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The source

What is the source of the
extracellular potential?

I' A T
The membrane current! al

Which membrane current? 'T
dXla

I(r, t) = I (r, t) + (1, 1)

The source of the EC potential 1s
the sum of the capacitive
and resistive currents




The source

The capacitive current is: IC
s av
g dt I T Y
Substituting back : o g (e
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In voltage clamp:

T de_I =0
m dl_ T
Thus,

=

In voltage clamp, 7, 1s

measurable, but the

extracellular potential 1S The sum of I » is not zero, but the
generated by the net

membrane current / not / :

sum of Iis zero for the whole cell!



The rule

Generation of the extracellular potential patterns 1s
governed by the Poisson equation:

20 Vir) OVARIROK(r) =I(r)
Ox° Oy NN, - O
The forward problem:

Calculating V while 7 1s known: modelling

VVvi(r)

The 1inverse problem:
Calculating 7 while V 1s known: analysis



The forward problem

Original current source , :
density distribution The Green-function method

provides the solution.
The discretised form:
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In case of a linear probe and cell
T can be calculated as:
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Original current source
density distribution

t Sink

= /.ero

lSource

o Multi Electrode
Array

o

potential

o

cortical depth

¥
¥
¥
¥
k
¥
¥
¢
¥
¥
¥
¥
¥
t
t
¥

cell—elctrode distance

- Sink

3

potential




Equivalent
dipole modeling
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The inverse problem

Determination of transmembrane currents, flowing on the
neurons, based on the extracellular potential patterns.

:82V(r) . o' V{r) 62V(r):—l(r)
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This requires the solution of the Poisson inverse problem.
In order to perform the second derivation, the tull 3D
potential distribution should be known, with spatial resolution
comparable to the size of the sources.



The inverse problem

The 3D potential distribution can not be measured, since a
3D electrode array would cause significant tissue damage.

Without this, the inverse SOIGHONNS fidt unique !
What could be done?

Based on a priory knowledge about the source, the prober
solution could be chosen among the infinitely many
possible ones.



The traditional CSD method

Discretising and neglecting the derivatives in the
unknown dimensions leads.to the traditional CSD
method:

— V4
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a
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Implicitly we assumed, that the orthogonal
derivatives are negligible, 1.e. there are large
homogeneous laminar sources.
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Micro-electro imaging:
Determination of cortical and synaptic
layers and synaptic dynamics based
on extracellular multi-electrode
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Micro-electro imaging

The gray mater of the brain
Dense tissue of the neural processes

An average neuron receives 15000
input synapses from other neurons,

but in some cases it grows up to
500000.



Micro-electro imaging

Synapse: communications between neurons

Opening of the ion channels due to
binding of the neurotransmitter
molecules initiates a wave of
currents on the membrane.

An average neuron receives 15000
input synapses from other neurons,

but in some cases it grows up to
500000.



Micro-electro imaging

A single simulated synaptic pulse
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Even a single current pulse into the simulated neuron generates
quite complex spatio-temporal pattern of extracellular potential



Micro-electro imaging

Current source : :
density distribution f Micro electrode arrays
on the cell

f Sink
0
lSource

By chronically implanted micro electrode arrays,
the EC potential of the neurons can be monitored
during awake behaving animals.
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on a micro electrode array




Current source
density distribution

on the cell

The output of the neurons

f R filtered recordings, representing the output of
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The EC potentials of the individual neurons
are easily recognizable on the high pass



Current source

density distribution
on the cell
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The output of the neurons

Extracellular potential pattern — |() ¢
on a micro electrode array

The spikes of the individual neurons can be
distinguished based on the different signal
form and relative amplitudes.
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Micro-electro imaging

Current source
density distribution The output of the neurons
on the cell
Each neuron generates a specific spatio
temporal potential pattern (marked with
different colors)
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Extracellular potential pattern
on a micro electrode array




Current source
density distribution
on the cell
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The problem

The dendritic integration is relatively well
understood.

It is possible toumeasure and identify the
output of the individual neurons.

BUT

We have no clue of that what spatio temporal
synaptic current patterni’emerges on the
dendrites from the integration of enormous
number synaptic input impulses.

There is no proper measuring technique!

Without knowing the inputs, understanding
the elementary computation performed by
individual synapses is hopeless.

Extracellular potential pattern
on a micro electrode array



Current source ; :
density distribution The idea
on the cell
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Source reconstruction by inverse methods:
Inverse solution of the Poisson-equation
under special constrains which incorporates
our a priori knowledge to the solution and
(/ = makes it unigue.

'Autofociis’ algorithm for position estimation
of the neurons
Analogous to the ultra resdltition microscopy,

where objects can be resolved beyond the
Nyquist limit

Extracellular potential pattern
on a micro electrode array
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What is essential, is invisible to the eye
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Spatio- temporal
dynamics of the

action potentials

New fine details revealed by
the application of the new

SCSD method

Besides apical, basal back-
propagation became
observable.
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Initiation and spreading of the action potential
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An opportunity for indirect verification
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Micro-electro imaging

Time [ms]

Results

Space [mm]
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2 dimensional, 256 channel electrode system

256 channel

(3} T -1

32*50um

8*300 Pm

Made possible parallel monitoring of the
many subareas of the hippocampus and
cc. 100 sorted and identified neurons.




Micro-electro imaging

Micro-electro anatomy

r%- "r* 1000 2000

T=5000  T=10000  T=50000

Layer structure of the hippocampus are revealed under the assumption,
that the channels in the same layer receive similar synaptic inputs, but
with different temporal delays. Thus coherence and the coherence based

clustering could reveal the anatomical layers.



Micro-electro imaging

Micro-electro anatomy

The high frequency power map
show the somatic layers, which
corresponds to the positions of
the sorted individual neuros. The
fusion of this high frequency
power map with the result of the
coherence clustering resulted a
detailed layering map of the
hippocampus. This electro-
anatomical map corresponded
well to the tissue histology.

Berenyi et al. J Neurophysiology
2014
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Micro-electro imaging

Micro-electro anatomy:
512 channel electrode system in the neocortex

Coherence




Micro-electro imaging

Theta

SPW

Two Inputs of one neuron

We have first demonstrated directly, that the same (inter)neuron rei:eives
synaptic inputs on different pathways during two different oscillatory (and

information processing) stages of hippocampus.
Nat. Reviews Neurosci. 2012, 13(6) 407-20



Micro-electro imaging

Inputs of a neurons from different layers
A CA3 pyramid neuron (#56)

The colors of the curves on the right show
the spike triggered average EC potential of
the corresponding cluster above. We can
identify the EC signs of the input and the
post-synaptic effect of the output as well.




Micro-electro imaging
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Micro-electro imaging
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Micro-electro imaging

Inputs of a neurons from different layers
A CAT1 interneuron (#8)

The colors of the curves on the right show
the spike triggered average EC potential of
the corresponding cluster above. We can
identify the EC signs of the input and the
post-synaptic effect of the output as well.




Micro-electro imaging

Inputs of a neurons from different layers
A DG neuron (#36)

The colors of the curves on the right show
the spike triggered average EC potential of
the corresponding cluster above. We can
identify the EC signs of the input and the
post-synaptic effect of the output as well.
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Micro-electro imaging

Inputs of a neurons from different layers
A CA1 pyramid neuron (#86)

The colors of the curves on the right show
the spike triggered average EC potential of
the corresponding cluster above. We can
identify the EC signs of the input and the
post-synaptic effect of the output as well.
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