&CSNL Sampling in a hierarchical model of images reproduces top-down effects in visual perception
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The Component Scale Mixture
model of images

o The visual system is representing a hierarchical generative
model of the environment.

. V1 simple cell responses are organised by latent variables
representing higher-order statistics of sensory input.

o The latent structure determining covariance structure of V1
cells corresponds to Gestalt principles.

. Full Bayesian inference is assumed in the model,

posteriors are represented by stochastic samples.
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4 Sampling the posterior
® Generalised Gibbs sampling over the conditional posteriors

e Samples are used to predict membrane potential of cells
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¢ COrientation tuning is independent of stimulus contrast
Skottun et al, J Neurophysiol, 1987

* Variance of responses decreases with stimulus contrast
Churchland et al, Nat Neurosci, 2010.
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4 Learning the components

¢ Generalised EM scheme with gradient ascent

® Averaging over posterior samples in the E-step
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* Log-likelihood of a restricted set of natural images
increases with EM-steps

* Each step separates the components from each other
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Relation to GSM

* Wainwright & Simoncelli, NIPS, 2000; Orban et al, Cosyne, 2012.

* GSM defines a prior over V1 co-activations that is constrained to
second-order statistics

* Here, higher-order statistics is introduced to the prior as a
weighted mixture of covariance components

¢ Context-dependent correlations are represented by a latent layer,
preventing the correlations to average out

V1 co-activation patterns correlation implied by
in pixel space second-order statistics
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Dispersion of learned correlations around the mean over all components
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* CSM model with 10 components using filters from the Olshausen-Field model

¢ Trained on 24x24 whitened patches from the Van Hateren image database

Relation to component models
e Karklin & Lewicki, Nature, 2008

® CSM explicitly represents contrast, similarly to GSM Variances  Corelations
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* Here, in CSM inference is performed as full posterior
sampling instead of giving a point estimate of the
latent values
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e Parametrisation allows the independent learning of
variances and correlations in components
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¢ If we reconstruct correlations from learned variances assuming K&L type
parametrisation, we obtain different correlations than by learning them explicitly
Learned Reconstructed
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Example
components
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