatz
graphs, PSW denotes preferentail small-world, VTc denotes macaque visuo-
tactile cortex. All networks were of the same size, |V (G)| = 45, |E(G)| = 463,
and the proportion of the reciprocal edges was 0.8. Two numbers in a cell
are the values of the first two empirical central moments, with the excep-
tion of Kolmogorov-Smirnov test results, where they denote D and p values
respectively.

netw. clust. diam. average CD KS-test Ovl KS-test
coeff. SP D, p D, p

ER 0.550 3.1 1.88 2 · 10−3 0.28 0.11 0.81
2 · 10−3 3 · 10−2 3 · 10−3 0.26 0 0.075 0

WS 0.600 3.06 1.89 2 · 10−3 0.089 5 · 10−3 0.047
1 · 10−3 2 · 10−2 3 · 10−3 0.54 0.11 0.03 0.66

PSW 0.623 4.32 1.93 1.6 · 10−2 0.096 5 · 10−3 0.046
3 · 10−3 8 · 10−2 7 · 10−3 0.64 0.10 0.03 0.299

VTc 0.517 5 2.15 2 · 10−2 8 · 10−3

0.57 0.45

I conclude that description of cortical networks as small-world networks
can be only a qualitative statement, as the small-world model fails to cap-
ture features relevant from the signal processing, transmission and control
perspective.

In a second experiment investigating the role of other statistical properties
of the networks, all quantities were obtained from averaging over 1000 ran-
domly generated graphs. The measures in the focus of my interest were the
averaged local clustering (or transitivity) coefficient and the average short-
est path length [145, 147]. Clustering coefficient measures the probability of
finding a triangle between all the possible triangles in the graph. It is a local
characteristics. Average shortest path length is a global graph characteris-
tics. Results describing the properties of generated networks are summarised
in Table 2.3.

Comparison of graph features shown in Table 2.3 with the exception of
clustering coefficient indicates similarity of macaque visuo-tactile cortex with
the small-world graph with edge preference without preset edges connecting
nodes at distance 2 along the initial circle. Therefore similarity at the large
scales stems in the graph generating algorithm.

The flow representation of all the graph instances resemble each other.
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Table 2.3: Properties of networks generated using different procedures.

netw. % recipr. cl. coeff. diam. avg. SP CD
ER .13 .55 3.10 1.88 −4 · 10−3, .54
ER .83 .23 3.03 1.83 −1 · 10−3, .23
WS 0 .83 .6 3.09 1.88 2 · 10−3, .54
WS 40 .82 .6 3.08 1.87 1 · 10−3, .54
WS 60 .81 .6 3.08 1.86 2 · 10−4, .54
WS 100 .82 .6 3.06 1.85 −3 · 10−5, .53

PSW 0 .82 .62 4.63 1.94 2 · 10−2, .64
PSW 40 .8 .62 4.44 1.92 2 · 10−2, .63
PSW 60 .78 .61 4.21 1.90 1 · 10−2, .62
PSW 100 .8 .6 3.99 1.88 1 · 10−2, .62
VTc 0.816 0.517 5 2.15 2 · 10−2, .57

Numbers in the second column denote the percentage of edges which ran-
domly connect nodes at distance 2 along the initial circle. Erdős-Rényi graph
with pre-defined reciprocity has a given number of reciprocal edges, otherwise
the addition of edges is completely random. For all random graph models,
for all quantities, except for CD, σ < 0.1.

Yet, analysis of the flow representation reveals the underlying differences.
Histogram of the CD values in all the graphs analysed sensitively distin-
guished different graph types. Erdős-Renyi graphs have unimodal, zero mean
CD probability density function, with fast diminishing values on both ends
(see Fig. 2.11(a)), small-world graphs have a unimodal probability density
function, but non-vanishing tails (see Fig. 2.12(a)), while CD histograms of
small-world graphs with preference are bimodal (shown in Fig. 2.13(a)). In
case of small-world networks, the places of minima and maxima of the em-
pirical CD probability density functions are exchanged, depending on graph
generating algorithm.

To illustrate the dependence of CD histogram on network size, I show
CD histograms generated from 10 sample networks with 450 nodes 46300
edges. The larger graphs were generated using the Watts-Strogatz algorithm
(see Fig. 2.11(b)), without- and with edge preference (shown in Fig. 2.12(b)
and Fig. 2.13(b) respectively). The probability of initial edges connecting
nodes at distance two along the initial circle was set to zero. As we increase
networks size, the limit of the resulting graph series is uniform for the ER
graphs, indicating that the CD distribution would tend to a Dirac-delta. For
the PSW graphs, the limit would not be structureless due to the preferential
generation, thus their CD distribution tends to nonzero variance. For Watts-
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(a) |V | = 45, |E| = 463 (b) |V | = 450, |E| = 4630

Figure 2.11: Averaged CD histogram of 1000 Erdős-Rényi graphs

(a) |V | = 45, |E| = 463 (b) |V | = 450, |E| = 4630

Figure 2.12: Averaged CD histogram of 1000 small-world graphs generated
by the Watts-Strogatz algorithm.
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(a) |V | = 45, |E| = 463 (b) |V | = 450, |E| = 4630

Figure 2.13: Averaged CD histogram of 1000 small-world graphs generated
by the preferential algorithm.

Strogatz graphs empirical evidence points towards having a Dirac-delta limit
in the CD distribution as well.

The flow representation on the network is sensitive to the graph generat-
ing algorithm, i.e. graphs generated using different algorithms have different
flow representations. I illustrate my statement on Figs. 2.14(a) and 2.14(b),
where differences in histogram counts for graphs generated without- and with
edge preference are shown. Differences in histogram counts are not results
of chance as can be seen from the colour code. Red colour denotes small
positive difference, yellow colour big positive difference, while blue colour
denotes small negative difference and green colour big negative difference.

My simulation results also suggest that many global features of cortical-
like structures can emerge as a result of random growth mechanism.

2.4.3 Model networks

It is possible to calculate the CD-s and overlaps or their probability density
functions for some networks.

Arborescences

The purpose of calculating CD for arborescences is the comparison with
networks grown with preferential attachment mechanism, see Section 2.4.3.
I calculate global convergence degree of a complete directed tree – sometimes
called arborescence. I assume that the root is at level 0, the number of levels
is n, the branching ratio is constant and equals d and that all the edges are
directed outwards from the root. For clarity, with the exception of the root,
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(a) p2 = 0 (b) p2 = 1

Figure 2.14: Difference in histogram counts of the flow CD representation for
1000 graphs generated without- and with edge preference mechanism. p2 is
the probability of edges which connect points at distance 2 along the initial
circle. |V | = 45, |E| = 463

all in-degrees are equal to 1, and with the exception of the leaves, all out-
degrees are equal to d. If all assumptions are true, between any pair of nodes
there is either no shortest path or there is only one. At level k (0 ≤ k ≤ n)
the cardinality of any In set is k, while at level k + 1 the size of any Out
set is the sum of a geometric progression: dn−k−1

d−1
. Thus with some abuse of

notation CDG of any edge connecting nodes at levels k and k + 1 equals:

CDG(k, k + 1) = 1− 2

1 + k(d−1)
dn−k−1

(2.15)

We can observe that edges originating from the root have negative con-
vergence degrees, but as the level index increases soon there are two possibly
distinct levels k1 and k2, such that for k ≤ k1 CDG is negative, whilst for
k ≥ k2 CDG is positive. k1 and k2 may coincide, or k2 = k1+1. k1, and k2 are
determined by the solution of the equation dn−k +k(d−1) = 1. Thus almost
all edges have positive convergence degrees. One would näıvely expect that
all the edges in such a tree are divergent, yet most of them are not. There is
a level at which the number of the nodes in the In and Out sets results in
the exchanged order of their (relative) sizes. The overall convergence in the
whole network gives:

N(n, d) =
n−1∑
k=0

dkCDG(k, k + 1) > 0 (2.16)

Calculation of the local convergence degree is trivial:
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CDL(k, k + 1) =
1− d
1 + d

, CDL(n− 1, n) = 1 (2.17)

Contrary to the global CD there is only a trivial change in sign of the
local CD.

Preferential attachment networks

Based on [19] I calculated the CD probability density function for the net-
work grown with preferential attachment mechanism. This network has the
structure of a random tree, therefore all overlapping sets are empty.

In growing networks it is natural to orient all the edges towards the root.
For stratified networks, based on [19] one can derive local and global CD
probability density function of nodes at distance n from the root, i.e. nodes
at n-th level of the network. According to [19] the degree distribution at the
level n is given as

f (n)(k) = (1 + y)
Γ(2 + y)Γ(k)

Γ(2 + k + y)
(2.18)

where y is the depth measured in units of average depth:

y =
n− 1

〈n− 1〉
(2.19)

Let x denote the CDL of an edge connecting levels n+ 1 and n.

x =
kn+1 − 1

kn+1 + 1
(2.20)

where kn+1 denotes the in-degree of the node at level n + 1. Probability
density of the local CD is calculated by changing the variable in Equation
(2.18) according to Equation (2.20). The probability density of local CD
having value x for an edge between levels n+ 1 and n is:

PL(x, n) =
2

(1− x)2
f (n+1)

(
1 + x

1− x

)
(2.21)

Let g(n)(s) denote the probability of finding a tree rooted in the n-th layer
of size s. g(n)(s) can be written as follows, [19]:

g(n)(s) =
1 + y

2 + y

Γ
(
2 + y

2

)
Γ
(

1
2

) Γ
(
s− 1

2

)
Γ
(
s+ 1 + y

2

) (2.22)

Let x denote the random value of the global CD for an edge connecting
levels n+ 1 and n.
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x =
sn+1 − n
sn+1 + n

(2.23)

where sn+1 denotes the fact that it is described with g(n+1). After chang-
ing the variable in (2.22), according to Equation (2.23), the probability den-
sity of the global CD for an edge connecting layers n+ 1 and n is:

PG(x, n) =
2n

(1− x)2
g(n+1)

(
n

1 + x

1− x

)
(2.24)

From the last term in the numerator of the Equation (2.22) one concludes
that the domain of PG is the open interval

(
1−2n
1+2n

, 1
)
, which is the probabilistic

equivalent of the global CD sign change observable in arborescences.

Erdős-Rényi graphs

Calculation of the CD and relative overlap probability density is based on
the fact that all relevant probabilities are related to binomial distribution or
a distribution derivable from a binomial one. Closed formulae for the local
CD and overlap probability density function can be given, though they are
lengthy, see Equations (2.25, 2.26). In the global case, the exact PDF are
given by a recursive formula of considerable depths.

pLCD(x) =
n−1∑
y,z=1

pLCD

(
x(z − y)− y

x− 1
, y, z

)
|z − y|

(x+ 1)2
(2.25)

pO(z) =
n−1∑
x,y=1

pO

(
x, y,

(x+ y)z

1 + z

)
x+ y

(z + 1)2
(2.26)

For the complete derivation of the recursive formula see Appendix A.1.2

2.5 Discussion

2.5.1 Hierarchical organisation

Octants in the flow representation allow study of hierarchical organisation
in the network, as flow sink nodes are assumed to be at lower hierarchical
positions than the flow source nodes, [90, 103]. Flow sink nodes are con-
nected with flow source nodes via edges with negative CD values, usually
identified as feed-forward connections, while flow source nodes are connected
to flow sink nodes via edges with positive CD, usually identified as feed-back
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(a) Cortical network (b) Cellular signal transduction network

Figure 2.15: Relation between the CD flow through the nodes at the ends of
an edge and CD of the same edge, points displayed have (φj − φi, CD(i, j))
coordinates.

connections, see Section 2.4.1. More precisely, based on graph structure it is
possible to define a partial order relation on the set of nodes V (G). Node i
precedes node j according to the CD (ROvl) flow relation ≥CD (ROvl) if and
only if φi > φj, where φ denotes the CD (ROvl) flow. In terms of hierar-
chical flow (HF) [90], ≥HF≡≤CD. The consistency of classification edges as
feed-forward or feed-back based on structural information is formulated as a
relation between the CD flow through a node and the CD of edges attached to
a node, and is shown in Figure 2.15, where the values of CD plotted against
the difference of CD flows of the nodes at the two ends of and edge. The
feed-forward or feed-back nature of edges could be verified using background
information on the networks under study.

2.5.2 Functional implications of convergence degree

As my analysis of the real-world networks have shown, notions of convergence
degree and overlapping sets may serve as initial steps in the task of relating
a network’s structure and functional properties it may have.

From the functional perspective, properties of the convergence degree and
overlap can be understood as follows. Signals propagating through a given
edge originate from the In-set, and are received in the Out-set. At the same
time, signals are not simply transmitted or processed, as many real-world
networks perform control tasks (about the controllability of network vertices,
see ??). Traditionally, in case of biological networks edges were classified as
feed-forward and feed-backward and parts of control architecture were un-
derstood in such terms. Such an approach can be complemented with the
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introduction of simplest control loops. The basic building blocks of control
systems are comprised of chordless circles. Overlapping set and circularity
grasp some properties of the control systems inherent in the network struc-
ture. The methodology introduced relies on the notion of shortest paths.
Many real-world networks have large number of non shortest paths, for ex-
ample to ensure fault tolerance. It is possible that not all the signals are
transmitted along the shortest paths. The effect of non shortest paths can
be grasped without introducing dynamics. My methodology can be extended
in principle to answer how the functionality of network elements is altered.
One may work with paths exceeding the length of shortest paths by one, and
from the set of all such paths for each edge define the In and Out multisets,
and proceed as I did. The procedure can be iterated if necessary.

My analysis of CD and overlap flows can be interpreted in terms of infor-
mation flow and circulation. Identification of routers, sinks, sources and cir-
culating nodes in the real-world networks was in accordance with the known
functional roles of the nodes, for related previous work see [103]. Control
and other loops were already investigated, [92] and classified as positive or
negative depending on the nature of edges (excitatory or inhibitory) they con-
tained. My methodology allows identification of an edge being feed-forward
or feed-back in terms of CD flow and offer another definition of positive or
negative feed-back loops. In the neuronal signal transduction network feed-
forward and feed-back nature of an edge was independent from an edge being
excitatory, inhibitory or neutral. Previous work concentrated on control-
related motives which were subnetworks of relatively small size. In contrast,
my methodology in its extreme can focus on the whole network. Analysis
of aggregated networks revealed connection between functional properties
of communities and their size. A possible explanation is that communities
performing integrative tasks are highly specialised, and are comprised of rel-
atively small number of elements. Communities performing allocatory and
control related tasks perform broader class of more general tasks and are
therefore comprised of larger number of elements. Allocation and control
is centralised in the sense that the number of communities performing such
general tasks is relatively small.

Functional roles and their interrelations are neither exact, nor sharp, they
are rather tendencies observable after a suitable form of information reduc-
tion. My treatment of the flow representation resembles the phenomeno-
logical approach of [5], as nodes are represented in appropriate space, but
the space in which I represented the nodes and the way in which nodes were
grouped differed substantially. My analysis had three further gains: clarifica-
tion of the network causality, demonstration of importance of chordless circles
and a fresh look to the small-world characterisation of networks. Small-world
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property is important and is defined with a generating algorithm which has
a clear intuitive meaning. Yet contrasting small-world networks (generated
using standard generating algorithms or their combination) with the cerebral
cortex revealed that they had different CD statistics.

The cortical network has no pronounced routers, which fact may be re-
lated to the evolutionary process that optimised signal processing in the
brain for speed. Evolution may also explain the lack of the nodes which only
pass signals. Cortex preserved only the minimum number of nodes necessary
for performing all the computational steps, i.e. every signal transmission is
inseparable from signal processing. I demonstrated similar organisation in
other aggregated networks.

My study of the Linux kernel call graph was far from complete, further
analysis and inclusion of runtime calls will refine my interpretation of partic-
ular nodes at a finer scale. Deeper analysis of the neural signal-transduction
network is likely to shed further insight into the low level signal transmission
and processing of the cortex.

It was shown that signal processing, transmitting and controlling proper-
ties of a given network depend on the definition of a node. By aggregating
a community into a single node and applying the same methodology, one
can explore signal transmission and processing at the community level. Ag-
gregated networks had different properties from the original networks, thus
coarsening the network unit resolution revealed very different community-
level information processing, transmitting and control properties. Further
analysis of the real-world networks will be given elsewhere.

2.5.3 Local and global structure

In signal and information processing networks global functional organisation
was much more random than the local one. This means that global and local
organisation principles differ, and stochasticity may play a role on the large
scale, while local connectivity is functionally more constrained.

The reason for global functional randomness can be understood as fol-
lows. Different processing streams have nodes with similar functional prop-
erties, though these properties are exercised over different domains, as it was
shown for the cerebral cortex [103]. There is no general rule which would
require connection between different integrator nodes in different domains,
say. When there is such a connection it is likely to be an important one.

I have also shown a real-world example of a transportation network, which
had markedly different properties from the signal processing networks. The
finding is not based on comparison of structural, but rather functional prop-
erties. This was an example of how the nature of the network constrains its
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functional organisation.

2.5.4 Other network measures

Convergence degree and edge betweenness [66] are both computed from the
shortest paths. Edge betweenness measures the number of shortest paths
passing through a given edge. In accordance with previous results for the
macaque visuo-tactile cortex [102], on all the random graphs studied, con-
vergence degree was statistically independent from the notion of edge be-
tweenness, the largest absolute value of the Pearson correlation being 0.02.
Besides computing the correlation coefficients, I also visually checked the
relation, [7].

One may wonder whether similar conclusions about characteristics of net-
work structure could be drawn from the knowledge of degree distribution.
The question is not fully resolved yet, but some conclusions can be drawn.
Note that many of the real-world networks under study have unknown degree
distributions in the sense that the degree distribution is not known exactly
but is rather approximated by some model that is thought to fit the data.
These models have to be verified a posteriori. Reliable parameter estimation
of degree distributions can be made only for very large networks. Many real-
world networks (e.g. cortical, metabolic or other) are simply not big enough,
so different exploratory methods are needed. Flow representation and its
interpretation is meaningful for small networks too, and it may serve as an
alternative to methods only applicable in case of large networks.

A study by Bagrow et al. [9] was published with the intention of de-
tecting and representing network structural properties in a unique way. The
B-matrices introduced therein use the notion of graph shells, which are graph-
ically represented as matrices and depicted as two dimensional plots. How-
ever, interpretation of B matrices in functional terms is hard. The simple
concept of convergence degree may fill the interpretation gaps.

Network motifs [3, 4] are subnetworks which appear much more than ran-
domness would suggest. Motifs can be detected with appropriate algorithms,
yet their interpretation is difficult, e.g. what is the meaning of two motifs
with only slightly different structural characteristics, but with significant dif-
ference in their abundance in the original network.
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3
Model-based dynamical
analysis of functional
disconnection in schizophrenia

T
he discovery of functional subnetworks in the cortex raises very
different hardships than that of structural ones. Functional connec-
tivity depends heavily on sensory input and the nature of the task

the subject is perceiving to be solved. Thus, a single experiment can pro-
vide only partial information about two regions being connected. Of course,
structural connectivity can serve as a prior approximation to the functional
(where known), but intensities of coupling, and interactions between struc-
turally unconnected areas may vary quite a bit. Such phenomena can only
be studied in vivo, for obvious reasons, and the range of means to do so
is often limited to non-invasive methods, especially in humans. Electrodes
and electrode arrays can be used to record from within the neural tissue of
rodents, monkeys with more restrictions and humans only during medical-

Related publications:
Bányai M., Diwadkar V., Érdi P.: Model-based dynamical analysis of functional discon-
nection in schizophrenia. NeuroImage 58(3):870-877, 2011.
Érdi P., Bányai M., Ujfalussy B., Diwadkar V.: The schizophrenic brain: A broken
hermeneutic circle. Some new insights and results. The 2011 International Joint Confer-
ence on Neural Networks (IJCNN), 2011. San José, CA, USA 3024-3027, 2011.
Bányai M., Ujfalussy B., Diwadkar V., Érdi P.: Impairments in the prefronto-hippocampal
interactions explain associative learning deficit in schizophrenia. BMC Neuroscience
12(Suppl1):93, 2011.
Gore CD., Bányai M., Grey PM., Diwadkar V., Érdi P.: Pathological Effects of Cortical
Architecture on Working Memory in Schizophrenia. Pharmacopsychiatry 43(Suppl1):592-
597, 2010.
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purpose recording of neural activity before surgeries. These methods are also
constrained to record from a few locations at a given time.

The non-invasive, large-scale method to record the electrical activity of
neuronal ensembles is EEG. However, the spatial resolution of the electri-
cal imaging is very low, and inference about areas further from the skull is
nearly impossible. A partial solution to this problem is functional magnetic
resonance imaging (fMRI), which can record with a spatial resolution appli-
cable to make inferences about area-level hypotheses of the entire cortex. In
return, the temporal resolution is much lower, rendering the discovery of the
fine temporal details of information processing mostly impossible. Neverthe-
less, fMRI has become the main tool of assessing area-level activation in the
cortex, and building connectivity maps based on those. Dealing with the
massively multivariate time series requires the prudent application of statis-
tical methods. In the fMRI literature, different types of prevalent erroneous
procedures are reported, including non-independent testing [144], insufficient
correction for multiple measurements (or, depending on the interpretation,
a revolutionary study about the social abilities of dead fish) [20], and other
erroneous statistical comparisons [109].

Given the statistical nature of the construction of regions of interest from
voxel data, the appropriate tools for network discovery between them are sta-
tistical models. These may be quite simple, as correlational maps, directed
entropy maps, Granger causalities, coactivations based on linear models and
so on. The simplicity and data-driven nature of such methods might allow
for näıve network discovery in the sense of identifying connections in an ab-
solute manner, but these findings are epistemologically incomplete, and may
only serve as exploratory steps in the procedure of defining more mechanistic
models. Hypotheses reflecting procedural understanding of the information
processing underlying the observed activity should be expressed in terms
of generative models, most likely dynamical ones of the kind described in
Section 1.3.3. The definition of such models presupposes extensive knowl-
edge about physiologically plausible connectivity patterns, and requires the
hypothesis to be expressed as a difference of two or more distinct models,
resulting in model sets to be compared. The inference about the exact prob-
ability distribution over the model sets reveals which hypotheses are more
probable than others, yielding comparative results to be interpreted strictly
within the pre-defined model set (although attempts has been made to extend
the methodology to a more uninformed way of network discovery [63]).

It is also important to state, that these models incorporate causal as-
sumptions, in the sense Judea Pearl uses this concept [111]. That is, we do
not only assume that there is a conditional dependence or independence be-
tween certain variables, in the case of fMRI measurements, the experimental

52



conditions, neural activities of different areas and receptive BOLD signals.
But we assume that there exist physical processes that connect these quan-
tities in a mechanistic chain, establishing an actual cause-effect relationship
between them.

The dependence of the results on informed priors can be reduced by taking
a differential approach. That is, taking two groups of subjects for measure-
ment that differ in a phenotypical aspect, typically one having been diagnosed
with a psychiatric disorder, and the other with negative corresponding di-
agnoses. This way one can test alterations of the probability distribution
over the proposed model sets, which may be easier to detect than absolute
phenomena. From an epistemological point of view, it is always easier to
spot parts that went wrong, than drawing an accurate picture of the phe-
nomenon in question. And this kind of differential information can be then
used to make inferences about the healthy functioning of the altered compo-
nent, helping to create a more complete answer to the absolute question as
well.

Schizophrenia is a psychiatric disease that affects high-level cognitive pro-
cesses in various ways. In fact, patients may exhibit many types of positive
and negative symptoms, forming very different behavioural subtypes of the
disease. General attributes of schizophrenia include delusions, in the sense of
creating theories detached from actual sensory experience (paranoid symp-
toms fit here), sometimes hallucinations, and dysfunctions of abilities re-
quired by everyday life. While the symptoms can be quite serious, the disease
might leave many cognitive aspects rather intact, allowing some patients to
conduct even intellectual activities. This characteristic allows a wide range
of testing methods to be applied, aiming to discover the biological under-
pinnings of the disorder. The clinical relevance of such studies is also high,
given that more than 0.5 percent of any larger human population is affected
by schizophrenia, and up to this day only symptomatic medications exists,
rendering the disease generally incurable.

In this chapter I will present a study aimed to discover the alterations of a
specific task-dependent functional subnetwork of cortical areas in schizophre-
nia, utilising fMRI measurements and statistical modelling.

3.1 Overview

Schizophrenia is a complex polygenic disorder with diverse neural correlates.
Altered fronto-hippocampal function and interaction [70] is a central aspect of
its pathophysiology and may be related to anatomical and/or functional dis-
connection [55], and altered synaptic plasticity [131], which in turn may result
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from a complex expression of genes on the brain’s macro-networks [71, 136].
Here I investigated impaired macro-network interactions in schizophrenia by
applying Dynamic Causal Modelling (DCM) [129] to the analyses of fMRI
data collected during a paired-associate learning paradigm [27]. The aim of
modelling neuronal interactions using DCM is to characterise: a) the intrinsic
connectivity of the network and b) the contextual modulation of the intrin-
sic connections by psychological aspects of the task. In the present study I
was interested in investigating whether or not there is a plausible difference
between patients and controls in the intrinsic connectivity of the learning
related macro-network, and in the modulatory effects on these connections
by learning related variables such as time. This approach allowed me to si-
multaneously investigate hypotheses of disconnection (intrinsic connections)
and reduced plasticity (modulatory effects of learning) in schizophrenia.

3.1.1 Disconnection hypotheses of schizophrenia

It has been hypothesised that schizophrenia is best understood in terms of
pathological interactions between different brain regions. This claim can
be formulated on two different levels: on one hand, we can investigate the
structural organisation of the cortex and look for physical differences between
patients and controls, and on the other hand, we can investigate whether
there is a difference in the task-dependent functional interaction of cortical
areas regardless to the underlying neural structure.

The concept of structural ”disconnection syndrome” goes back at least to
Wernicke [151], who interpreted psychosis as a result anatomically disrupted
connections. It was reintroduced by Geschwind [64, 65], and had a crucial
role in behavioural neurology and psychiatry [34]. Newer meta-analysis also
supported the hypothesis [45].

The relevance of the concept of functional disconnection for interpreting
schizophrenia now also seems to be promising: studies showed impairments
in functional macro-networks in schizophrenia [91], and based on brain imag-
ing experiments it was suggested that reduced performance of schizophrenic
patients in cognitive tasks requiring working memory is related to abnormal
prefronto-hippocampal connectivity [55, 59, 150]. The cellular bases of the
two types of disconnectivities have also been studied, and two, somewhat in-
teracting mechanisms, i.e. altered anatomical connections and impairments
in synaptic plasticity were identified [56, 131, 132].

Specifically, I am interested in the functional reduction, both the qualita-
tive and quantitative nature of it. Consequently, there are two questions to be
answered: (i) what are the differences in the model architectures describing
the information processing network of healthy and schizophrenia subjects,
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and (ii) which connections are significantly impaired in schizophrenia? In
technical terms, I analyse effective connectivities, which reflect the causal in-
fluence that one brain region exerts over another. Effective connectivity can
consist of two components. The first characterises the intrinsic connectivity
of the network, and the second models input-dependent changes in them.
(Inputs, however, may have effects for brain dynamics not only by modulat-
ing connections, but also via direct or indirect influence on specific regions).
Pathological connectivities may appear in both components.

Task-related functional connectivity can be investigated with respect to
various functions of the brain, e.g. learning, memory, control, etc. I studied
associative learning, since this is a cortical function that requires the inte-
gration of multiple sensory, representation and cognitive control pathways,
making it a useful approach to grasp disordered functional interaction.

3.2 Material and methods

3.2.1 Associative learning: behavioural task and data

Paired-associate learning paradigms that require learning of associations be-
tween diverse memoranda over time, have been a cornerstone of the exper-
imental learning literature [31, 32, 154]. These paradigms provide a frame-
work for evaluating the role of the hippocampus in binding as well as in exam-
ining the temporal dynamics of neural signals that correlate with changes in
performance in learning [50]. In addition to fronto-hippocampal interactions
[120], associative learning is based in part on the hippocampal integration of
memory streams as diverse memoranda must be bound into integrated asso-
ciations [43]. It also relies on the consolidation and retrieval of associations
between diverse memoranda, sensory inputs and streams of neural activity,
particularly by hippocampal neurons. Yet tasks of paired-associate learning
and memory have been infrequently applied in understanding dysfunction
in schizophrenia, even though they have provided evidence of particularly
strong deficits, relative to other tasks [155].

We adopted a paired-associate learning paradigm in which subjects are
required to learning arbitrary associations between locations (in space) and
objects (with unique identities). The two kinds of memoranda (“where”
and “what”) are processed by the two components, i.e. spatial (dorsal) and
object (ventral), of the forward visual pathway [27, 72, 118]. It is assumed
that these information streams converge in the hippocampus, with potential
supervisory inputs from the prefrontal cortex [31]. The result macro-network
(depicted in Figure 3.2) provides a relative rich framework to estimate model
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architectures using DCM [134]. Through the repeated alternation between
learning and retrieval epochs using a block design [6] (see Appendix A.2.2),
I was able to capture learning dynamics in controls and patients over time
(see Figure 3.1).

For details see Appendix A.2.3.

Figure 3.1: Learning dynamics in the associative memory task in controls
and schizophrenia patients over time. The data provide evidence of generally
asymptotic learning in both groups, with reduced learning rates in patients
compared to controls.

3.2.2 Functional network models

Dynamic causal modelling (DCM) is an important method for estimating
effective connectivity from neuroimaging data [61]. DCM uses an explicit
model of neural dynamics to capture causal interactions between regions
within the network (intrinsic connections), modulation of intrinsic connec-
tions by the experimental context (e.g., the valence of a face) and driving
inputs to regions (e.g., visual stimulation driving face processing regions).
Using Bayesian methods, DCM selects from among competing models, i.e.,
hypotheses, that best capture network interactions during the examined task
[133]. Parameter estimates of inter-regional interactions derived from the
model reflect measures of effective connectivity that can then be compared
to assess significant differences between groups.
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Macro-network models were evaluated based on a combination of anatom-
ical and functional assumptions governing interactions between the five re-
gions of interest material to the task. The basic architecture included intrin-
sic connections between primary and secondary visual cortices (from both
dorsal and ventral pathways) that form two basic multi-synaptic pathways
of the visual system [97, 98]. Connections from each of the inferior temporal
cortex and the superior parietal cortex to the hippocampus reflect its unique
anatomical place in a ”hierarchy of associativity” [85] allowing it to integrate
multi-modal inputs from unimodal areas before redistribution of potentiated
associations into the neocortex [42]. This basic model structure was ex-
panded in each of the evaluated models with intrinsic connections from the
hippocampus to each of the inferior temporal and superior parietal cortices
[85] that may enhance learning over time, and from the prefrontal cortex
to the hippocampus, to implement supervisory inputs from this executive
region [47, 110].

Elements of the models

DCM assumes a coupled dynamics of the neural activity in the involved
brain regions and the external inputs. The connectivity parameters can be
obtained by fitting the model to measurement data. The parameters describe
effective connectivities, including the intrinsic coupling between brain regions
(represented by an n×n matrix, A, where n is the number of brain regions, 5
in my case), and the effects of the external modulations on these connections
(represented by an m× n× n tensor, B, where m is the number of inputs, 4
in my case).

The cornerstone of dynamic causal modelling is to define the external
factors, determined by the experimental paradigm, that modulate the in-
trinsic connections between brain areas. For the associative learning task I
examined the role of four inputs. The first is called Visual, and refers to the
presence of any visual stimulus. The second input is Encoding, which refers
if the subject is in the encoding period, when the objects are shown in their
location, and the third is Retrieval, which indicates if the subject is in the
retrieval period, when a cue is presented in a location, and an answer is re-
quested from the subject. The fourth input is Time, which is indicating that
which epoch is the subject in, grasping the pass of time. These modulations
allows the examination of the change in effective connectivity with respect
to different memory functions and temporal development.
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3.2.3 Model definitions

To model the information processing in the associative learning task, I as-
sumed the presence of two streams connecting the five brain regions. The
”forward” or ”data” stream propagates sensory information at different lev-
els of processing from the low-level sensory areas towards high-level areas.
The ”backward” or ”control” stream propagates control signals from the
high-level areas towards the lower-level ones. In this chapter I examine im-
pairments in cognitive control, so the focus of the investigations is the control
stream.

First, multiple models were evaluated by varying hypothesis-related in-
trinsic connections between regions, while fixing other connections (A ma-
trix). I included the intrinsic connections of the data stream to all mod-
els. These are the causal effects of the primary visual cortex on the inferior
temporal and superior parietal areas and the effects of SP and IT on the
hippocampus and the prefrontal cortex. The self-connections of all areas are
fixed as well. Based on the hypothetical control stream I defined three al-
lowed connections that may extend the basic model in different combinations.
These include the intrinsic connections from HPC to IT and SP, and from
PFC to HPC. The eight possible combinations of these connections consti-
tute the first model class. All possible intrinsic connections are visualised in
Figure 3.2, where the fixed data stream is indicated by black arrows and the
varied control stream is indicated by blue arrows. The connection patterns
of the models in the first class are summarised in Table 3.1 and depicted in
Figure A.4.

A second set of models were evaluated by fixing all intrinsic connections
(both data and control streams) and some of the contextual modulations,
and varying the hypothesis-related modulatory connections (B matrix). The
fixed modulations were the effects of the Visual input on the connections
of the data stream and of the Time input on all connections. I defined the
allowed modulatory connections to be the modulatory effects of Encoding
and Retrieval on the intrinsic connections of the control stream. I created
16 combinations of the allowed modulatory connections which constitute the
second model class. Visualisation of the application of contextual modula-
tions on intrinsic connections is given in Figure 3.2. The connection patterns
of the models in the second class are summarised in Table 3.2 and depicted
in Figure A.5.

In the first model class all meaningful modulatory connections mentioned
above were included, (modulatory effects on nonexistent intrinsic connections
were excluded only). The driving inputs of the contextual modulations on
the cortical areas were included in all models and are not in the focus of this
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study.

Figure 3.2: The model space for varying intrinsic connections. Connections
marked by blue are varied. The effects of external inputs Visual, Encoding
and Retrieval are marked by V, E and R respectively. The effect of Time is
applied to all connections.

Coding of external modulations

The numerical values of external modulations as functions of time are con-
structed as follows. For Visual, the value is 1 in encoding and retrieval
periods of the task and 0 in resting periods. The second input, Encoding, is
1 in encoding periods and 0 otherwise. The third, Retrieval, is constructed
in a similar fashion. The fourth input, Time, is an integer, starting from
1 and increasing by one in the end of each epoch. The direct effects of all
four inputs on the neural activity of all brain areas (C matrix) are present
in every model I defined.

3.2.4 Dynamic causal modelling

DCM provides a complete phenomenological model framework for the anal-
ysis of BOLD data. For a detailed description see [61]. The model consists
of two components: a neural state equation and a hemodynamic model. The
neural component describes the time evolution of the neural state variables,
x, which refer to the neural activity of the ROIs. This is a bilinear formula of
the state variables themselves and the input variables, u, which are the con-
ditions defined by the experiment (Eq. 3.1). The parameters of the neural
model are the elements of the three matrices, θn = {A,B,C}. A contains the
intrinsic coupling parameters, the causal effects of the ROIs on each other, B
contains the modulatory parameters, the effects of the inputs on the intrinsic
connections, and C contains the direct effects of the inputs on the ROIs.
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ẋ = (A+
N∑
i=1

ujB
j)x+ Cu (3.1)

y = λ(x, θh) (3.2)

The hemodynamic component describes the nonlinear mapping from the
neural activity to the BOLD signal, y, actually measured in the ROIs (Eq.
3.2). For the details of the hemodynamic model see [60]. The two components
define a complete generative forward model of the BOLD signal generation,
illustrated on Figure 3.3. To estimate the values of the parameter set, θ =
{θh, θn} best fitting to measurement data, the ”inverse problem” should be
solved. One possible procedure to do so is the Bayesian maximum a posteriori
(MAP) estimation technique defined by Eq. 3.3, whereM denotes the specific
connectivity pattern of the model.

p(θ | y,M) =
p(y | θ,M)p(θ |M)

p(y |M)
(3.3)

To exclude specific connections in my model, we can set the prior proba-
bilities of the corresponding parameters to zero. For all probability distribu-
tions in 3.3, I assume that their form is normal, meaning that both the prior
(p(θ | M)) and posterior (p(θ | y,M)) distributions are Gaussians, and the
MAP estimation is defined as the mean of the posterior distribution.

3.2.5 Comparison of models

We can compare models with different connectivity patterns in a Bayesian
fashion by estimating their model evidence:

p(y |M) =

∫
p(y | θ,M)p(θ |M) dθ (3.4)

The evidence is the probability of obtaining the actual measurement con-
ditioned on the model form, integrated on the whole parameter space of the
model. This way we get the overall probability that my actual model ex-
plains the measurement data regardless of the choice of parameters, and also
punish models with a larger number of parameters. The computation of the
evidence is usually not feasible, but there are several methods available to
approximate it. One such method is the variational Bayesian approxima-
tion. In this method one defines a functional that is a lower bound of the
log-evidence of the model. We maximise this functional to approximate the
log-evidence.
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Figure 3.3: Structure of a DCM. U denotes the input variables described in
Section 3.2.3. The X variables encode the unobserved neural activity of the
regions of interest, according to the different model specifications described in
Section 3.2.3. Y variables are the observed BOLD signal. Coupling dynamics
of the variables and noise models used in estimation are described in Section
3.2.4

To obtain the expected posterior probabilities of all models in a model
class, we can assume a hierarchical model of data generation. On the top
level, a Dirichlet distribution describes the occurrence probabilities of the
individual models in the population, defined by Equation 3.5.

p(r | α) =
Γ (
∑

k αk)∏
k Γ (αk)

∏
k

rαk−1
k (3.5)

On the next level, we have multinomial variables, parametrised by the
occurrence probabilities of the above level, which describe the probability of
a certain model generating the data for a certain subject (Equation 3.6).
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p(M | r) =
k∏
i=1

rMk (3.6)

On the bottom level, the actual data is generated by the dynamic model
with parameters defined by the multinomial variable. The complete hierar-
chical model of generating data for a whole group of subjects is depicted in
Figure 3.4. We can invert this model using a variational Bayesian method
that requires only the estimates of the log-evidences for each subject-model
pair. In this way we can obtain the parameters of the multinomial distri-
bution. If we normalise these parameters, we get the expected posterior
probability of each model regarding to the subject group, as in Equation 3.7.

E(rk) = E(p(M | y1 . . . yn)) (3.7)

For a detailed description of the comparison method see [133].

3.3 Results

All 24 models were fitted to the measurement data from all 14 subjects,
obtaining 336 parameter sets, sorted into two groups, schizophrenia patients
(SCZ) and healthy control (HC). The computational procedure applied serves
two quantities, the maximum a posteriori (MAP) parameter values and model
evidences. They were approximated by the Expectation Maximization algo-
rithm [37], as implemented in the SPM package [62]. The results can be
evaluated on multiple levels of abstraction. First, I made an intra-group
model comparison to find out which model structures are more probable
than others in the subject groups, then I investigated the differences on the
level of the individual parameters.

3.3.1 Model comparison

The goodness of a model can be quantitatively described by its posterior
probability obtained from Bayesian model selection. I applied the varia-
tional (free energy) method to approximate the log-evidence of the models.
As model goodness, I calculated posterior probabilities of model structures
by random effects analysis, which allows the subjects to be described by dif-
ferent models with the highest probability within a single group, and so is
able to capture variability in the information processing structure applied
by different subjects. The expected posterior probabilities are listed in the
Tables 3.1 and 3.2. The comparison was done within the first and second
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Figure 3.4: Hierarchical model of data generation. For each subject, a mix-
ture model of data generation is assumed, governed by rate parameters r.
After sampling the model m, the Gaussian parameters of the connectivity
patterns are sampled (hemodynamic parameters are not shown), generating
the observed quantities. Hyperparameters α of the prior over rates are shared
between subjects, and correspond to the number of “effective occurrences”
of individual models in the group.

model classes separately. To find out which models are to be considered
probable and which ones improbable (related to the others), I formed two
clusters in both subjects groups by k-means clustering. The scores of the
models associated to the ”probable” cluster are typed in bold face in both
tables. The posterior distribution are depicted on Figure 3.5(a) and 3.5(b)
respectively. Note that model no. 8 of the first class is identical to model no.
16 of the second class.

The results show that in the control group there is a clear winner for both
the intrinsic and modulatory connection patterns, the model that contains
the full control stream. In the SCZ group, there is no clear winner, there are
several more probable models, and the differences are smaller between model
probabilities. It can also be seen that while the winning model in the HC
group contains all the connections defined, while the most probable models
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(a) Models with varied intrinsic connectiv-
ity

(b) Models with varied modulatory con-
nectivity

Figure 3.5: Posterior distributions over the two model classes

in the SCZ group lack more or less connections. This result implies that the
information processing network of schizophrenia patients is fundamentally
different from the one of controls. However, the model selection does not
provide the specific pathways being impaired, so the parameter level analysis
is also necessary. The result of the model comparison is depicted in Fig 3.6.

Table 3.1: Model probabilities for varying intrinsic connections

No. Additional connections SCZ HC
1 none .099 .079
2 PFC→HPC .145 .106
3 HPC→IT .099 .079
4 HPC→IT, PFC→HPC .172 .101
5 HPC→SP .158 .081
6 HPC→SP, PFC→HPC .095 .116
7 HPC→SP, HPC→IT .136 .081
8 HPC→SP, HPC→IT, PFC→HPC .095 .357

Connections present in all models: V1→(IT,SP), SP→(HPC,PFC),
IT→(HPC,PFC)

3.3.2 Effective connectivities

In the next step of the analysis, I give a more detailed quantitative charac-
terisation of the results. I look at the parameter space level to see if there
are significant differences in the effective connectivity in the models fit to
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Table 3.2: Model probabilities for varying modulatory connections

No. Additional connections SCZ HC
Encoding Retrieval

9 none none .063 .063
10 none PF→HC .064 .072
11 PF→HC none .060 .066
12 PF→HC PF→HC .060 .068
13 none HC→(SP,IT) .061 .055
14 none HC→(SP,IT), PF→HC .068 .053
15 PF→HC HC→(SP,IT) .060 .054
16 PF→HC HC→(SP,IT), PF→HC .059 .054
17 HC→(SP,IT) none .073 .054
18 HC→(SP,IT) PF→HC .061 .053
19 HC→(SP,IT), PF→HC none .064 .054
20 HC→(SP,IT), PF→HC PF→HC .059 .053
21 HC→(SP,IT) HC→(SP,IT) .064 .061
22 HC→(SP,IT) HC→(SP,IT), PF→HC .065 .061
23 HC→(SP,IT), PF→HC HC→(SP,IT) .060 .059
24 HC→(SP,IT), PF→HC HC→(SP,IT), PF→HC .059 .120

Connections present in all models: Time→All, Visual→(V1→(IT,SP),
SP→(HC,PF), IT→(HC,PF)

Figure 3.6: (A) Intrinsic connections in most probable fitted DCM models.
Solid arrows denote causal connections present in both HC and SCZ groups,
dashed arrows denote connections present in the HC group only. (B) Some
of the modulatory connections in most probable fitted DCM models.

the two subject groups if we assume fixed model structure. To do so, I se-
lected a reference model for comparison by running the model selection for
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all subjects together with no distinction by group. The results can be seen
on Fig. 3.7, the winning model is the one containing all hypothesised con-
nections. The means and standard deviations of the intrinsic coupling and
modulatory parameters are depicted in Fig. 3.8. To obtain the significance
of the differences I applied a two-sample t-test on the parameter values in
the two groups. For this analysis I used 8 subjects with schizophrenia and
10 healthy controls.

Marginally significant differences between the two groups are in the strength
of the intrinsic connections between prefrontal cortex and hippocampus and
between hippocampus and inferior temporal cortex. The relatively high p-
values are likely to be mostly due to the small number of subjects. Such
samples sizes are common for fMRI studies, but from a statistical point of
view, they can be rather limiting. All the connections mentioned above are
weakened in the SCZ group, which supports the hypothesis about the im-
paired effective connectivities in the control stream in schizophrenia.
Both these connections are playing important roles in the cognitive control
of the associative memory formation. Furthermore, we see the reduced ef-
fects of Time on these causal links meaning reduced excitatory contextual
modulation of the pathways by learning. This can be seen as a surrogate of
reduced task-related plasticity of a pathway in the illness.

Figure 3.7: Model probabilities for all subjects. Model numbers are drawn
from Table 1 and 2. Note that model nos. 8 and 24 are identical to each
other.

The comparison of model parameters was also conducted in a Bayesian
fashion, which supported the finding presented here. For details, see Section
A.2.5.
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Figure 3.8: Average connectivity parameters for HC and SCZ groups.
The most significant differences are in the prefronto-hippocampal and
hippocampo-inferior temporal pathways.

3.3.3 Subject-by-subject analysis

To see a more detailed picture of the effects of the associative learning task
on the model parameters, I correlated them with the learning rate of the
individual subjects. To obtain this rate, k, for each subject, I fitted a learning
curve defined by Eq. 3.8 to the behavioural data [27].

l(t) = 1− e−kt (3.8)

The Spearman rank correlation coefficients between the DCM parameters
and the learning rate was calculated. The results averaged over subjects are
shown on Fig. 3.9. The correlations are mostly positive, and high for the
hippocampal-superior parietal interaction in the intrinsic and also in the
modulatory parameter arrays. This result is not in full correspondence with
the inter-group comparison of the effective connectivities, suggesting that the
learning rate is not necessarily the key element of the differentiation between
schizophrenia and other conditions. This is also leading us to the next step
of the analysis.
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Figure 3.9: Correlations between the learning rate of the subjects and the
connectivity parameters of the models fit to their BOLD data.

3.3.4 Illness versus slow learning

A common problem in schizophrenia research is that it is usually hard to
separate the effects of the illness on learning skills from the lower performance
of naturally slow learners. To address this issue, I selected the subjects from
the control group who did not perform better than the SCZ group (there
were 3 such subjects in the HC group). I fitted the model space to these
subject separately. The resulting posterior model probabilities are shown in
Fig. 3.10. It is apparent that the distribution over the model class is similar
to the one obtained for the control group and shares no common features
with the one obtained for the SCZ group, as one can see in Table 3.1. This
result suggests that the methods applied here are independent of the overall
learning rate and are able to clearly separate slow learning from schizophrenia
by explaining the two phenomena by different model structures.

Figure 3.10: Expected posterior probabilities of models from the first class
for slow learners. The distribution is similar to the one of the control group
and distinctively different from the one of the patient group. Model numbers
are drawn from Table 1.
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3.4 A synaptic model of working memory in

schizophrenia

To assess the possible contribution of intrinsic connectivity alterations in
the dorsolateral prefrontal area to the symptoms of schizophrenia, I present
a study of a neural network level model of working memory, consisting of
10000 integrate-and-fire neurons, from which 2000 are inhibitory, connected
randomly by a probability of 0.2. Synaptic connections are strengthened
within certain subpopulations by some form of prior learning (e.g. Hebbian),
which will be used to store one-bit memory patterns. The model and its
dynamical behaviour is depicted in Figure 3.11. The recallability of a memory
pattern with a nonspecific activation of the whole network depends on the
synaptic dynamics, detailed in the following section.

3.4.1 The model framework

The synaptic theory of working memory was suggested by [99]. A simple
model for the the prefrontal cortex was specified, exploiting the general be-
lief that in this brain region the excitatory synapses are facilitatory. Working
memory is therefore generated and maintained by short-term synaptic facil-
itation.

A reduced short term plasticity model uses two variables, x is the avail-
able resource (released transmitter molecules) and u is the utilisation variable
(residual calcium level). The increase of u is called the facilitation, the de-
crease of x is the depression, and the product u ∗ x characterises synaptic
change. The process is controlled by two time constants: τf and τd denoting
facilitatory and depressive time constants, respectively. The model is defined
by Equations 3.9 and 3.10.

dx

dt
=

1− x
τd
− uxδ(t− tsp) (3.9)

du

dt
=
U − u
τf

− U(1− u)δ(t− tsp) (3.10)

In [99] the time constants were fixed as τd = 0.2s and τf = 1.5s to ex-
press facilitation. The motivation for my experiment came from the ending
of [99] : “. . . The model provides a possible target for a pharmacological
interference with WM. In particular, manipulations that modify the facil-
itation/depression balance in the memory-related cortical areas [. . . ] are
predicted to have a strong effect on the stability and duration of memory”.
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3.4.2 How the time constants might be regulated?

Calcium binding proteins (e.g., neuronal calcium sensor NCS-1) modify short-
term plasticity (at least in hippocampal cell cultures) by switching pair-
pulsed depression to facilitation [121]. As facilitation in my models appears
to signify normal performance but not schizophrenic performance, we might
expect that NCS-1 concentration would be large in the normal brain, but
low in the schizophrenic brain. This prediction is inconsistent with empirical
evidence: NCS-1 is up-regulated in the PFC of schizophrenia patients [81],
suggesting that facilitatory synapses should be normal and not schizophrenic.
However, the molecular machinery might be much more complicated for the
following reasons: (i) NCS-1 might be doubly localised pre- and postsynap-
tically [101], (ii) NCS-1 is a part of a network of proteins.

Given the complexities mentioned above, a realistic detailed mechanism
for changing the balance between facilitation and depression cannot be given
at this point of my studies. However, I was able to study the dynamic
properties of the system in the two-dimensional parameter space of the time
constants. To evaluate the performance of the memory system, I had to
define the duration of the memory. The hypothesis was that the shift in
balance between facilitation and depression might modify the duration of
the memory. Phenomenologically two types of pathology, “too short” and
“too long” could emerge. The question is whether the duration of memory
depends on the two time constants and reduced connectivity, respectively.

3.4.3 Definition of duration of working memory

Working memory was defined as the time between the end of the write-in
signal (the population-specific increase in the background input that loads
an item to the memory) and the last point in time when the object can be
retrieved from the memory.

Retrieval in the readout signal (a nonspecific increase in the background
input), would produce a population spike (PS). This PS codes for the object
loaded in the memory previously and refreshes the memory as well. The
probability of observing a PS is mostly dependent on the actual level of
synaptic efficacy. We can define a threshold value in efficacy that divides the
two behaviours of the network (PS or not). So we can define the duration
as the time between the endpoint of the write-in signal and the time-point
when the efficacy falls under the threshold value.
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Figure 3.11: Prefrontal working memory model. (A) Architecture of the net-
work, downscaled to 100 vertices. Black vertices depict inhibitory neurons.
Dotted circles indicate coding populations with strengthened intrinsic con-
nections. (B) Dynamic behaviour of the model. The above raster plot shows
the encoding and retrieval of a memory signal in a coding population. The
raster plot below shows a population of non-coding neurons during the same
period of time. On both plots, the relative amount of available transmitter,
the release probability and the synaptic efficacy is shown by the upper, lower
and middle curves respectively. The encoding signal is applied to the coding
population at the time point specified by the black arrow, and the read-out
signal to the whole network at the grey arrow.

3.4.4 Simulation results

Fig. 3.12(a) shows explorations of the two-dimensional parameter space.
These intuitive results indicate that if facilitation relaxes slower and depres-
sion relaxes faster, memory duration will increase. One could define a regime
to be considered normal, and so there would be two regimes: one for too short
and one for too long memory fading time.

Second, the connectivity was changed by setting the overall connection
probability from 0 to 0.8. Somewhat counter-intuitively, the duration was
reduced by increasing the connectivity, as one can see in Fig. 3.12(b).

However, if we look at the model setting, the cause for this behaviour is
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(a) Efficacy and depression parameters (b) Connection density

Figure 3.12: Parameter dependence of memory duration in the synaptic
model. Changes in any of the examined parameters may result in abnor-
mally short or long recallability of memory patterns.

obvious. I apply an external input on all the cells, which is modelled by a
Gaussian noise with a large mean and small deviation. The mean is actually
above the firing threshold of the cells, so if there were no other dynamics, they
would fire permanently with a frequency defined by the refractory period.
The principal effect of the cells on each other is the inhibition, allowing them
to follow different firing patterns.

3.5 Discussion

A widely studied aspect of schizophrenia is the impairment of cognitive con-
trol over information processing cortical circuits. The prefrontal cortex is
the area that is consensually considered as the centre of cognitive control
functions, such as attention, memory and executive functions. Numerous
functional imaging studies pointed out decreased influence of the prefrontal
cortex on areas which are material in tasks effected in schizophrenia. For
a review on pathological functional connectivities related to different cogni-
tive functions see [33]. The architecture of cognitive control in schizophre-
nia is still not well understood, for preliminary ideas see [16, 35, 115], for
the normal and pathological neural circuitry of executive functions, see e.g.
[44]. Reduced fronto-temporal functional connectivity associated with audi-
tory hallucinations for schizophrenic patients was extensively studied, see e.g.
[86, 141]. A focused strategy training was suggested recently [41] to facilitate
cognitive task performance in patients with schizophrenia by changing the
dynamics of activity within critical control-related brain regions.
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This study targeted the prefrontal control of areas involved in associa-
tive learning, primarily the hippocampus. Several model architectures were
defined to explain the information processing in the cortex during learn-
ing. I compared groups of schizophrenia patients and of healthy controls
on two levels, and a fundamental difference between the functional networks
implemented in the schizophrenic and healthy brain were found. The pa-
rameter level comparison revealed significant impairments in the prefronto-
hippocampal and hippocampal-inferior temporal pathways. This finding
implies that the lack of cognitive control over the processes of associative
learning may underlie the decreased performance of schizophrenia patients
in related tasks.

Learning impairments have been considered good markers of hippocampal
impairment in schizophrenia [155], and computational models of hippocam-
pal function have been applied to study this cognitive impairment in the
disorder [38, 119]. However, the basis of these impairments in terms of net-
work interactions has not been known. My results (the first based on in vivo
fMRI data) provide evidence of impaired frontal inputs to the hippocampus,
and reduced learning related plasticity of fronto-hippocampal coupling in the
disorder.

These results also shed new light on previous studies about the dynamics
of the schizophrenic cortex. A previous study from Érdi et al. proposed
a model for the cognitive control deficiency in schizophrenia on the neural
network level [48]. In this model, the prefrontal cortex acts as a switch
that drives the hippocampal formation to learning and recall modes. Slight
changes in the accuracy of the control variable reproduces the performance
alteration of patients compared to controls. The results presented here are
compatible with this mechanistic idea, and together can provide a multi-level
picture of the studied phenomena.

3.5.1 Connecting function to structure

The integration of the frameworks discussed in this chapter and Chapter 2
would be highly desirable, as it could provide a consistent account of the or-
ganisational principles of cortical macro-networks, and shed new light on the
interplay of structure and function in the cortex. To proceed in this direc-
tion, one should work on the scaling up of the functional network discovery
methods, so that they might produce task-dependent or resting state causal
networks with a few ten vertices, possibly also interconnecting multiple tasks
and subnetworks. The exact relations of graph theoretical measures to the
quantities defined in a probabilistic causal model should also be determined
to construct such an integrative approach.
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4
Conclusions

4.1 Signal flow in directed networks

T
he first part of the dissertation introduced the convergence degree
as an edge based measure applicable to characterise information flow
in directed networks. Based on this measure, a novel method of graph

representation was also introduced, which is invariant on the automorphism
group of the graph, providing a graphical way to depict network structure.
The method to compute probability distributions of the CD for parametrised
random network models is given in Section 2.4.3.

The method is applicable in the structural comparison of real-world net-
works, as presented in Section 2.4.1. From these I conducted the analysis
of the visuo-tactile cortical network of the macaque and an intracellular sig-
nal transmission protein network, showing a strong hierarchical structure in
the latter. I evinced that, where known, the signal transmission roles of the
vertices determined by convergence degree is consistent with biological func-
tion [92]. For the vertices with unknown function, the method provides a
prediction.

To construct a random network model of the cortical area networks, I
proposed the preferential small-world graph generation algorithm, described
in Section 2.4.2. This algorithm is proven to produce networks with statistical
properties much closer to the macaque visuo-tactile cortical network, using
the convergence degree distribution as a criterion for similarity.

As shown in Section 2.4.1, I also analysed a prefrontal area network,
demonstrating the special role of the dorsolateral prefrontal cortex in the
hierarchy of cortical areas, providing a quantitative background to the spec-
ulation about the area’s prominent role in higher cognitive function.
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This part of my dissertation can be summarised as follows:

T 1/1. I showed that the convergence degree measure is suitable for inves-
tigating the structurally determined signal flow properties of directed
networks, can be used to create more refined classification systems than
traditional graph theoretical measures, and also to give a more precise
definition of the signal processing roles of individual vertices and edges.

T 1/2. I devised a preferential rewiring graph generation algorithm that
gives a better model of the cortical macro-network than previously de-
fined random graph models in the sense of reproducing more structural
properties.

T 1/3. I determined the role of the dorsolateral prefrontal area in cortical
signal processing quantitatively using the convergence degree: the in-
formation flowing between cortical areas shows a strong convergence
on the dorsolateral prefrontal cortex.

A further application of the convergence degree is the analysis of aggre-
gated networks (see Section 2.4.1). These are large-scale representations of
big networks, where we replace the more strongly connected sets of vertices
by a single vertex. I analysed the aggregated version of the protein network
mentioned above, the road network of a city and the procedure call graph of
the kernel of an operating system. In the latter, I showed that control flow
converges on low-level system calls. I showed the statistical connection be-
tween the sizes of clusters represented by the vertices and their convergence
degree. These results were published in [11, 13, 104].

Possible future directions of research building on the results presented
here include the definition of consistent differential geometrical operator sets
on directed networks, incorporating structural constraints represented by the
convergence degree. Some advancements in this direction has been made by
László Lovász in [89]. Such results would greatly further the theoretical basis
of dynamical systems models defined on directed networks, pointing towards
an integration of network structure and function.

Further analysis of the cortical area network using the convergence degree
can be conducted investigating edge importance, as in [105], and possibly
other measures of structural constraints on function and dynamics.
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4.2 Model-based dynamical analysis of func-

tional disconnection in schizophrenia

The second part of the dissertation presented a model-based data analysis ap-
proach to infer functional subnetworks of cortical areas and their alterations
in schizophrenia. The analysis was conducted using a dynamic causal mod-
elling framework, fitted to an fMRI measurement of schizophrenic patients
and healthy controls performing an associative learning task. Disconnection
hypotheses were tested by a definition of two sets of models (see Section
3.2.3), investigating control flow integrity of visual memory formation.

The difference between the functional subnetworks of schizophrenic and
control subjects is expressed in a decrease of cognitive control exerted by
higher-level areas over the behaviour of the temporal lobe and the hippocam-
pal area, responsible for memory formation, in the patient group. This is
proven by Bayesian model selection in Section 3.3.1, and effective connectiv-
ity comparison between patient and control groups, shown in Section 3.3.2.
With such analyses, a question to answer is whether the inferred inter-group
differences in connectivity reflect biological alterations, or the difference of
some behavioural measure, such as learning performance. This question is
addressed in Section 3.3.4, reassuring the relevance of the statistical results.

The intrinsic, neuronal network level connectivity of the prefrontal cortex
is also analysed in Section 3.4, demonstrating that structural changes in the
intra-areal network can account for functional differences is working memory
dynamics. The coexistence of deficits on multiple levels of cortical hierarchy
is possibly contributing to the symptoms of schizophrenia.

These findings are consistent with the results of earlier models described
in the literature, like the theory explaining auditory hallucinations by a cog-
nitive deficit in agency determination [146].

The determination of the functional macro-network and the deficit model
of the intrinsic connectivity of the prefrontal cortex both support the area
interaction model of associative learning [38], in which the prefrontal cortex
implements a switching mechanism between encoding and recall modes of
memory.

This part of my dissertation can be summarised as follows:

T 2/1. I discovered using dynamic causal models that in patients with
schizophrenia, the information flow between prefrontal and hippocam-
pal areas during learning, responsible for cognitive control, is signifi-
cantly damaged.

T 2/2. I showed that dynamic causal models are able to grasp the physi-
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ological differences caused by the illness independently from the task
performance of the experimental subjects.

T 2/3. I showed, using a cellular network model of short term plasticity
that the alteration of prefrontal synaptic dynamics, as observed in
schizophrenia, drives the recall duration of working memory to a patho-
logical regime.

These results were published in [12, 14, 68].
As the mapping of the task-dependent, effective connectivity patterns

between cortical areas is far from complete, the most important application
of the results described in the theses is the formation of new hypotheses
and testing them on data with a similar methodology. For drug discovery
applications, the results indicate a promising direction of development, as
computational neuropharmacology should be on the rise soon [47, 96].

The results further the emergence of a diagnostic application, but are
not sufficient for such themselves, as the use of the described alterations as
biomarkers would require the integration of much more data and the im-
plementation of meta-studies. The application of structural and functional
networks in the diagnosis of psychiatric diseases is an emerging field, which
is expected to yield significant results in the near future [29].
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A
Appendix

A.1 Signal flow in directed networks

A.1.1 Statistical analysis of functional organisation

For sake of completeness in Table A.1 we complement Table 2.1 with further
results of statistical analysis.

Table A.1: Networks coincide with those of Table 2.1. Shown are omitted
entries, two numbers in a cell are the first two empirical moments.

net VTc stn Rome ER bench. kernel a. stn a. Rome a.
nG,av 9 8 19 3.9 4.3 12 7 8

2.47 2.58
pG,av 0.03 10−4 10−4 0.62 0.23 0.08 0.18 0.53

0.32 0.26
nL,tot 9 15 14 4.64 5.14 10 5 23

2.99 3.02
pL,tot 10−4 10−4 10−4 0.61 0.10 0.14 0.04 0.93

0.28 0.21

Empirical distributions of CD-s and relative overlaps over the excitatory,
inhibitory and neutral edge classes in the signal transduction network are
shown in Figure A.1.
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Figure A.1: Empirical distributions of CD-s (first row) and overlaps (sec-
ond row) for the excitatory (column A), inhibitory (column B) and neutral
(column C) edges of the neural signal transduction network.

A.1.2 CD calculation of Erdős-Rényi graphs

Calculation of CD-s for Erdős-Rényi graphs is straightforward, though lengthy.
We note that the Erdős-Rényi graphs [46] we work with are directed. Further-
more for clarity we note that loop edges and multiple edges are prohibited.
First we calculate the probability density function of CDL, if number of
nodes is n and the probability of having an edge between any two nodes is p.
Let i denote the in-degree of the tail of the edge, let o denote the out-degree
of the head of the same edge, and let l denote the number of nodes in the
intersection of the first in-neighbours and out-neighbours of the tail and the
head of the given edge. There are two essential terms in formulae below.
The first is the one defining how large is the set of nodes we can choose our
actual set from, the upper term in the binomial coefficients. The second one
is the one defining which edges are prohibited to have the actual set size, the
exponents in the (1 − p) terms. The exponent of the p terms and the lower
terms of the binomial coefficients are simply the sizes of the node sets we
choose. The probability of an edge tail having i predecessors is given with
binomial density function:

p(i) =

(
n− 1
i

)
pi(1− p)n−1−i (A.1)

The probability of an edge head having o successors is given with Equation
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(A.1), with i replaced with o.
The probability of having an intersection of the predecessors of the tail

and the successors of the head of size l, given the size of the input and output
sets, can be calculated as follows. First, if we assume that i = o = l, the
probability p∗l of having an overlap of size l is given as follows:

p∗(l) =

(
n− 1
l

)
p2l(1− p)2(n−1−l) (A.2)

We can take into account the non-overlapping parts of the input and
output sets as follows, where the conditional probability of l given o (ranging
from l to n) and i (ranging from l to n− o) is:

p(l|i, o) = p∗(l)

(
n− 1− l
o− l

)
po−l(1− p)n−1−o·

·
(
n− 1− o− l

i− l

)
pi−l(1− p)n−1−o−i

(A.3)

Let p(i, o, l) denote the joint probability density function of the variables
i, o and l, it can be given as:

p(i, o, l) = p(l|i, o)p(i, o) = p(l|i, o)p(i)p(o) (A.4)

We note that in Equation (A.4) i, o and l can be chosen independently,
with l ranging from 0 to min(i, o). The value of CDL is given as (i− o)(i+
o− l)−1. We perform the change of random variables

ψ(i, o, l) = (x, y, z), x =
i− o

i+ o− l
, y = o, z = l. (A.5)

Changing the variables in the probability density function given with
Equation (A.4) and calculating the marginal probability results in probability
density function for CDL:

p(x) =
n−1∑
y,z=1

p

(
x(z − y)− y

x− 1
, y, z

)
|z − y|

(x+ 1)2
(A.6)

Similarly, to obtain pO, the probability density function of the relative size
of the overlapping set, one proceeds with the following change of variables:

ψ(i, o, l) = (x, y, z), x = i, y = o, z =
l

i+ o− l
(A.7)

and ends up with the following the probability density function:
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pO(z) =
n−1∑
x,y=1

p

(
x, y,

(x+ y)z

1 + z

)
x+ y

(z + 1)2
(A.8)

Calculation of probability density function for CDG is recursive. Nodes
in the input set are organised into strata according to their distance from the
edge head, the cardinalities of the strata being ik, k ranging from 0 to n− 1,
thus the cardinality of the input set is given as:

i =
n−1∑
k=0

ik (A.9)

When calculating CDG edges are allowed to the stratum is−1 and all other
shortcut edges from stratum is to lower strata are prohibited, including head
and tail of the edge whose CDG we are interested in. Loop edges are also
prohibited. Strata in the output set are analogously denoted as os, meaning
the s-th stratum in the output set. We bistratify the overlapping set, so its
cardinality can be calculated in the following way:

l =
∑
i≤j

li,j (A.10)

where lij denotes the overlap of the i-th stratum of the input set with
the j-th stratum of the output set. We note that with probability 1 the
cardinality of zeroth stratum in the input and output set is 1. Also, from the
definition of zeroth strata it follows l0,0 = 0 with probability 1.
To shorten the subsequent formulae we use the following notation:

Ik =
∑
r<k

ir, Ok =
∑
r<k

or, La,b =
∑
r<a

∑
r≤m<b

lr,m (A.11)

Probability of having is nodes in the s-th stratum is:

p(is|is−1, . . . , i0) =
n−1−Is∑
a=is

(
n− 1− Is

a

)
a

is−1∑
j=1

pj(1− p)n−1+Is−1 (A.12)

We note the restriction on values is may have: 0 ≤ is ≤ n − Is. The
conditional probability in Equation (A.12) was calculated according to the
following lines.

The dummy variable a indicates the number of nodes at in-distance s
from the tail of the chosen edge. The limit of the first summation is the
same term as the upper expression in the binomial coefficient, represents the
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number of available nodes to choose the m-th stratum from. The summation
and multiplication by a before pj accounts the fact that every node in the
s-th stratum of the In-set can be attached to any number of nodes in the
s − 1-th stratum. The Is−1 term in the exponent of p − 1 represents the
prohibition of edges from the s-th stratum to the lower strata except for the
one right below it. The complementary term for pj would be (1 − p)n−1−j,
but the −j in the exponent is compensated by the prohibition of edges to
the tail of the given edge from all points of the s-th stratum. All subsequent
formulae are derived using similar reasoning.
According to the definition of the conditional probability, we have

p(is, . . . , i0) = p(is|is−1, . . . i0) . . . p(i1|i0)p(i0) (A.13)

Probabilities of ok-s are calculated analogously, with i replaced by o, and
a replaced by b denoting the number of nodes at outdistance s from the head
of the chosen edge.
Calculation of the conditional probability of having an overlap of size l is
recursive. As nodes in the overlapping set share properties of the input and
output sets, exponent of the (1− p) term has to prohibit all shortcuts which
are prohibited from both sets.
The analogue of Equation (A.2) is:

p∗(ls1,s2|is1 , is1−1, . . . , i0; os2 , os2−1 . . . , o0; ls1−1,s2 , . . . , l0,0) =
n−1−Ls1,s2∑
a=ls1,s2

n−1−Ls1,s2∑
b=ls1,s2

(
n− 1− Ls1,s2
a+ b− ls1,s2

)
ab ·

·
is1−1∑
j1=1

os2−1∑
j2=1

pj1j2(1− p)n−1+Is1−1+Os2−1 (A.14)

Possible values of ls1,s2 in Equation (A.14) are restricted as follows: 0 ≤
ls1,s2 ≤ min(is1 , os2). The conditional probability of having excess over the
overlap in the output set is given as:

p%(ls1,s2|is1 , . . . , i0; os2 , . . . , o0; ls1−1,s2 , . . . , l0,0) =
n−1−Ls1,s2−Os2∑

a=ls1,s2

(
n− 1− Ls1,s2 −Os2

a

)
a ·

·
os2−1∑
j=1

pj(1− p)n−1+Os2−1 (A.15)
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Analogously, the conditional probability of the input set being larger than
the overlap is:

p#(ls1,s2|is1 , . . . , i0; os2 , . . . , o0; ls1−1,s2 , . . . , l0,0) =
n−1−Ls1,s2−Os2−Is1∑

b=ls1,s2

(
n− 1− Ls1,s2 −Os2 − Is1

b

)
b ·

·
is1−1∑
j=1

pj(1− p)n−1+Is1−1 (A.16)

The conditional probability of ls1s2 (global analogue of Equation (A.3))
is given as:

p(ls1,s2|is1 , . . . , i0; os2 , . . . , o0; ls1−1,s2 , . . . , l0,0) =

p∗(ls1,s2|is1 , . . . , i0; os2 , . . . , o0; ls1−1,s2 , . . . , l0,0)

p%(ls1,s2|is1 , . . . , i0; os2 , . . . , o0; ls1−1,s2 , . . . , l0,0)

p#(ls1,s2|is1 , . . . , i0; os2 , . . . , o0; ls1−1,s2 , . . . , l0,0) (A.17)

Thus, analogously to the Equation (A.4), using Equation (A.13) and its
analogue for the output set, the joint probability of is1 , os2 and ls1s2 is:

pJ(in−1, . . . , i0, on−1, . . . , o0, ln−1,n−1, . . . , li0,o0) =
n−1∏

k1,k2=0

p(lk1,k2|ik1 , . . . , i0; ok2 , . . . , o0; lk1−1,k2−1, . . . , l0,0) (A.18)

Based on Equations (A.18, A.9, A.10) one derives the marginal probabil-
ity function pM(i, o, l) (which is the global analogue of Equation (A.4)), with
0 ≤ l ≤ min(i, o) and q = n− 1, r = m− 1, uj = uj,j:

x = {xs0 , xs1 − xs0 , . . . , i− xsn−1}
y = {yt0 , yt1 − yt0 , . . . , o− ytm−1}
u = {u0, . . . , l − uq}

pM(i, o, l) =

q,...,q∑
s1=0,...,sq=0

q,...,q∑
t1=0,...,tq=0

s1+t1,...,sq+tq∑
u1=0,...,uq=0

pJ (x,y,u)

(A.19)

then proceeds with the change of variables given in Equations (A.5), and
calculates the marginal probability of x resulting in CDG probability density
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of the same form as the one given in Equation (A.6). pO, the probability
density function of the relative size of the overlapping set is calculated using
the change of variables given in Equations (A.7), in pM(i, o, l). Finally, one
obtains the probability density function of the same form as the one given in
Equation (A.8).

A.2 Model-based analysis of functional dis-

connection in schizophrenia

Figure A.2: Structure of the experimental paradigm is depicted with two
examples of associations presented during encoding/consolidation (“bed” and
“book”) and examples of those locations cued during recall/retrieval.

A.2.1 Experimental subjects

Healthy Controls (n=11; mean age=22 yrs, sd=5; 5 females) and stable early
course schizophrenia patients (n=11; mean age=26 yrs; sd=5; 3 females)
gave informed consent. Groups did not differ in terms of age (p > .10).
Patients were diagnosed using DSM-IV, SCID and consensus diagnosis. All
were on a regimen of atypical anti-psychotics (Risperidone, Olanzapine or
Aripiprazole).

A.2.2 Behavioral paradigm

Subjects alternated between blocks of encoding, rest/rehearsal and retrieval.
During encoding, nine equi-familiar objects with monosyllabic object names
[123] were presented in sequential random order (3s/object; 27 s block length)
in grid locations for naming (e.g. “bed” and “book”). Following a rest
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(a) Encoding phase (b) Retrieval phase

Figure A.3: Activated voxels are shown in light color in these exemplar slices
from data volumes of the fMRI measurement. Picture courtesy of Vaibhav
Diwadkar.

interval (R1; 27 s), memory for object-location pairs was tested using cued
recall (3s/cue). The cycle ended with an additional rest interval (R2; 27
s). Subjects were instructed to respond by naming the object (or saying
“no”) between the end of the current and the beginning of the subsequent
acquisition (1 s; that is when gradients were turned off). Object names were
monosyllabic to minimize head motion. Eight blocks (each cycling between
consolidation, rest and retrieval) were employed. The paradigm is illustrated
in Figure A.2.

A.2.3 fMRI data acquisition

fMRI was conducted on a Bruker MedSpec 4T system with an 8-channel
head coil. 288 T2*-weighted gradient-echo echo-planar images were acquired
(TE=30ms; TR=3s; TA=2s; flip angle = 90◦; acquisition matrix = 64 x 64
voxels; FOV = 240 mm; 24 slices; 3.75 x 3.75 x 4mm). During scanning, vi-
sual stimuli were presented via a projector system controlled by Presentation
(www.neurobs.com).

fMRI data were preprocessed and analyzed in SPM2 using a standard
processing sequence. Images were manually oriented to the AC-PC line.
Following detrending and removal of low frequency components (.008 Hz),
images were realigned to correct for head movement, spatially normalized to
the MNI (Montreal Neurological Institute) template brain, resliced (2 mm3)
and smoothed spatially by a Gaussian filter of 8mm full-width half maximum.
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Activations acquired this way are depicted in Figure A.3. DCM’s were based
on first-level models with eight individual regressors (plus the six motion
parameters used as regressors of no interest). Four regressors represented
the unique effects of each of the epochs of interest, specifically encoding,
R1, retrieval and R2. In addition, time dependent effects on each of these
regressors were represented by convolving them with a linear time-ordered
component. Time series for DCM analyses were extracted for each subject
using a thresholded (p < .05) effects of interest contrast applied in each of
the five regions of interest using stereotactic region-of-interest maps [93].

A.2.4 Model descriptions

Figure A.4: First set of models with varying control stream connections.
Modulatory effects of inputs were applied to all intrinsic connections present.
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Figure A.5: Second set of models with varying modulatory effect of inputs
on control stream connections. Model 24 is equivalent with model 8, and is
fully depicted in Figure 3.2.

A.2.5 Bayesian model averaging

The Bayesian way to compare parameter values between two groups is to
compute an averaged representative model for each, taking into account pos-
terior model probabilities. The results of parameter comparisons based on
Bayesian model averaging are shown in Figure A.6. Parameter matrices of
the averaged model A, B and C were constructed by Bayesian averaging
applying a fixed effects assumption [112].The significant alteration of the
prefronto-hippocampal pathway is also detected by this method, strengthen-
ing the results of Section 3.3.2.
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Figure A.6: Bayesian averaging of model parameters. The analysis shows
weakened prefronto-hippocampal interaction, consistently with the analysis
presented in Section 3.3.2.

A.3 List of abbreviations

Table A.2: All abbreviations used in this dissertation.

Abbreviation(s) Expansion(s)
BAMS Brain Architecture Management System
BOLD blood oxygen level dependent (signal)
cAMP cyclic adenosin monophosphate
CD convergence degree
CoCoMac Collations of Connectivity data on the Macaque brain
DCM Dynamic Causal Modelling, dynamic causal model
DTI diffusion tensor imaging
DSI diffusion spectrum imaging
DSM-IV Diagnostic and Statistical Manual of Mental Disorders, Edition IV.
E, ENC Encoding (experimental condition)
EEG electroencephalography
ER Erdős-Rényi (graph)
fMRI functional magnetic resonance imaging
FOV field of view (of MRI)
HC healthy control (subject group)
HF hierarchical flow
Jacc Jaccard coefficient
KS Kolmogorov-Smirnov (statistical test)
MAP Maximum a posteriori (estimation)
MEG magnetoencephalography
MNI Montreal Neurological Institute (coordinates)
MR, MRI magnetic resonance imaging

Continued on next page
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Table A.2 – continued from previous page
Abbreviation(s) Expansion(s)
NCS-1 neuronal calcium sensor 1
Ovl overlap
PDF probability density function
PET positron emission tomography
PS population spike
PSW preferential small world (graph)
R, RET Recall (experimental condition)
R1, R2 resting period (in experimental paradigm)
ROI Region of Interest
SCID Structured Clinical Interview for DSM-IV
SCZ schizophrenia (subject group)
SP shortest path
SPM Statistical Parametric Mapping (software package)
stn signal transduction network (of proteins in a cell)
T Tesla (magnetic flux density)
T2* weighting method for MR image acquisition
TR acquisition time (of MRI)
TE echo time (of MRI)
TR repetition time (of MRI)
V Visual (experimental condition)
VTc visuo-tactile cortex (of the macaque)
WM working memory
WS Watts-Strogatz (graph)
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Table A.3: Names of all abbreviated cortical areas mentioned in the disser-
tation. For a more detailed description see [49].

Abbreviation(s) Name(s)
AITv Anterior inferotemporal (ventral)
AITd Anterior inferotemporal (dorsal)
CA1 Cornu Ammonis area 1 of the hippocampus
CA3 Cornu Ammonis area 3 of the hippocampus
CITv Central inferotemporal (ventral)
CITd Central inferotemporal (dorsal)
DP Dorsal prelunate
FST Floor of superior temporal
FEF Frontal eye field
HPC, HC Hippocampus
Id Insular disgranular
Ig Insular granular
IT Inferior temporal
MSTd Medial superior temporal (dorsal)
MSTI Medial superior temporal (lateral)
LIP Lateral intraparietal
PFC, PF Prefrontal (dorsolateral)
PIP Posterior intraparietal
PITv Posterior inferotemporal (ventral)
PITd Posterior inferotemporal (dorsal)
PO Parieio-occipital
Ri Retroinsular
SII Sencondary somatosensory
SMA Supplementary motor area
SP Superior parietal
STPa Superior temporal polysensory (anterior)
STPp Superior temporal polysensory (posterior)
TF Temporofrontal
TH Temporal hippocampal
V1,V2,V3,V3a,V4 Visual areas 1, 2, 3, 3a, 4
V4t V4 transitional
VIP Ventral intraparietal
VOT Ventral occipitotemporal
VP Ventral posterior
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Table A.4: Names of all numbered Brodmann areas mentioned in the disser-
tation (only by the number or preceded by an ’A’).

Number Name(s)
1, 2, 3a, 3b Primary somatosensory
4 Primary motor
5, 7a, 7b Somatosensory association
6 Premotor
8 Frontal eye field
9, 46 Dorsolateral prefrontal
10 Anterior prefrontal
11, 12 Orbitofrontal
13, 14 Insular
24 Ventral anterior cingulate
32 Dorsal anterior cingulate
35 Perirhinal
36 Ectorhinal
45 Pars triangularis Broca’s area
47 pars orbitalis, inferior frontal gyrus
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