
Spatial and environmental factors of vector spreading
and distribution

Solymosi Norbert

3/10/2018

mailto:Solymosi.Norbert@gmail.com


Environmental effects
Geographical distribution

Vector (poikilotherm)
Agent of vector-borne disease

Stanek et al., The Lancet
Vector-borne course (3/10/2018) 2 / 25



Epidemiology Definitions

Epidemiology is the study of disease in populations and of factors that
determine its occurrence; the key word being populations.
Epidemiology is concerned with the prevention and control of disease in
human and animal populations. Veterinary epidemiology additionally
includes the investigation and assessment of other health-related events,
notably productivity.
Ojectives of epidemiology:

determination of the origin of a disease whose cause is known
investigation and control of a disease whose cause is either unknown
or poorly understood
acquisition of information on the ecology and natural history of a
disease
planning, monitoring and assessment of disease control programmes
assessment of the economic effects of a disease, and analysis of the
costs and economic benefits of alternative control programmes
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Epidemiology Definitions

Incidence
Incidence is the number of new cases that occur in a known population
over a specified period of time. Cumulative incidence: the ratio between
the number of animals that conctracted the disease in a certain period and
the number of healthy animals at risk in the population at the start of that
period.

Week No. of new cases CI
1 20 0.20
2 15 0.35
3 10 0.45
4 5 0.50
5 1 0.51

Incidence rate: the ratio between the number of new cases of disease in a
population during certain period and the sum of the time-units at risk for
all animals in the population at risk.

51
(20 ∗ 0.5 + 15 ∗ 1.5 + 10 ∗ 2.5 + 5 ∗ 3.5 + 1 ∗ 4.5) + (49 ∗ 5) = 0.157
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0118.9237.8356.7475.6 0 118.9 237.8 356.7 475.6
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Epidemiology Definitions

Prevalence

Prevalence represents the fraction of existing cases in a population:
the ratio (d/(d + f )) between the number of diseased animals (d)
and the total number of animals at risk (d + f )
the probability that a randomly-choosen animal is diseased

Point prevalence is the proportion of infected individuals in a defined
population at a given time point.

Period prevalence is the proportion of infected individuals in a defined
population found over a specified time period.
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Epidemiology Misclassification

Misclassification

Case definition based on different diagnostic methods, qualitative or
quantitative tests.
Quantification of misclassification:

Diseased Not diseased
Test + TP FP
Test - FN TN

Sensitivity: the probability that a truly diseased animal will be
classified as diseased. SE = TP/(TP + FN)
Specificity: the probability that a truly non-diseased animal will be
classified as non-diseased. SP = TN/(FP + TN)
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Epidemiology Misclassification

Hepatitis B virus test
Andrew got a tattoo. Two months later he was refused as a blood donor.
The phlebotomist explained that he had to wait a year to make sure he
didn’t get hepatitis B from the tattoo. That got him worried, so he ordered
a home test kit for hepatitis B virus (HBV) from a website. The website
said that the sensitivity of the test was 0.99 and the specificity was 0.995.
Hepatitis B is rare among those who are not intravenous drug users –
about 2 cases per 100,000 people. Studies suggest that getting a tattoo
from an operator who follows accepted hygenie standards does not greatly
increase the risk. Let’s assume that Andrew believed that his risk was
about 3 in 100,000.
If Andrew expect 10 million people as population at risk, then about 300
would have HBV, and the rest would not. As we know HBV test has 99%
sensitivity, which means that it will catch 99% of the HBV cases (297 of
the 300 cases) and miss the rest. The test has 99.5% specificity, which
means that 99.5% of the noninfected people will test negative, but 0.5%
of them will be false positives.
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Epidemiology Misclassification

Hepatitis B virus test

HBV + HBV −
∑

Test + 297 49,998 50,295
Test − 3 9,949,702 9,949,705∑

300 9,999,700 10,000,000

Suppose Andrew tests negative. There are 9,949,705 people like him –
negative. Of these only 3 have HBV, so there are 3 chances in 9,949,705
(about 1 in 3.3 million) that a person who tests negative actually is
infected.
On the other hand, suppose Andrew tests positive. There are 50,295
people like him – positive. Out of this group, only 297 really do have HBV
(about 1 of 170). That means that even if Andrew tests positive, there is
still only about 0.6% chance that he is actually infected.

Another example: http://yudkowsky.net/rational/bayes
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Epidemiology Misclassification

Prevalence

Apparent (PA): the probability that a randomly-choosen unit of
observation will test positive

P̂A = x/n
Bayesian estimation:

n/N ≤ 0.1: x ∼ binomial(n,PA)
n/N > 0.1: x ∼ hypergeometric(N, n,PA)

Diagnostic misclassification:
Sensitivity: p(+|Infected) 6= 100%
Specificity: p(−|Not infected) 6= 100%
Rogan-Gladen estimator:

P̂T = (P̂A + Sp − 1)/(Se + Sp − 1)

Bayesian binomial:

x |PA, Se, Sp ∼ binomial(n,PTSe + (1− PT )(1− Sp))
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Epidemiology Misclassification

Prevalence

x = 2, n = 60, Se = 0.3, Sp = 0.96, N = 675
Rogan-Gladen estimator: P̂T = (P̂A + Sp − 1)/(Se + Sp − 1) =
(2/60 + 0.96− 1)/(0.3 + 0.96− 1) = −0.026
Bayesian approach accounts uncertainity of PT , Se, Sp:

95% certain that Se < 0.5 and Sp > 0.94
Beta prior distributions
Posterior distributions

P̂T = 0.02, 95% credible interval 0 − 0.456
Ŝe = 0.29, 95% credible interval 0.11 − 0.52
Ŝe = 0.96, 95% credible interval 0.94 − 0.98
97.5% certain PT < 0.456
58% certain population is infected
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Ŝe = 0.29, 95% credible interval 0.11 − 0.52
Ŝe = 0.96, 95% credible interval 0.94 − 0.98
97.5% certain PT < 0.456
58% certain population is infected

Vector-borne course (3/10/2018) 9 / 25



Epidemiology Misclassification

Prevalence

x = 2, n = 60, Se = 0.3, Sp = 0.96, N = 675
Rogan-Gladen estimator: P̂T = (P̂A + Sp − 1)/(Se + Sp − 1) =
(2/60 + 0.96− 1)/(0.3 + 0.96− 1) = −0.026
Bayesian approach accounts uncertainity of PT , Se, Sp:

95% certain that Se < 0.5 and Sp > 0.94
Beta prior distributions
Posterior distributions

P̂T = 0.02, 95% credible interval 0 − 0.456
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Ŝe = 0.96, 95% credible interval 0.94 − 0.98
97.5% certain PT < 0.456
58% certain population is infected

Vector-borne course (3/10/2018) 9 / 25



Epidemiology Misclassification

Prevalence

x = 2, n = 60, Se = 0.3, Sp = 0.96, N = 675
Rogan-Gladen estimator: P̂T = (P̂A + Sp − 1)/(Se + Sp − 1) =
(2/60 + 0.96− 1)/(0.3 + 0.96− 1) = −0.026
Bayesian approach accounts uncertainity of PT , Se, Sp:

95% certain that Se < 0.5 and Sp > 0.94
Beta prior distributions

0.0 0.2 0.4 0.6 0.8 1.0

Sensitivity

0.0 0.2 0.4 0.6 0.8 1.0

Specificity

0.0 0.2 0.4 0.6 0.8 1.0

True Prevalence

Posterior distributions
P̂T = 0.02, 95% credible interval 0 − 0.456
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Epidemiology Misclassification

Prevalence – tools

http://www.univet.hu/users/jreiczig/prevalence-with-se-sp.html

http://www.ausvet.com.au/content.php?page=software
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Epidemiology Misclassification

Prevalence – tools

Thomas Bayes (1702 – 1761)

p(θ|x) = p(x |θ)
p(x) × p(θ)

http://www.mrc-bsu.cam.ac.uk/bugs/

http://www.epi.ucdavis.edu/diagnostictests/software.html#PrevalenceEstimation
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Epidemiology MOSS

Monitoring and Surveillance Systems (MOSS)

Monitoring: Systematic, ongoing or repeated, measurement, collection,
collation, analysis, interpretation and timely dissemination information of
animal health related data without an associated pre-defined plan of
(control) action

Surveillance: Systematic, ongoing or repeated, measurement, collection,
collation, analysis, interpretation and timely dissemination of animal health
related data, essential for describing hazard occurrence and for the
planning, implementation, and evaluation of risk mitigation (control)
measures
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Epidemiology Sampling

Sampling

Census: if all animals in a population are investigated.

If a survey is designed well, then a reasonably accurate and acceptable
estimate of a variable can be made by examining some of the animals in
the relevant population; that is, a sample.

The target population is the total population about which information is
required.

The study population is the population from which a sample is drawn.

The study population consists of elementary units, which cannot be
divided further.

A collection of elementary units, grouped according to a common
characteristic, is a stratum.
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Epidemiology Sampling

Sampling

Main types of sampling:
non-probability sampling in which the choice of the sample is left to
the investigator;
probability sampling in which the selection of the sample is made
using a deliberate, unbiased process, so that each sampling unit in a
group has an equal probability of being selected; this is the basis of
random sampling. Types:

simple random sampling
systematic sampling
stratified sampling
clustered sample (one, two and multi stage)

Sample size calculation:
Presence, prevalence study: misclassification
Survey Toolbox: http://www.ausvet.com.au/content.php?page=softwarest

WinEpiscope: http://www.clive.ed.ac.uk/winepiscope/
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Spatial epidemilogy History

John Snow
(1813-1858)

Vector-borne course (3/10/2018) 13 / 25



Spatial epidemilogy Objectives

The objectives of spatial epidemiology:
disease mapping
description of spatial patterns
explanation or prediction of disease risk

Fundamental to these objectives is the need for data which, in addition to
the classical data attribute information describing the characteristics of the
entity studied, require the availability of georeferenced feature data, be
they points or areas:

Attribute data:
Tables, text files
Databases: relational and hierarchical

Georeferenced feature:
Vector graphical maps (points, lines, polygons)
Raster, pixel graphical maps
Databases: relational and hierarchical
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Spatial epidemilogy Objectives

Mapping
Pattern analysis
Ecological analysis

Point
Choropleth
Isopleth
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Spatial epidemilogy Clustering

Regular Random Clustered

”cluster” is an unusual aggregation, real or perceived, of health events that
are grouped together in time and space (CDC July 27, 1990 /

39(RR-11);1-16)
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Spatial epidemilogy Clustering

Methods

Global clustering methods:
Aggregated data

Geary’s c
Moran’s I

Point data
Cuzick-Edwards’ k-nearest neighbour test
Ripley’s K-function
Rogerson’s cumulative sum (CUSUM) method

Space-time
Barton’s test
Ederer-Myers-Mantel (EMM) test
Jacquez’s k nearest neighbours test
Knox test
Mantel’s test
Space-time k-function
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Moran’s I

I = n
∑n

i=1
∑n

j=1 wij(xi − x̄)(xj − x̄)
(
∑n

i=1(xi − x̄)2)
(∑∑

i 6=j wij
)

Spatial distribution Geary’s c Moran’s I

Clustered 0 ≤ c < 1 I > 0
Random c = 1 I = 0
Uniform 1 < c < 3 I < 0
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Cuzick-Edwards’ k-nearest neighbour test
For each case, the test counts how many of the k-nearest neighbours are
also cases, such that if there are n1 cases, and mi (k) represents the
number of cases among the k nearest neighbours of case i so that
0 ≤ mi (k) ≤ k, for i = 1, . . . , n1, a test statistic Tk can be calculated as:

Tk =
n1∑

i=1
mi (k)

Thus, when cases are clustered, the nearest neighbour to a case tends to
be another case and Tk will be large. However, when all cases have
controls as their nearest neighbours Tk will be zero. The observed value of
Tk can be compared with the distribution of values computed using Monte
Carlo randomization of the dataset.
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Spatial epidemilogy Clustering

Methods

Local clustering methods:
Aggregated data

Getis and Ord’s local Gi(d) statistic
Local Moran test

Point data
Openshaw’s Geographical Analysis Machine (GAM)
Turnbull’s Cluster Evaluation Permutation Procedure (CEPP)
Besag and Newell’s method
Kulldorff’s spatial scan statistic

Space-time
Kulldorff’s space-time scan statistic
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Local Moran test
The local Moran test detects local spatial autocorrelation in aggregated
data by decomposing Moran’s I statistic into contributions for each area
within a study region. Termed Local Indicators of Spatial Association
(LISA), it’s statistic for each area is calculated as:

Ii = Zi

n∑
j,j 6=i

wijZj

where Zi and Zj are the observed values in standardized form, and wij is a
spatial weights.
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Kulldorff’s spatial scan statistic
Gradually scanning a window across time and/or space, noting the number
of observed and expected observations inside the window at each location.
The window with the maximum likelihood is the most likely cluster, that is,
the cluster least likely to be due to chance. Scan statistics use a different
probability model depending on the nature of the data. A Bernoulli,
discrete Poisson or space-time permutation model is used for count data.
The standard purely spatial scan statistic imposes a circular window on the
map. The window is in turn centered on each of several possible grid
points positioned throughout the study region. For each grid point, the
radius of the window varies continuously in size from zero to some upper
limit specified by the user. In this way, the circular window is flexible both
in location and size. In total, the method creates an infinite number of
distinct geographical circles with different sets of neighboring data
locations within them. Each circle is a possible candidate cluster.
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Focused clustering methods
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Spatial epidemilogy Clustering

Tools

Geographic Information Systems (GIS)
Visualization (e.g. Google Earth)
Geoprocessing tools
Data management procedures
Quantum GIS (http://www.qgis.org/)

Spatial analysis, modelling
R with packages e.g. spdep, splancs, Dcluster
(http://www.r-project.org/)
SaTScan (http://www.satscan.org/)
ClusterSeer
(http://www.biomedware.com/?module=Page&sID=clusterseer)
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Clustering studies Human Granulocytic Ehrlichiosis

Human granulocytic ehrlichiosis (HGE)
The symptoms of HGE may include a sudden high fever, headache,
muscle aches (myalgia), chills, and a general feeling of weakness and
fatigue (malaise) within a week or so after initial infection.
The agent of HGE is most closely related to Ehrlichia phagocytophila,
which infects sheep and cattle, and E. equi, which causes disease in
horses.
HGE is transmitted to humans by the tick vector, Ixodes scapularis
surveillance system for HGE was established in 1997 in a 12-town area
around Lyme, Connecticut, USA
During the 4 years of surveillance (1997–2000), the average annual
incidence of confirmed cases of HGE in the 12-town area was 42 cases
per 100,000 persons.
Cluster analysis (Kulldorff spatial scan statistic) was performed with
the default maximum spatial cluster size of ≤ 50% of the population
and again with a smaller maximum cluster size of ≤ 25% to look for
possible subclusters.
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Clustering studies Human Granulocytic Ehrlichiosis

a. Confirmed human
granulocytic ehrlichiosis
(HGE) cases identified
through active and passive
surveillance systems,
1997–2000;
b. Raw annualized incidence
of confirmed HGE cases by
town, 1997– 2000*;
c. Raw annualized incidence
of confirmed HGE cases by
census block group*;
d. Smoothed annualized
incidence of confirmed HGE
cases by census block group.
*per 100,000 persons
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Clustering studies Human Granulocytic Ehrlichiosis

a. Single identified cluster of human granulocytic ehrlichiosis (HGE) cases within the
12-town area (maximum cluster size 50% total population), relative risk (RR)=1.8,
p=0.001; b. Two identified clusters of HGE cases within the 12-town area (maximum
cluster size 25% total population): primary cluster: RR=2.6, p=0.001, secondary
cluster: RR=2.6, p=0.16.
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p=0.001; b. Two identified clusters of HGE cases within the 12-town area (maximum
cluster size 25% total population): primary cluster: RR=2.6, p=0.001, secondary
cluster: RR=2.6, p=0.16.

Reference
Emma K. Chaput, James I. Meek, and Robert Heimer (2002) Spatial
Analysis of Human Granulocytic Ehrlichiosis near Lyme, Connecticut.
Emerging Infectious Diseases Vol. 8, No. 9, 943-948
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Clustering studies La Crosse Virus infection in West Virginia

La Crosse virus is a major cause of pediatric encephalitis in the United
States (genus Orthobunyavirus, family Bunyaviridae)
The virus is transmitted to humans through the bite of infective
mosquitoes, the primary vector being the eastern tree-hole mosquito,
Aedes triseriatus, though two invasive species, the Asian tiger
mosquito, Ae. albopictus, and the Asian bush mosquito, Ae.
japonicus, have been incriminated as possible secondary or bridge
vectors and both species are known to feed on humans.
Cases reported to the West Virginia Department of Health from 2003
to 2007, 81 were 15 years or younger, of which 68 had data available
on the location of their primary residence.
Statistically significant global clustering was detected at the county
and census tracts with global Moran’s I values of 0.4986 (p = 0.0001)
and 0.2935 (p = 0.0001), respectively.
Similarly, by Kulldorff’s Spatial Scan Statistic statistically significant
local clusters (p < 0.05) of high-risk were detected at both the
county and the census tract levels
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Clustering studies La Crosse Virus infection in West Virginia

The unsmoothed and smoothed cumulative incidence of La Crosse virus infections at the county and census tract levels in
children 15 years and younger. The distribution of unsmoothed risk of La Crosse virus infections at the county (A) and the
census tract levels (C) for West Virginia. The distribution of spatial empirical Bayesian smoothed risk for La Crosse virus
infections in West Virginia at the county (B) and the census tract levels (D).
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Clustering studies La Crosse Virus infection in West Virginia

Spatial clustering of La Crosse virus infection risk at the county and census tract levels in children 15 years and younger. These
maps show the significant high-risk clusters for La Crosse virus infection in West Virginia at the county (A) and at the census
tract levels (B) detected by Kulldorff’s Spatial Scan Statistic. RR = relative risk.
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Reference
Andrew D Haddow, Danae Bixler, Agricola Odoi (2011) The spatial
epidemiology and clinical features of reported cases of La Crosse Virus
infection in West Virginia from 2003 to 2007. BMC Infectious Diseases,
11:29
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Clustering studies Bovine hypodermosis in Belgian cattle herds

Warble flies (Hypoderma spp.) are common parasites of cattle in the
Northern Hemisphere. Infestations of cattle with the larvae of this fly
cause serious damage to hides and occasional deaths (due to
anaphylactic shock or toxaemia or damage to the central nervous
system or oesophagus).
Survey was carried out in 390 selected herds of all types (dairy, mixed
and beef) from December 1997 to March 1998, which were included
in a national infectious bovine rhinotracheitis and paratuberculosis
(Johne’s-disease) survey. All animals >24 months old were blood
sampled and an ELISA was used on pooled serum samples (10
animals per pool).
An ELISA to detect antibodies against Hypoderma bovis and
Hypoderma lineatum infections was developed to screen cattle; the
ELISA uses individual sera, pooled sera of up to 10 animals or milk
The herd seroprevalence was 48.7% (95% confidence interval:
43.6–53.8); positive herds were mainly in the south of the country
and along the North Sea coast.
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Clustering studies Bovine hypodermosis in Belgian cattle herds

The most likely cluster based on the
spatial scan statistic represented negative
herds (relative risk (RR) 0.29, P = 0.001)
in the provinces of Antwerp and Limburg.
There are three significant secondary
clusters:

East of Belgium (province of Liége, Herve,
German border) with RR 1.88 (P = 0.001)
compared to the surrounding area, and 45
cases (23.96 expected) out of a population
of 49.

Province of Hainaut (west of Wallonia),
RR = 1.84 (P = 0.001), 35 cases (19.1
expected) out of 39.

Province of East-Flanders (along the
North Sea), RR = 0.20 (P = 0.006), three
cases (15.2 expected) out of 31.

Serological hypodermosis herd infection status and kernel
estimate of positive density of infected holdings: A,
Antwerp; B, Brussels; L, Liége; N, Namur.
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Clustering studies Yersinia pestis in California coyotes

Zoonotic transmission of sylvatic plague caused by Yersinia pestis
occurs in California, USA. Coyotes are ubiquitous throughout
California and can become infected by the agent. Carnivores are
involved in the plague cycle as potential carriers of infective fleas to
other rodent populations. Canids appear to be highly resistant to
infection with Y. pestis
The geographic distribution of 863 coyotes tested was examined
between 1994-1998.
It was 11.7% of specimens positive to Y. pestis
Y. pestis was more prevalent in eastern portions of the state
Cuzick-Edward’s test as global tested
Spatial scan statistic for localization
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Clustering studies Yersinia pestis in California coyotes

Location of coyotes sampled (left) and testing positive to Y. pestis (right),
and location of clusters.
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Location of coyotes sampled (left) and testing positive to Y. pestis (right),
and location of clusters.

Reference
B.R Hoar, B.B Chomel, D.L Rolfe, C.C Chang, C.L Fritz, B.N Sacks, T.E
Carpenter (2003) Spatial analysis of Yersinia pestis and Bartonella vinsonii
subsp. berkhoffii seroprevalence in California coyotes (Canis latrans).
Preventive Veterinary Medicine 56, 299–311
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Clustering studies Plasmodium falciparum in Gezira state, Sudan

Data from surveys undertaken in January each year from 1999-2009
in 88 villages in the Gezira state were assembled. During each survey,
about a 100 children between the ages two to ten years were sampled
to examine the presence of P. falciparum parasites.
Spatial-only and space-time clustering, Kulldorff scan statistic
Over the study period, 96,022 malaria slide examinations were
undertaken and the P. falciparum prevalence was 8.6% in 1999 and by
2009 this had reduced to 1.6%.
The cluster analysis showed the presence of one significant
spatial-only cluster in each survey year and one significant space-time
cluster over the whole study period. The primary spatial-only clusters
in 10/11 years were either contained within or overlapped with the
primary space-time cluster.

Vector-borne course (3/10/2018) 23 / 25



Clustering studies Plasmodium falciparum in Gezira state, Sudan

Map of Gezira state showing
the location of the state
capital (Wad Madani) in
relation to the national capital
(Khartoum), the distribution
of settlements in Gezira and
the location of the distribution
of 88 survey locations where
the P. falciparum prevalence
surveys were undertaken from
1999-2009. Inset is the state
map of the Sudan showing the
location of Gezira state.
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Clustering studies Plasmodium falciparum in Gezira state, Sudan

Location of the
space-time primary
cluster (Kulldorff
statistic was
significant at P <
0.01, shaded) of P.
falciparum prevalence
in Gezira state from
1999 to 2009. Shown
also are the spatial
only primary clusters
for each year (circles
with broken red
boundaries). Except
for the spatial-only
cluster in 2007
(northwest of Gezira,
on the western side of
the Blue Nile), all
other spatial-only
clusters either.
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clustering of Plasmodium falciparum infection over eleven years in Gezira
State, The Sudan. Malaria Journal 9:172
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Clustering studies West Nile in the continental United States

West Nile virus (WNV) is a vector-borne illness that can severely affect
human health. After introduction on the East Coast in 1999, the virus
quickly spread and became established across the continental United States.
To quantify spatially and temporally variations, Kulldorff’s spatial scan
statistic and Anselin’s Local Moran’s I statistic was used, uncovering spatial
clustering of human WNV incidence at the county level in the continental
United States from 2002–2008.
The spatial scan and Local Moran’s I statistics revealed several consistent,
important clusters or hot-spots with significant year-to-year variation.
In 2002, before the pathogen had spread throughout the country, there were
significant regional clusters in the upper Midwest and in Louisiana and
Mississippi.
The largest and most consistent area of clustering throughout the study
period was in the Northern Great Plains region including large portions of
Nebraska, South Dakota, and North Dakota, and significant sections of
Colorado, Wyoming, and Montana.
In 2006, a very strong cluster centered in southwest Idaho was prominent.
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Clustering studies West Nile in the continental United States

WNV human incidence
by year. Each panel
shows the number of
human WNV cases per
100,000 people for a
single year or for all of
the years combined.
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Clustering studies West Nile in the continental United States

Counties of the US with regards to how many years each county had higher than
expected rates of human WNV incidence.
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Clustering studies West Nile in the continental United States

SaTScan results for 2003 at
various population
thresholds. Results of
running the spatial scan
statistic with varying
population limits for human
WNV incidence in the
continental United States for
2003 are shown. Blue
indicates areas with low rates
of human WNV incidence
and red represents areas with
high rates of human WNV
incidence.
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Clustering studies West Nile in the continental United States

Results of the SaTScan
analyses at 1%, 2%, and
5% population
thresholds overlain on
the Local Moran’s I
analyses using 100 km,
300 km, 600 km, and
1000 km distance
thresholds.
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Clustering studies West Nile in the continental United States

Results of the SaTScan
analyses at 1%, 2%, and
5% population
thresholds overlain on
the Local Moran’s I
analyses using 100 km,
300 km, 600 km, and
1000 km distance
thresholds.

Reference
Ramanathan Sugumaran, Scott R Larson and John P DeGroote (2009)
Spatio-temporal cluster analysis of county-based human West Nile virus
incidence in the continental United States. International Journal of Health
Geographics, 8:43
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Misclassification – spatial aspect

West Nile virus infections among dead birds sampled from the 30
public health units of southern Ontario in 2005

Overall a total of 272 out of 1017 dead birds were screened for WNV
antibodies and found positive.

Lindsay et al. (2003): sensitivity 83.9% and specificity 93.6%

Stone et al. (2005): sensitivity 82.1% and specificity 100%

Ontario Ministry of Health and Long-Term Care (MOHLTC, 2007):
sensitivity 85% and specificity 95%

Rogan and Gladen estimator
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Misclassification – spatial aspect

Choropleth maps of observed (a) and true (b) West Nile virus dead bird mortality in southern
Ontario 2005 with disease clusters identified by the circular spatial scan statistic.

In (a) the large circle indicates the location of a single cluster in the observed mortalities and is
based on a maximum cluster population size of 50%. The two smaller circles correspond to
clusters identified with a maximum cluster population 30% or 40%.

In (b) the two circles indicate cluster location in the true mortalities as with a maximum cluster
population size of 50%, 40% or 30%.
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