Sources and sinks on single neurons

Zoltán Somogyvári

Wigner Research Centre for Physics of the Hungarian Academy of Sciences
Department of Theory
The source

What is the source of the extracellular potential?

The membrane current!

Which membrane current?

\[I(r, t) = I_R(r, t) + I_C(r, t) \]

The source of the EC potential is the sum of the capacitive and resistive currents
The source

The capacitive current is:

\[I_C = C_m \frac{dV_m}{dt} \]

Substituting back:

\[C_m \frac{dV_m}{dt} = -I_R + I \]

Thus:

\[I = \frac{\partial I_{\text{axial}}}{\partial x} \approx \frac{\partial^2 V_m}{\partial x^2} \approx -\frac{\partial^2 V_{EC}}{\partial x^2} \]

Assuming sealed ends:

\[\sum I = 0 \]
In voltage clamp:

\[C_m \frac{dV_m}{dt} = I_C = 0 \]

Thus,

\[I = I_R \]

In voltage clamp, \(I_R \) is measurable, but the extracellular potential is generated by the net membrane current \(I \) not \(I_R \).

The sum of \(I_R \) is not zero, but the sum of \(I \) is zero for the whole cell!
The rule

Generation of the extracellular potential patterns is governed by the Poisson equation:

\[\nabla^2 V(r) = \frac{\partial^2 V(r)}{\partial x^2} + \frac{\partial^2 V(r)}{\partial y^2} + \frac{\partial^2 V(r)}{\partial z^2} = -\frac{I(r)}{\sigma_e} \]

The forward problem:
Calculating \(V \) while \(I \) is known: modelling

The inverse problem:
Calculating \(I \) while \(V \) is known: analysis
The forward problem

The Green-function method provides the solution.

The discretised form:

\[V_i = \frac{1}{4\pi \sigma_e} \sum_{j=1}^{N} \frac{I_j}{|r_i - r_j|} \]

In matrix formalism:

\[V = T I \]

In case of a linear probe and cell \(T \) can be calculated as:

\[T_{ij} = \frac{1}{4\pi \sigma_e} \frac{1}{\sqrt{(x_i - x_j)^2 + d^2}} \]
Parallel EC and IC recordings in a hippocampal slice
Relation between EC and IC

Simulated spatio-temporal patterns, generated by a single synaptic pulse

Time
I_R resistive membrane current

Time
V_m membrane potential

Time
I_m net membrane current, CSD

Time
V_{EC} extracellular potential
The forward problem

Original current source density distribution

Sink
Zero
Source

T(d)

Multi Electrode Array
Equivalent dipole modeling
Are neural monopole currents possible?

The inverse problem

Determination of transmembrane currents, flowing on the neurons, based on the extracellular potential patterns.

\[\nabla^2 V(r) = \frac{\partial^2 V(r)}{\partial x^2} + \frac{\partial^2 V(r)}{\partial y^2} + \frac{\partial^2 V(r)}{\partial z^2} = -\frac{I(r)}{\sigma_e} \]

This requires the solution of the Poisson inverse problem. In order to perform the second derivation, the full 3D potential distribution should be known, with spatial resolution comparable to the size of the sources.
The inverse problem

The 3D potential distribution can not be measured, since a 3D electrode array would cause significant tissue damage. Without this, the inverse solution is not unique!

What could be done?

Based on a priori knowledge about the source, the proper solution could be chosen among the infinitely many possible ones.
Discretising and neglecting the derivatives in the unknown dimensions leads to the traditional CSD method:

\[I_i = \frac{-V_{i+1} + 2V_i - V_{i-1}}{dx^2 \sigma_e} \]

Implicitly we assumed, that the orthogonal derivatives are negligible, i.e. there are large homogeneous laminar sources.
Discretising and neglecting the derivatives in the unknown dimensions leads to the traditional CSD method:

$$I_i = \frac{-V_{i+1} + 2V_i - V_{i-1}}{dx^2 \sigma_e}$$

Implicitly we assumed, that the orthogonal derivatives are negligible, i.e. there are large homogeneous laminar sources.
Micro-electro imaging: Determination of cortical and synaptic layers and synaptic dynamics based on extracellular multi-electrode potential measurements

Zoltán Somogyvári

Research Centre for Physics of the Hungarian Academy of Sciences
Department of Theory
Micro-electro imaging

The gray mater of the brain

Dense tissue of the neural processes

An average neuron receives 15000 input synapses from other neurons, but in some cases it grows up to 500000.
An average neuron receives 15000 input synapses from other neurons, but in some cases it grows up to 500000.

Opening of the ion channels due to binding of the neurotransmitter molecules initiates a wave of currents on the membrane.
Even a single current pulse into the simulated neuron generates quite complex spatio-temporal pattern of extracellular potential.
Micro-electro imaging

Current source density distribution on the cell

T(d)

Micro electrode arrays
By chronically implanted micro electrode arrays, the EC potential of the neurons can be monitored during awake behaving animals.

Sink
0
Source

Extracellular potential pattern on a micro electrode array
The output of the neurons

The EC potentials of the individual neurons are easily recognizable on the high pass filtered recordings, representing the output of the neurons.
Micro-electro imaging

Current source density distribution on the cell

Sink
0
Source

The output of the neurons

The spikes of the individual neurons can be distinguished based on the different signal form and relative amplitudes.

Extracellular potential pattern on a micro electrode array

T(d)

10 ms
Each neuron generates a specific spatio temporal potential pattern (marked with different colors)
The problem

The dendritic integration is relatively well understood.

It is possible to measure and identify the output of the individual neurons.

BUT

We have no clue of what spatio temporal synaptic current pattern emerges on the dendrites from the integration of enormous number synaptic input impulses.

There is no proper measuring technique!

Without knowing the inputs, understanding the elementary computation performed by individual synapses is hopeless.
The idea

Source reconstruction by inverse methods: Inverse solution of the Poisson-equation under special constrains which incorporates our a priori knowledge to the solution and makes it unique.

'Autofocus' algorithm for position estimation of the neurons

Analogous to the ultra resolution microscopy, where objects can be resolved beyond the Nyquist limit
What is essential, is invisible to the eye

1-5% relative amplitudes are typically significant
Spatio-temporal dynamics of the action potentials

New fine details revealed by the application of the new SCSD method

Besides apical, basal back-propagation became observable.
Some signs of forward propagation appears.
Initiation and spreading of the action potential
An opportunity for indirect verification

Henze et al. J. Neurophysiol. 2000: Action potentials can be measured from 200μm distance, but reaches the 60 μV amplitude only in 60μm vicinity, which is required for the successful spike sorting.

We assumed a priori, that d<200 μm

The result: max(d)=72 μm
We showed, how the action potential is generated and spread back to the apical and basal dendrites and propagates along the myelinated axon.
2 dimensional, 256 channel electrode system

Made possible parallel monitoring of the many subareas of the hippocampus and cc. 100 sorted and identified neurons.
Layer structure of the hippocampus are revealed under the assumption, that the channels in the same layer receive similar synaptic inputs, but with different temporal delays. Thus coherence and the coherence based clustering could reveal the anatomical layers.
The high frequency power map show the somatic layers, which corresponds to the positions of the sorted individual neuros. The fusion of this high frequency power map with the result of the coherence clustering resulted a detailed layering map of the hippocampus. This electro-anatomical map corresponded well to the tissue histology.

Berényi et al. J Neurophysiology 2014
Micro-electro imaging

Micro-electro anatomy:
512 channel electrode system in the neocortex
We have first demonstrated directly, that the same (inter)neuron receives synaptic inputs on different pathways during two different oscillatory (and information processing) stages of hippocampus.

Nat. Reviews Neurosci. 2012, 13(6) 407-20
The colors of the curves on the right show the spike triggered average EC potential of the corresponding cluster above. We can identify the EC signs of the input and the post-synaptic effect of the output as well.
Micro-electro imaging

Acknowledgement

István Ulbert, MTA TTK
Antal Berényi, NYU
Szegedi Egyetem

György Buzsáki, NYU
Lisa Roux, NYU
John Long, NYU
Micro-electro imaging

Acknowledgement

Péter Érdi
Fülöp Bazsó
László Négyessy
Dorottya Cserpán
László Zalányi
Zsigmond Benkő

Theoretical Neuroscience and Complex Systems Research Group
The colors of the curves on the right show the spike triggered average EC potential of the corresponding cluster above. We can identify the EC signs of the input and the post-synaptic effect of the output as well.
The colors of the curves on the right show the spike triggered average EC potential of the corresponding cluster above. We can identify the EC signs of the input and the post-synaptic effect of the output as well.
Micro-electro imaging

Inputs of a neurons from different layers

A CA1 pyramid neuron (#86)

The colors of the curves on the right show the spike triggered average EC potential of the corresponding cluster above. We can identify the EC signs of the input and the post-synaptic effect of the output as well.