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Sampling the posterior

Learning the components

Correlations implied by natural statistics
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Conclusions

• Contextual effects on perception are 
formalised in a generative model of 
images

• Sampling from the full posterior 
enables predictions about variance 
and covariance

• The model gives predictions for noise 
correlations between V1 simple cells 
when fitted to natural image statistics

• The model predicts V1 responses to 
illusory contours

• CSM generalises GSM and previous 
component-based image models
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• The visual system is representing a hierarchical generative 
model of the environment.

• V1 simple cell responses are organised by latent variables 

representing higher-order statistics of sensory input.

• The latent structure determining covariance structure of V1 

cells corresponds to Gestalt principles.

• Full Bayesian inference is assumed in the model, 

posteriors are represented by stochastic samples.
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• Generalised Gibbs sampling over the conditional posteriors

• Samples are used to predict membrane potential of cells

• Generalised EM scheme with gradient ascent

• Averaging over posterior samples in the E-step

• Log-likelihood of a restricted set of natural images 
increases with EM-steps

• Each step separates the components from each other 

• CSM model with 10 components using filters from the Olshausen-Field model

• Trained on 24x24 whitened patches from the Van Hateren image database

Estimated
contrast

Responses of two V1 cells
Texture
stimuli

Predicted response to illusory contours

from Lee & Nguyen
PNAS, 2001

• IC responses are elicited 
by top-down effects of 
covariance component 
activations

• Temporal ordering of 
activation in latent layers 
are reproduced by 
sampling the posterior

• Measured firing rate ratios 
are reproduced by a 
synthetic model
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Stimuli

Relation to GSM
• Wainwright & Simoncelli, NIPS, 2000; Orbán et al, Cosyne, 2012.

• GSM defines a prior over V1 co-activations that is constrained to 
second-order statistics

• Here, higher-order statistics is introduced to the prior as a 
weighted mixture of covariance components

• Context-dependent correlations are represented by a latent layer, 
preventing the correlations to average out

Dispersion of learned correlations around the mean over all components

correlation implied by
second-order statistics

V1 co-activation patterns
in pixel space

Relation to component models

• If we reconstruct correlations from learned variances assuming K&L type 
parametrisation, we obtain different correlations than by learning them explicitly
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Variances Correlations

ReconstructedLearned

Correlation
matrix

Correlation
histogram

Localisation
in pixel space

Correlation
matrix

Correlation
histogram

Localisation
in pixel space
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• Orientation tuning is independent of stimulus contrast 
Skottun et al, J Neurophysiol, 1987

• Variance of responses decreases with stimulus contrast 
Churchland et al, Nat Neurosci, 2010.
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• Karklin & Lewicki, Nature, 2008

• CSM explicitly represents contrast, similarly to GSM

• Here, in CSM inference is performed as full posterior 
sampling instead of giving a point estimate of the 
latent values

• Parametrisation allows the independent learning of 
variances and correlations in components
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Percept of the model
in the pixel space
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