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Determination of causal effects In time series

Is there any possibility to identify directed
causal relationships from two data series,
with unknown origin, without further
experimentation?

We surely can measure correlation, but
correlation and causality

are different things. Moreover correlation is a
symmetrical relation

while causality can be unidirectional.

Is there a way to infer the
directional causality,

to distinguish the bidirectional
(circular) causality or to reveal
hidden common cause?




Granger-causality

The original idea of
predictive causality
came from Norbert

Wiener

x -y, if the inclusion
of past x values
Improves the

prediction quality on y

Clive Granger implemented
It via autoregressive linear
models in 1969

Nobel price in
Economic Sciences 2003




Problems with the Granger-causality
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It is sensitive to the model used for the prediction. The limitations of
linear autoregressive models can be ameliorated by using nonlinear
extensions, kernel solutions or model free transier entropy method.

But, the predictive causality principle can not reveal circular

causal relationships!
The predictive causality measures the information added by the second

time series, but in case of circular coupling, the information contained

by the second data series is already available in the system's own past.
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Cross Convergence Map:
A new framework for causality analysis
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A new model-free approach, : - -
Sromising: Detecting Causality in

Complex Ecosystems

. i i .
Detection of circular Causa“ty George Sugihara,’* Robert May,” Hao Ye,* Chih-hao Hsieh,?* Ethan Deyle,”

¢ DeteCtion Of nonlinear COUpling Michael Fogarty,* Stephan Munch’
Science 338, 496 (2012)

It utilizes the Taken's time
delay embedding theorem:

The trajectory reconstructed
In the state space Is
topologically equivalent

With the trajectory of the
system's original trajectory in
Its real space.

x(t) = [X(@).X(t-7),X(t-27)]



Cross Convergence Map:
A new framework for causality analysis
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« Sugihara’s method is based on  Detecting Causality in
that the consequence is an Complex Ecosystems
observation of the cause, thus . 2 . s .
George Sugihara,™ Robert May,” Hao Ye,” Chih-hao Hsieh,”* Ethan Deyle,
the cause can be reconstructed  michael Fogarty,* stephan Munch®
from the consequence. Science 338, 496 (2012)

 Points that are neighbors in the
state-space of the consequence
should be neighbors in the state
space of the cause as well.

* This topology preserving
property can be tested by the
Cross mapping method.

) = [X{®),X(t-7),X(t-271)]



Our first model system: The logistic map

e r— - - E—— e —

_ o fﬁ% | R e
Xt+1_r Xt(l-xt) fg‘ : | %x/-x 0.8 | ﬁﬁ _ xgx . ’fﬂxxx
| | | | XED.B g : S }%{ 1 ;0:4 B _g 2{; : -
A one dimensional, discreet-time "o 5% N .
dynam?cal system implementing I I 2_ %
stretching an folding ;5 oy T
transformations. 02 o4 o5 o
. . . . 1'0 -
It can exhibit different dynamical . " W
behavior, from stable fixpoint, 0.8 N "' | \(
through periodic oscillations to i
chaos, depending on the x°‘6 W |
parameter r. e Ul \
i U
0.2+ Nk\\‘&
0.0 T R [ e s Y e (i s AR U | |

\
4 26="2.8 =30 3.r2 34 36 38 4.0

We choose r = 3.8 which ensures chaotic behavior.



wo coupled logistic maps

Case |.: Circular, nonlinear coupling

+byxyn yn+1=ryyn((1-yn) )
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r,=3.8 so both maps are in the chaotic regime



Phase-space reconstruction based on delayed maps
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Xn+1= rxXn((l-Xn)-I- byxyn) yn+1=ryyn((1-yn)+ bxyxn)

Slooolololop
2R WELE D o

Reconstructed state-space from the Reconstructed state-space from the
first data series in 3 embedding dimension second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space.



Existence of a diffeomorphism
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In case of causal connections, the reconstructed manifold
sholud be topologically equivalent according to the Takens' theorem.
But, how to test it?

o2ocpoColobop
SO WE L ® 0w o

Reconstructed state-space from the
second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space.



Sugihara's method: Convergent Cross mapping

Choose a point!

Slooolololop
2R WELE D o

Reconstructed state-space from the Reconstructed state-space from the
first data series in 3 embedding dimension second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space



Sugihara's method: Convergent Cross mapping

Find its neighborhood!

o2ocpoColobop
SO WE L ® 0w o

Reconstructed state-space from the Reconstructed state-space from the
first data series in 3 embedding dimension second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space.



Sugihara's method: Convergent Cross mapping

The images of the neighbors remained close to each other and
to the image of the original point

Find the same time points in the other state space

Slooolololop
2R WELE D o

Reconstructed state-space from the Reconstructed state-space from the
first data series in 3 embedding dimension second data series in 3 embedding dimension

Lets do it for many points! If the neighbors in the first space are neighbors
In the the second space as well, then the second variable is causal to the

first one.



Sugihara's method: Convergent Cross mapping

In case of circular causality the mapping should work in both directions!

o2ocpoColobop
SO WE L ® 0w o

Reconstructed state-space from the Reconstructed state-space from the
first data series in 3 embedding dimension second data series in 3 embedding dimension

Let us do it into the other direction!



Sugihara's method: Convergent Cross mapping

Let us do it into the other direction!

The chosen point

S2coofoPolop
SO WE L ® 0w o

Reconstructed state-space from the Reconstructed state-space from the
first data series in 3 embedding dimension second data series in 3 embedding dimension



Sugihara's method: Convergent Cross mapping

Let us do it into the other direction!

The/ neighborhood

S2ocoeSofofopR
SCOHMNMWE AR D o

Reconstructed state-space from the Reconstructed state-space from the
first data series in 3 embedding dimension second data series in 3 embedding dimension



Sugihara's method: Convergent Cross mapping

The mapping worked well into both directions!
This is the sign of circular causality.

Mapping

[}
S2ocoeSofofopR
2PN WREE D o

Reconstructed state-space from the Reconstructed state-space from the
first data series in 3 embedding dimension second data series in 3 embedding dimension



Cross mapping in case of unidirectional interactions
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Case Il.: Unidirectional, nonlinear coupling

yn+1=ryyn(1-yn)

The cause

While the . the cause resulted an
only 1D manifold in the 3D embedding space!



Cross mapping in case of unidirectional interactions
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Mapping works well from consequence to cause

The cause

While the . the second dataset resulted
an only 1D manifold in the 3D embedding space!



Cross mapping in case of unidirectional interactions
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But spread out in the other direction!

The cause

The mapping worked well from x to y but failed from y to x, showing,
that v is causal to x but x Is not causal to y.



Delayed cross map function
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We have extended Sugihara’s method for time-dependent
and delayed connections. The method was tested on simulated
coupled dynamical systems. Peaks positions on the negative
axis mark the correct delay times.

The method precisely:

o Qase I _ iIdentified the direction and
Unidirectional coupling  the delay of the coupling: XY

/ Delay: 0
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Delayed cross map function

The peak of the cross map functions follows precisely the delay of the effect

X-Y

Case I:
Unidirectional coupling / Delay: 5
Delay: 5 |
_""""I""y'""I""I""""_
* ‘ “ 0’9_ Driver Driven :
Chaotic Exponetial 0.8
oscillator Decay !
0,6

Causality
B e e
~ in

X(t+1)=3.8X(t)(1-X(t))
Y(t+1)=0.8Y(t)+F(X(t-delay))

— A~ (1-X)10 . .
F(X)=et™ Non-linear coupling
20! L1 I-15 L1 l_lOl 1 -5 Ol 5

Time Delay [sample]




Delayed cross map function
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The positive axis marks the anti-causal direction of the time shifts.
This effect is stronger in deterministic systems and in case of strong
couplings. In these cases, the future of the driven system can be

predicted from the cause as well.

Case l: XY
Unidirectional coupling / Delay: 10
Driver Driven

Delay: 10 e e T
* > “ o9} )
Chaotic Exponetial 038 :
oscillator Decay 07 :
>‘0,6_ _
X(t+1)=3.8X(t)(1-X(t)) g0
S 041
Y(t+1)=0.8Y (t)+F(X(t-delay)) 03]

F(X)=e™"  Non-linear coupling 0,1
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Delayed cross map function
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In case of bidirectional coupling, the peak positions mark the correct
delay times in both directions. The coupling coefficients could be
different, and the delays could be the same or different into the two

directions.
X-Y Delay: 1

||||||||

\

Delay: 1

Driver

Chaotic P€'@Y: 1 chaotic
oscillator oscillator
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Causality
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X(t+1)=3.8X(t)(1-X(t)+Y(t-delay))

=
[O8]

Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay))  *|

0,1

Non-linear coupling
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Delayed cross map function
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In case of bidirectional coupling, the peak positions mark the
correct delay times in both directions. The coupling coefficients
could be different, and the delays could be the same or different

Into the two directions.

X-Y Delay: 5
e V/Y*XDelay:S
. 05f Driver Driven -
Delay: 5 il ; % :
. 071 B 7
Chaotic P€'2V: 3 Chaotic A !
oscillator oscillator = ;
g0
S0, i
X(t+1)=3.8X(t)(1-X(t)+Y (t-delay)) "ol
Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay)) Zj &

Non-linear coupling
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Delayed cross map function
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In case of bidirectional coupling, the peak positions mark the
correct delay times in both directions. The coupling coefficients
could be different, and the delays could be the same or different

Into the two directions. |
Y- X Delay: 15 X*Y Delay: 10
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Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay))
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LFP vs 10S

Epileptiform activity was evoked by

low Mg+ environment in vivo slice e
preparation. The local field potential 400
was recorded together with the -~

intrinsic optical signal (10S), which
IS possibly a result of swelling of
cells during over excitation.
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During the long (1 hour) recording, epileptiform bursts appeared with
increasing frequency. Parallel, the optical reflectance (and the transmittance)
of the tissue changes for visible light, without any additional dying. The
process is clearly activity dependent, but slow.
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University
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Physiology and
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The faster component
were inverted
comparing reflected
and transmitted light,
while the slow
component was
negative both cases.

Different mechanisms:
I10S low — absorbtion

IOS high — transmittance
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LFP vs 10S : 15
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LFP-10OS cross correlation
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The instantaneous correlation is nearly zero, the cross correlation
function has two significant peaks: a higher negative one at -2s (LFP
leads) and a smaller positive one at +2.5s (IOS leads). This could be
the sign of a well delayed interaction.



Delayed cross map function
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Instead:

Delayed Cross Map function shows a
causal effect from LFP to |1OS with
500ms delay, corresponding to 1
sample time for |OS.

Although, the time scale of the two
signals were very different, the
unidirectional causal effect was
revealed.

Causality
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Causality

Correlation

Delayed cross map function
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The causal relationship was significant and independent from the form of
evoking the epileptic activity.
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Log IOS
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Time evolution of the coupling
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exponentially
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Strength of causality increased with the
Increasing frequency of the epileptic
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Reverse engineering
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The 10S time series was reconstructed, based on the LFP recording with
high precision during the 1h long session.



Reverse engineering
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dIOSh _ , IOSh(t)
” =W (t)*xLFP"— T
Where:

W(t)=W *xe™

The same model, with
different parameters
describes the 4AP activity
as well.
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Intra- and inter hippocampal
connectivity during seizure

In order to find out the
lateralization of the
seizure onset, two
near-hippocampal
electrodes inserted
through the foramen
ovale into the lateral
ventricles.

Péter Halasz

l:-:-g;-:_'_.:g:__' e
“’T‘It i

Daniel Fabo

oK1t
National Institute of
Clinical Neurosiences Mérta Virdg  Virdg Bokodi




Intra- and inter hippocampal
connectivity during seizure

. . o
From the 2*6 channel Flausalltx

bilateral hippocampal
potential recordings
2*4 channel CSD
were calculated.

The causality analysis
were applied to the
temporal derivative of
the CSD.

The connections
which were active
before the seizure
stops, but new, more
extended connection
structure emerges
during the seizure.
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Intra- and inter hippocampal
connectivity during seizure

e S e
Causality

During seizure, the
intra-hippocampal
connections emerged
and spread out for
larger distances, while
the inter-hippocampal

connections dropped T Time >
down —Onset -~ _
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The connection
structure before and
during the seizure
was very conservative
through different
seizures in this
patient. t t
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Causality between the hippocampal layers

caz DG \\ ‘\?-/6‘
o

Applying Sugihara’s causality analysis method to the layer mean CSD, we showed, that there were
significant changes in the causal connections between layers and subfields of the hippocampus, between
theta and SPW-R. Thickness of the dark blue lines show the connection strength. During theta oscillation,
the granular layer of DG were driven by the outer two third of the str. moleculare, (entorhinal perforant
path). In contrast, during sharp-wave, the inner third of the str. moleculare (septal and commissural input)
was shown to drive the granular and hilar layers. Parallel, the causal connection between CALl str.
lacumosum-moleculare and str. Radiatum is much stronger during theta, while the connection between
CA1 rad and pyr is much stronger during SPW-R. The method were more sensitive to the more direct and
bidirectional dendritic-somatic connections, than the connections through axon bundles, but relative
changes could be high in those cases as well.



Causality between the hippocampal layers

okozat SPW Theta Diﬁerence:
123 456 7 89 1 23 456 7 8 9 SPW-Theta
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Causality analysis on LFP was quite useless, presumably because of the electric crosstalk. In contrast CSD
channels were much more independent and applicable for causality analysis. While the color shows the

connection strength, numbers in the boxes show the delay of the effect in time step (using 2kHz subsampled
data)



Summary |. QD = O
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* A new causality analysis method was extended to be by time and delay
dependent

* It was tested on simulated time series and applied to different types of
neural data.

* In vitro slice preparation during evoked epileptic activity, the causal
effect from LFP towards the 10S was captured, although the sampling
frequency was 500 times lower for 10S than LFP.

* The delay time of causal effect did not corresponds to the peaks of the
cross correlation functions, actually the correlation was negligible at the
delay time of the causal effect.

» Based on the causality analysis, a formula was developed describing
the temporal evolution of the of the IOS and its dependence on LFP.



Summary |I. D = O
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 In human epileptic patients foramen ovale recordings, abrupt changes

appeared in the connection structures at the initiation of the seizure.

* The connection patterns were conservative through different seizures.

« Some intra hippocampal connections stopped working at the seizure
onset, while the majority of the intra hippocampal connections spread
along the hippocampus and get stronger. Inter hippocampal connections

dropped down during seizure.



Revealing hidden common cause

Neither Granger’s nor Sugihara’s method is able to detect

the existence of a hidden common cause or distinguish it

YA

Zsigmond Benkd

from the direct interaction.
We have developed a new method which can!
It is based on the joint dimension measure:

X 4
Time)zeries X Joint state-space ‘f’:“
B - Adam Zlatniczky
t t \ X Joint dimension
Time delay t D
embedding Y J
Time series \
y

Andras Telcs



How to measure the dimension of the manifold?

——— “——— - ————

N(r) = NO-rD
Ln o,
Ni+1
[ =
Ln /i
7;'+1

Let’s take two radii and count the number of points within
the spheres: the exponent of the increase with respect to

the radius gives us the dimension.



Revealing hidden common cause

Key point: the cause does not increases the dimension of the consequence
In the joint space, the information is already there!

Xn+1=rxxn((1-xn)+byxyn) yn+1=ryyn(1-yn)

[Xn;xn+1;xn+2] [Xn;xn+1;yn]

The consequence The cause and the consequence
together in the joint space

The consequence formed a 2D manifold both in its own and the together with the

cause in the joint state space. The lack of dimensionality increase in the joint
dimension is the sign of the existing causal link (x depends on y).



Revealing hidden common cause

Xn+1=rXXn((1-Xn)+byxyn) yn+1=ryyn(1-yn)

[Yni¥ns1i¥ne2l [Vni¥nesX,]
The cause The cause and the consequence
together in the joint space

The cause formed a 1D manifold in its own, but a 2D manifold together
with the conseguence in the joint state space. The dimensionality
Increase In the joint state space is the sign of the independence (x
contains different information compared to y, thus x does not cause V).



® O
Revealing hidden common cause \@/

et  —

Causal cases and the relations between the single and the joint dimensions:
Independence: X1y = D=D+D
t J X Y
Unidirectional causality: X =y, = Dj = Dy< D + Dy
Circular causality: Xey = D=D=D

Common cause: X, Y, - Max(Dx,Dy)< Dj <D + Dy

The type of the causal connection can be revealed by measuring the

relations between the joint and the individual dimensions.



2 - Joining manifolds

3 - Estimating dimensions

Estimated manifold dimensions for different ball sizes
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6 — Calculating causal relation probabilities

(A) Direct cause

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

04

0.2

0.0

(B) Circular cause

4 - Bootstrapping
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Test Il. Coupled Lorentz systems

Lorenz attractor

* 3 Lorenz systems: X, Y, C
« * [Each subsystem has 3 coordinates

. * They are related through the
first coordinates by a coupling

5 10 -20

5 20 Causal relation probabilities

The system is defined by the following
differential equations:

(A) Direct cause (B) Circular cause

Xlzg(XZ_X1>+my—>x<X2_y1>+mz-)x(x2_zl>

x2=x1(p—x3)—x2
X3= X, X,—P X;

S X-Y XoY xer XeCaY XLy

Y1:0()’2_Y1)+mx->y(J’2_X1)+mz->y()’2_z1) SN -

Y2:.V1(p_J’3>_.V2
Y3s=Y1Y,— By,

61:O(C2_C1)

C2=C1(p—C3)—C2
C3=C,C,—pcy

0.0
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX




Test lll. Analysis of EEG during fotostimulation:

* We computed the CSD at P3 and P4 (didn’t use

Pz)

 Analyzed the concatenated

stimulation periods \

baseline

O

During baseline

there was an
unidirectional coupling
from C4 to C3.

While during

stimulation, the
analysis resulted in

=
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Preliminary application: localization the origin of the epilepsy

The 20-year-old patient suffered
from a drug resistant epilepsy with
frequent seizures.

The finding of a cortical dysplasia
(at GrF4 electrode site) raised the
possibility of the surgical treatment

GrB6 and GrF4 were only slightly involved (red ellipses). Based on the
pronounced seizure activity, and the sensitive position of GrB6, only the frontal
and orbitobasal parts were cut (purple signs).

Interictal Seizure

FbB3
GrF4
MWMWMMWNW i

GrB6

0.0 2.5 5.0 7.5 10.0 25 15.0 175 20.0 0.0 2.5 5.0 7.5 10.0 25 15.0 175 20.0
t (sec) t (sec)



Preliminary application: localization the origin of the epilepsy

Connection probabilities during interictal period
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Preliminary application: localization the origin of the epilepsy

Connection probabilities during ictal period
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