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response distributions

® response properties are determined by stimulus statistics

e stimulus induced responses are affected by expectations

® mean responses correspond to (independent) features of (natural) stimuli

e selectivity for orientation, frequency and phase

® cross-orientation suppression

¢ mean responses of V1 simple cells are predicted by activations in an image model effective in

compression and denoising
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Uncertainty and variability/covariability

e ambiguity is an inherent property of observations, not only sensory noise, implying uncertainty
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mputation with ambiguous input

® a point estimate is not enough, not even together with a confidence estimate - optimal

behaviour requires computation with values other than the most probable as well

¢ probability distributions encode all information that the animal possesses about a quantity

Sampling theory
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® every source of perceptual uncertainty implies variability in the responses

e variability can be predicted if we regard the time course of membrane potentials as a

stochastic process producing samples from the probability distribution of latent features

implied by the observation at hand

e changes in response variability in relation to stimulus contrast may be predicted via sampling
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¢ \/1 neuron responses are primarily related to the stimulus through their receptive field properties

¢ We wish to capture higher-order statistics of V1 responses, and correlations of the responses
depend heavily on context, thus a single covariance matrix is hot enough

e (Gestalt principles are encoded as a set of covariance matrices, and their weighted sum constitutes
the noise covariance of V1 cells

e A feature of natural images is the presence of an independent contrast variable

e Stochastic evolution of the membrane potential is derived from sampling the probability distribution
of latent variables implied by the stimulus

Predictions of the model about V1 variability

¢ |ncreasing stimulus contrast decreases response variance: Churchland et al, Nat neurosci, 2010.

e \/1 activations should be sparsely distributed: Vinje & Gallant, Science, 2000.
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Predicting the response to illusory contours

Stimulus

e To compare model responses to
experimental results with IC a test
stimulus is constructed

e Bottom left: stimulus

e Bottom right: percept defined by V1

simple cell activations, projected back in

the stimulus space

Firing rates

e Simulated membrane potential responses

stimulated V1 cell Gestalt-activated V1 cell

to the stimuli are obtained from the model

¢ Non-stimulus-evoked activity in V1 follows

the activation of higher-level areas

¢ The model reproduces the magnitude

ratio of response rates to real contours, V1 cell from irrelevant Gestalt

higher-level cell

|ICs and background

Vm, arbitrary units

e Mean spike count in V1 as a response to

different stimuli in receptive field from Lee %M%

& Nguyen, PNAS, 2001.

Latencies in activation 30

e | ee & Nguyen: response to ICs arrives with an additional latency of 25|

55 ms compared to real contours
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* |n the model, responses in cells that are not activated by the stimulus,

but a top-down signal, lag behind by about 40 ms
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e The temporal order of evoked responses in V1 and V2 is reversed

average spikes in 125 ms
&)

with ICs compared to lines. The model predicts evoked response in

o))

higher-level cells that precede activation in V1 cells with RFs at the IC

No IC

Line IC

Predicting correlations and variances

e Specific values may be predicted by learning the component parameters from a set of stimuli that
is statistically typical to the animal (normally natural images)

¢ | earning performance of an iterative parameter fitting scheme is demonstrated with synthetic data

Proposed experimental paradigms

¢ Top-down effects on response variances become comparable to predictions if all stimuli are
contrast-controlled
e Top-down effects on noise correlations may be predicted by the model using stimuli in which IC

strength is controlled




