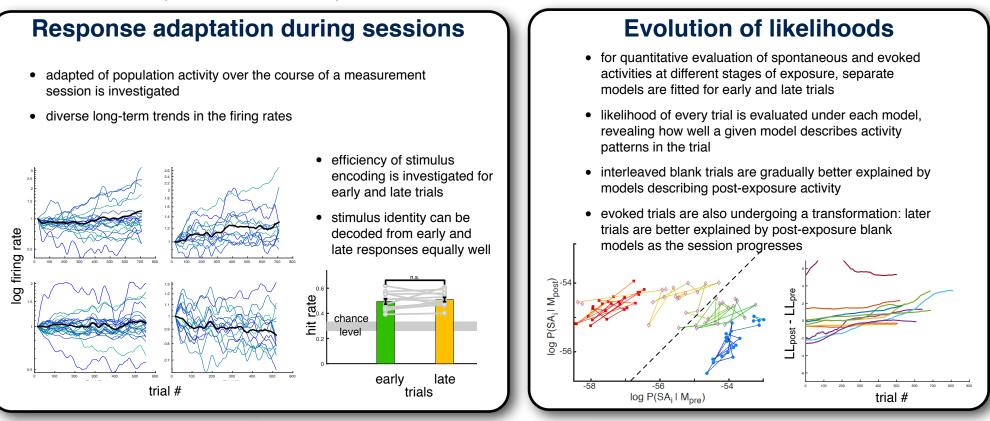


Adaptation of spontaneous activity in V1 to novel stimulus statistics

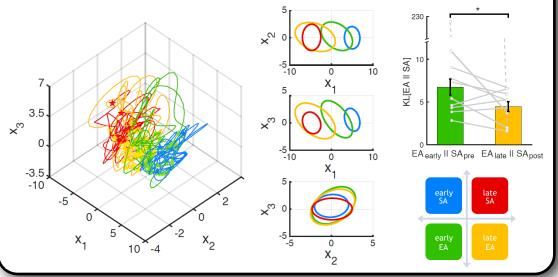
Gergő Orbán^{1,2}, Marcell Stippinger², Andreea Lazar³, Mihály Bányai¹, Wolf Singer³ ¹Computational Systems Neuroscience Lab, MTA Wigner Research Centre for Physics, Budapest, Hungary ²Population Activity Research Unit, MTA Wigner Research Centre for Physics, Budapest, Hungary ³Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany

Experimental paradigm

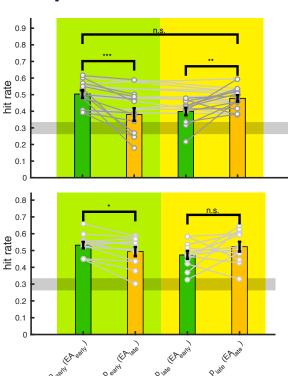
- Awake macaques performing passive viewing task
- Extracellular recordings of multiunit spike trains
- unfamiliar set of stimuli


- Stimulus trials interleaved and flanked by blank trials during a session
- One of the stimuli is overrepresented

Dynamic latent variable models


- Gaussian Process Factor Analysis (GPFA)
- ~20-dimensional spike trains projected into a 5dimensional latent space
- generative model captures within-trial variability
- spontaneous and evoked trials fitted jointly or separately
- Decoding: GPFAs fitted to trials with responses to individual stimuli, and choosing the model for which a test trial's likelihood is maximal

- session is investigated

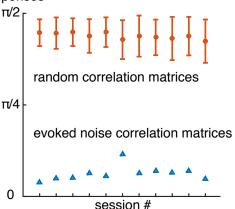

Adaptation in the dynamics of the latent space

- changes in within-trial dynamics during a session are investigated by assessing latent trajectories inferred by GPFA models
- a drift in the latent space is apparent, resulting from the trends in the firing rate in each session
- evoked and spontaneous activities become more similar as the session progresses

Transformation of response statistics

- · transformations in the code are investigated by fitting separate GPFA models to early and late stimulus trials
- decoding of early trials under models fitted to late trials deteriorates compared to decoding the late trials under the same model
- removing the diverse trend from the rates, decoding performance recovers

- vectors 2∕⊔ and f1 ×π/4 between angle


Ernst Strüngmann Institute

in Cooperation with Max Planck Society

Noise correlations

- relationship between the properties of the transformation of response statistics and noise correlations is investigated
- first eigenvector of the noise correlation matrix (λ_1) is calculated (for one particular stimulus) latent factor explaining the higher variance is obtained (f₁)
- principal direction of noise correlations closely matches the direction of the drift of population responses

Conclusions

- during passive viewing sessions, systemic changes occur in the spiking statistics of the macague V1
- stimuli are decodable using a dynamic latent variable model from early and late trials equally well
- evoked activity becomes more similar to spontaneous activity as the session progresses
- decodability suggests that firing rate trends unrelated to the stimulus set are present in the data

Acknowledgements

This work was supported by an MTA Lendület Fellowship and an award from the National Brain Research Program of Hungary (NAP-B, KTIA NAP 12-2-201).