
Functional analysis of cortical activity 
statistics

Mihály Bányai 
banyai.mihaly@wigner.mta.hu 

http://golab.wigner.mta.hu/people/mihaly-banyai 

Neuroinformatics 2018.

mailto:banyai.mihaly@wigner.mta.hu
http://golab.wigner.mta.hu/people/mihaly-banyai


Computational Systems Neuroscience Lab

• Wigner Research Centre for Physics 

• Department of Computational Sciences 

• modelling of neural computations 

• modelling human behaviour 

• http://golab.wigner.mta.hu/



Variability in the activity of neurons

• Only noise?

• Does only the 
average response 
matter?

• Can we predict the 
statistics of the 
responses?

• Could the nervous 
system use this 
variability for 
something?

V1 membrane potential variability

Finn et al, Neuron 2007; Churchland et al, Nat Neurosci 2010
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window over the duration of the trial. The 
Fano factor has been used extensively to 
characterize neural variability (for example, 
see refs. 17–19). The Fano factor is influenced 
both by variability arising from spiking noise 
and by across-trial variability in the under-
lying firing rate20. Most prior work assumes 
that the underlying firing rate is similar 
across trials and uses the Fano factor to 
assess the statistics of spiking noise, which 
are roughly Poisson (Fano factor 1) for 
most of cortex. We began with the assump-
tion that spiking noise is roughly Poisson and 
we used the Fano factor to assess across-trial 
 variability in the underlying rate. We inter-
preted a Fano factor greater than 1 as being 
an indication of across-trial firing-rate vari-
ability. We interpreted changes in the Fano 
factor as reflecting changes in across-trial 
firing-rate variability9,20,21. Although this 
approach assumes Poisson spiking noise, 
it is reasonably robust to violations of that 
assumption (it is sufficient that spiking-noise 
variance scale linearly with the mean; the 
slope needn’t be unity). To begin, we exam-
ined how the Fano factor behaves across a 
variety of cortical areas.

We computed the mean firing rate and the 
Fano factor for ten datasets from seven cortical  
areas of the macaque monkey (Fig. 3): V1, V4, 
MT, the lateral intra-parietal area (LIP), the 
parietal reach region (PRR), dorsal premotor 
cortex (PMd) and orbitofrontal cortex (OFC). Responses were to 
 various visual stimuli or, for OFC, to juice reward. For each area, the 
Fano factor was averaged across neurons and conditions. This is similar 
to what was done for the membrane potential analysis and reflects both 
a desire for statistical power and the expectation that variability may 
change for both preferred and nonpreferred stimuli (as in Fig. 2a,b).

In every case, stimulus onset drove a decline in firing-rate vari-
ability as assessed by the Fano factor (all P < 0.02). This is notable, 
given the diversity of areas, stimuli and behavioral states. Variability 
declined during responses to simple visual stimuli, during operantly 

conditioned responses (PRR and PMd) and during reward-driven 
responses (OFC). The variability decline was present regardless of 
whether the monkey was anaesthetized (V1 and two of the four the 
MT datasets; Fig. 3, bottom), passively viewing (V4) or performing 
a task (the other six datasets). For two of the MT datasets (Fig. 3,  
bottom), stimulus onset occurred in two stages: pattern onset and 
motion onset. Both events drove a decline in variability, although only 
the more effective moving stimulus drove a sustained decline.

We previously proposed that declining variability in premotor  
cortex is related to the progress of motor preparation9. The changes 
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Figure 3 Changes in firing-rate variability for 
ten datasets (one per panel). Insets indicate 
stimulus type. Data are aligned on stimulus 
onset (arrow). For the two bottom panels  
(MT area/direction and MT speed), the dot 
pattern appeared at time zero (first arrow)  
and began moving at the second arrow. The 
mean rate (gray) and the Fano factor (black  
with flanking s.e.) were computed using a  
50-ms sliding window. For OFC, where response 
amplitudes were small, a 100-ms window was 
used to gain statistical power. Analysis included 
all conditions, including nonpreferred. The 
Fano factor was computed after mean matching 
(Fig. 4). The resulting stabilized means are 
shown in black. The mean number of trials  
per condition was 100 (V1), 24 (V4),  
15 (MT plaids), 88 (MT dots), 35 (LIP),  
10 (PRR), 31 (PMd), 106 (OFC), 125 (MT direction 
and area) and 14 (MT speed).

370 VOLUME 13 | NUMBER 3 | MARCH 2010 NATURE NEUROSCIENCE

A R T I C L E S

 behavioral state. The decline was also present in the correlated firing-rate  
variability of neurons recorded using implanted multi-electrode arrays. 
Finally, we determined how recently developed methods, when applied 
to simultaneous multi-electrode recordings, can reconstruct the vari-
able evolution of firing rates on individual trials.

RESULTS
Across-trial variability in the membrane potential
Stimuli and task events can alter the structure and correlation13 of 
membrane-potential variability. In particular, visual stimuli drive 
a reduction in membrane potential (Vm) variability in cat primary 
visual cortex (V1) that is largely independent of stimulus orienta-
tion3,4. We re-analyzed previously reported data4 to determine the 
time course of this effect (Fig. 2). Stimulus onset drives an immediate 
decline in Vm variability. This decline occurs even for nonpreferred 
stimuli that elicit little change in mean Vm (see also refs. 3,4). Average 
variability (across all neurons and conditions) declined rapidly fol-
lowing stimulus onset and then remained at a rough plateau (Fig. 2c). 
The variability in question was across-trial variability, with a fairly 
long autocorrelation. When Vm was low (or high), it tended to stay 
low (or high) for tens to hundreds of milliseconds.

The relationship between intracellularly recorded Vm variability 
and extracellularly recorded firing-rate variability is likely to be 
 complex, given the nonlinear and dynamic relationship between  

Vm and firing rate (for example, considerable Vm variability 
occurs below threshold). One nevertheless expects across-trial  
Vm variability to produce across-trial firing-rate variability. A larger 
question is whether the observed decline in variability is specific to V1 
or whether it reflects a broader phenomenon. The latter is suggested 
by both the presence of a similar effect in premotor cortex9,10 and 
recent theoretical work11,12.

Addressing these issue requires quantifying firing-rate variability 
in extracellular recordings. Although quantifying Vm variability is 
straightforward, quantifying firing-rate variability is more compli-
cated. Extracellularly recorded spike trains are usually described in 
terms of an underlying firing rate (often termed ) observed via a 
noisy point process (for example, Poisson) that produces spikes. 
It should be stressed that this conception captures the statistics of 
neurons embedded in a network14,15; spike generation at the axon 
hillock is not responsible for the noisy spiking-process statistics16, 
nor is firing rate synonymous with membrane potential. Instead, 
the underlying firing rate can be thought of as the average response 
of many similarly tuned neurons or as the average response of one 
neuron across truly identical trials. Of course, repeated trials are not 
guaranteed to be truly identical; the underlying firing rate may differ 
somewhat. It is precisely this variability that we wished to capture, 
while ignoring variability arising from the roughly Poisson spiking. 
Spiking variability may have interesting structure of its own, but for 
present purposes, it acts as noise.

Poisson spiking-process noise can severely mask underlying firing-
rate variability (Supplementary Fig. 1). It is therefore rarely possi-
ble to discern changes in firing-rate variability by eye. We used two 
approaches to isolate the underlying firing-rate variability from the 
variability contributed by spiking noise. The first approach employed a 
modified method for computing the Fano factor. This method is appli-
cable to conventionally recorded single-neuron data, allowing analysis 
of a large number of existing datasets. The second approach used fac-
tor analysis to assess covariance in large-scale simultaneous recordings. 
These methods are technically very different, but both are intended to 
assess the same thing: the degree of across-trial firing rate variability, 
independent of the contribution of noisy spiking statistics.

A variability decline across multiple cortical areas
We first employed the Fano factor, which is the spike-count variance 
divided by the spike-count mean. Counts were made in a sliding 
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Figure 1 Schematic illustration of possible types of across-trial firing 
rate variability. (a–c) We suppose that the same stimulus is delivered 
four times (four trials) yielding four different responses. a and b were 
constructed to have the same mean response across the four trials. 
Stimulus-driven decline in variability is shown in a. Stimulus-driven rise 
in variability is shown in b. Stimulus-driven decline in variability with little 
change in mean rate is shown in c.

Figure 2 Analysis of intracellularly recorded membrane potential from cat V1. Stimuli were drifting sine-wave gratings presented at different 
orientations and frequencies. Spikes were removed before further analysis. Analysis employed a 50-ms sliding window (box filter) to match the 50-ms 
window used for the Fano factor analysis. Similar results were obtained with a shorter (5-ms) or longer (100-ms) window. (a) Data from one example 
neuron. Vm for individual trials (black) is plotted on top of the mean (gray). Data are shown when no stimulus was delivered, for a nonpreferred stimulus 
and for a preferred stimulus. The arrow marks stimulus onset. (b) Similar plot for a second example neuron. (c) The mean and variance of Vm across all 
52 neurons and all stimuli. Flanking traces give s.e.m.
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present purposes, it acts as noise.
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variability contributed by spiking noise. The first approach employed a 
modified method for computing the Fano factor. This method is appli-
cable to conventionally recorded single-neuron data, allowing analysis 
of a large number of existing datasets. The second approach used fac-
tor analysis to assess covariance in large-scale simultaneous recordings. 
These methods are technically very different, but both are intended to 
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rate variability. (a–c) We suppose that the same stimulus is delivered 
four times (four trials) yielding four different responses. a and b were 
constructed to have the same mean response across the four trials. 
Stimulus-driven decline in variability is shown in a. Stimulus-driven rise 
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Figure 2 Analysis of intracellularly recorded membrane potential from cat V1. Stimuli were drifting sine-wave gratings presented at different 
orientations and frequencies. Spikes were removed before further analysis. Analysis employed a 50-ms sliding window (box filter) to match the 50-ms 
window used for the Fano factor analysis. Similar results were obtained with a shorter (5-ms) or longer (100-ms) window. (a) Data from one example 
neuron. Vm for individual trials (black) is plotted on top of the mean (gray). Data are shown when no stimulus was delivered, for a nonpreferred stimulus 
and for a preferred stimulus. The arrow marks stimulus onset. (b) Similar plot for a second example neuron. (c) The mean and variance of Vm across all 
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window over the duration of the trial. The 
Fano factor has been used extensively to 
characterize neural variability (for example, 
see refs. 17–19). The Fano factor is influenced 
both by variability arising from spiking noise 
and by across-trial variability in the under-
lying firing rate20. Most prior work assumes 
that the underlying firing rate is similar 
across trials and uses the Fano factor to 
assess the statistics of spiking noise, which 
are roughly Poisson (Fano factor 1) for 
most of cortex. We began with the assump-
tion that spiking noise is roughly Poisson and 
we used the Fano factor to assess across-trial 
 variability in the underlying rate. We inter-
preted a Fano factor greater than 1 as being 
an indication of across-trial firing-rate vari-
ability. We interpreted changes in the Fano 
factor as reflecting changes in across-trial 
firing-rate variability9,20,21. Although this 
approach assumes Poisson spiking noise, 
it is reasonably robust to violations of that 
assumption (it is sufficient that spiking-noise 
variance scale linearly with the mean; the 
slope needn’t be unity). To begin, we exam-
ined how the Fano factor behaves across a 
variety of cortical areas.

We computed the mean firing rate and the 
Fano factor for ten datasets from seven cortical  
areas of the macaque monkey (Fig. 3): V1, V4, 
MT, the lateral intra-parietal area (LIP), the 
parietal reach region (PRR), dorsal premotor 
cortex (PMd) and orbitofrontal cortex (OFC). Responses were to 
 various visual stimuli or, for OFC, to juice reward. For each area, the 
Fano factor was averaged across neurons and conditions. This is similar 
to what was done for the membrane potential analysis and reflects both 
a desire for statistical power and the expectation that variability may 
change for both preferred and nonpreferred stimuli (as in Fig. 2a,b).

In every case, stimulus onset drove a decline in firing-rate vari-
ability as assessed by the Fano factor (all P < 0.02). This is notable, 
given the diversity of areas, stimuli and behavioral states. Variability 
declined during responses to simple visual stimuli, during operantly 

conditioned responses (PRR and PMd) and during reward-driven 
responses (OFC). The variability decline was present regardless of 
whether the monkey was anaesthetized (V1 and two of the four the 
MT datasets; Fig. 3, bottom), passively viewing (V4) or performing 
a task (the other six datasets). For two of the MT datasets (Fig. 3,  
bottom), stimulus onset occurred in two stages: pattern onset and 
motion onset. Both events drove a decline in variability, although only 
the more effective moving stimulus drove a sustained decline.

We previously proposed that declining variability in premotor  
cortex is related to the progress of motor preparation9. The changes 
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Figure 3 Changes in firing-rate variability for 
ten datasets (one per panel). Insets indicate 
stimulus type. Data are aligned on stimulus 
onset (arrow). For the two bottom panels  
(MT area/direction and MT speed), the dot 
pattern appeared at time zero (first arrow)  
and began moving at the second arrow. The 
mean rate (gray) and the Fano factor (black  
with flanking s.e.) were computed using a  
50-ms sliding window. For OFC, where response 
amplitudes were small, a 100-ms window was 
used to gain statistical power. Analysis included 
all conditions, including nonpreferred. The 
Fano factor was computed after mean matching 
(Fig. 4). The resulting stabilized means are 
shown in black. The mean number of trials  
per condition was 100 (V1), 24 (V4),  
15 (MT plaids), 88 (MT dots), 35 (LIP),  
10 (PRR), 31 (PMd), 106 (OFC), 125 (MT direction 
and area) and 14 (MT speed).

cell 1 (z-score)

algorithm (Chandler 1969) to minimize the
combined ! 2 error between the model predic-
tions and the data. From the fitted equation, we
defined the optimal stimulus parameter as that
which would evoke the strongest predicted re-
sponse. The difference between the preferred
spatial and temporal frequencies of the two cells
was then defined in octaves as follows:

! log2"Preferred frequency of cell 1

Preferred frequency of cell 2#! .

(11)

To measure the receptive field overlap of the
two cells, we determined the receptive field cen-
ter by hand, using a small (!0.3°) patch of op-
timal grating. We then measured responses to
gratings of increasing size and fit the data with a
difference-of-error function, using the STEPIT
algorithm. The receptive field size of each cell was defined as the maxi-
mum of the function in the range tested, and the overlap was defined as
the percentage of the smaller RF that was included in the larger RF. The
mean receptive field size provided by this approach is approximately
twice that provided by hand maps using small bars of light (Cavanaugh et
al., 2002). As a result, our estimate of RF overlap is substantially higher
than that which would result from mapping with small stimuli.

In our regression analysis, we only used data from pairs for which the
fits for both cells accounted for at least 50% of the variance (123 of 133
pairs for the spatial and temporal frequency data; 114 of 133 pairs for the
area data). The variance accounted for by the fits in these cells was on
average 90 –92% for each parameter.

Results
We recorded from 147 pairs of single units in 12 anesthetized,
paralyzed macaque monkeys. Because our primary objective was
to measure the stimulus dependence of neuronal correlation, we
recorded from nearby neurons (typically "500 "m apart) that
had similar receptive field properties, because distant or dissim-
ilar neurons tend to fire independently (Nelson et al., 1992; Lee et
al., 1998; DeAngelis et al., 1999; Nowak et al., 1999; Bair et al.,
2001) and have weak correlation in response variability (Zohary
et al., 1994, Lee et al., 1998; Bair et al., 2001; Averbeck and Lee,
2003). We recorded in all cortical layers but biased our popula-
tion toward complex neurons (76% of the population) (Skottun
et al., 1991). The receptive field properties of the neurons com-
prising each pair were similar, with a mean difference of 37° in
orientation preference, 0.37 octaves in spatial frequency prefer-
ence, 0.36 octaves in temporal frequency preference, and a mean
receptive field overlap of 75%. The ocular dominance of the two
cells was also similar, with a mean difference of 0.83 on the seven-
point scale of Hubel and Wiesel (1962).

Orientation dependence of spike count correlation
We evaluated the orientation dependence of rsc, the correlation of
evoked spike counts (Eq. 1 in Materials and Methods), by mea-
suring responses to 2.56 s presentations of full-contrast gratings
of five orientations. Figure 1A shows the orientation tuning and
range of orientations (thick line) used to measure correlation for
an example pair. We chose orientations that spanned a range
from driving the pair strongly [geometric mean response of 33
impulses per second (ips)] to evoking a relatively weak response
(8.6 ips). Scatter plots of the response of the two cells to multiple
presentations of each stimulus are shown in Figure 1B–E as
Z-scores relative to the mean response for each stimulus. The
value of rsc (text in scatter plots) varied among stimulus condi-

tions but did not depend in an obvious way on stimulus orienta-
tion or the evoked firing rate. For instance, the correlation for the
stimulus that drove both cells strongly (0.24) (Fig. 1D) was sim-
ilar to that for a stimulus that drove one cell but not the other
(0.30) (Fig. 1F).

The data presented in Figure 2 show frequency histograms for
rsc in our population of pairs (n # 100), arranged for each pair
from the orientation that was most effective at driving the two
cells to that which was least effective. We found little relationship
between the efficacy of the stimulus and the magnitude of spike
count correlation (ANOVA; p # 0.45). Stimuli that drove the
pair most strongly (42 $ 2 ips) had an average correlation of
0.18 $ 0.03 (Fig. 2A), similar to the average rsc value of 0.19 $
0.02 for stimuli that evoked the weakest response (12 $ 1 ips)
(Fig. 2E). The mean rsc collapsing across all conditions and pairs
was 0.20, a value consistent with previous measurements in the
visual system, including those in V1 [0.22 in Gawne et al. (1996)
and !0.25 in Reich et al. (2001)], middle temporal visual area
(MT) [0.19 in Zohary et al. (1994) and 0.20 in Bair et al. (2001)],
and inferior temporal cortex [0.23 in Gawne and Richmond
(1993)]. Because strong trends between stimulus efficacy and rsc

in individual pairs may go undetected in a population analysis,
we also calculated the relationship between the evoked firing rate
and rsc for each pair individually. We found a significant correla-
tion ( p " 0.05) in only 7 of 100 pairs, three of which were posi-
tively correlated and four of which were negatively correlated.

We conclude that there is little relationship between the effi-
cacy of an oriented stimulus and the correlation in trial-to-trial
variability of evoked spike count, suggesting that this variability
arises from orientation-independent variations in trial-to-trial
cortical excitability.

Orientation dependence of spike timing correlation
Whereas the orientation independence of rsc agrees well with
previous studies (Zohary et al., 1994; Bair et al., 2001), a related
form of correlation, spike timing synchrony, has been shown to
depend on stimulus drive. However, most studies investigating
synchrony between single V1 cortical neurons have focused ei-
ther on the effect of altering the “gestalt” characteristics of the
stimulus (Livingstone, 1996) or have used indirect measurements
such as the synchrony of multiunit activity (MUA) (Lamme and
Spekreijse, 1998) or the strength of oscillations in single-unit
activity, MUA, or the local field potential (LFP) (Gray et al., 1989;
Gray and Viana Di Prisco, 1997; Friedman-Hill et al., 2000; Frien
et al., 2000). The relationship between the synchronous firing of
single neurons and these measurements is unclear. For MUA

Figure 1. Example of the independence of spike count correlation and orientation. A, Tuning curves for two V1 neurons. Range
of orientations used to measure correlation are indicated by thick lines; letters indicate the stimulus used for each scatter plot.
B–F, Scatter plots of responses of V1 pair to 100 presentations of each stimulus. The response of each cell is normalized by
subtracting the mean response to that stimulus and dividing by the SD of the responses. The rsc values are indicated. deg, Degrees.
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showed little or no directional preference. Even when responses were highly
asymmetrical, the less effective direction of movement usually evoked
some minimal response (see Text-fig. 2), but there were a few examples in
which the maintained activity was actually suppressed.

Individual complex cells differed markedly in their relative responsive-
ness to slits, edges, or dark bars. The majority responded very much better
to one than to the other two, but some reacted briskly to two of them, and
a few to all three. For a cell that was sensitive to slits, but not to edges, the
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Text-fig. 2. Responses of a complex cell in right striate cortex (layer IV A) to
various ori6ntations of a moving black bar. Receptive field in the left eye indicated
by the interrupted rectangles; it was approximately i x I' in size, and was situated
40 below and to the left of the point offixation. Ocular-dominance group 4. Duration
of each record, 2 sec. Background intensity 1-3 log10 cd/M2, dark bars 0.0 log cd/M2.

responses increased as slit width was increased up to some optimal value,
and then they fell off sharply; the optimum width was always a small
fraction of the width of the whole field. For complex cells that responded
best to edges, some reacted to one configuration and also to its mirror

219

) by guest on February 13, 2011jp.physoc.orgDownloaded from J Physiol (

moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).

Response Reliability in Different V1 Layers

To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
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were near threshold and were quite variable. Other conventions are as in Figure 1.
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moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
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Response Reliability in Different V1 Layers

To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
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Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
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Formulating functional hypotheses

Levels of abstraction in neuroscience according to David Marr: 

• Computation - specification of the brain function as an input-output 
mapping 

• Algorithm - a step-by-step mathematical description of how to 
calculate the mapping 

• Implementation - realisation of the algorithm by biological 
structures and their dynamical properties

“A wing would be a most mystifying 
structure if one did not know that 
birds flew.”

Horace Barlow



Hierarchy of object recognition



Relating environmental quantities to 
biophysics

• receptive field: range of some 
parameters defining a stimuli in which 
the cell shows increased firing activity 

• V1 simple cells: localised oriented 
edges 

• can be used to predict the average 
number of spikes generated by a cell 
in response to the repeated 
presentation of a stimulus



The role of variability

• animals need to estimate their uncertainty 
about various quantities in order to make 
decisions 

• Hypothesis: the variability of neural 
responses codes for the uncertainty about 
the quantity encoded in the receptive field 

• in case of vision, a simple way to control the 
animal’s uncertainty about a stimulus is 
adjusting the contrast 

• Prediction: higher contrast -> lower variability

Localised 
edges

Lighting / 
contrast



Electrophysiological experiments 
with awake monkeys

• you can teach a monkey to 
fixate, as opposed to almost 
any other animal 

• one can measure under 
anesthesia, but different 
anesthetics will modulate neural 
response statistics in arbitrary 
ways (acting as a common 
input to cells, it especially 
disrupts response correlations)



Measurable quantities in the nervous system

• we would like to measure a lot of 
cells at once (for our simple 
example it’s not really required, but 
very often it is) 

• calcium imaging 

• low temporal resolution 

• extracellular electrodes 

• mixed signal coming from 
multiple cells



Sorting the signals coming from single neurons

• clustering 

• we can recover spike times 

• not many ground truth datasets 
(patch-clamp or juxtacellular 
parallel with extracellular) 

• however, a big parallel dataset 
has just been released, so it may 
change quickly 

• it introduces confounds to the 
response statistics that are hard to 
characterise



How to measure variability?
• the base quantity number of spikes in a single time window 

• variability can be measured in standard deviation of spike counts in all 
windows, or its square, variance 

• if we present a single stimuli for a long time, adaptation makes a lot of our 
data useless  -> we rather record a lot of short trials, each showing on elf our 
stimuli, in randomised order 

• spike count variance can be measured over the trials showing the same 
stimulus, always in the same time window



Reliability of variance estimation

• statistical measures are random variables 
themselves 

• uncertainty in them depends on the sample size 

• how many trials we need?

http://www.rmki.kfki.hu/~banmi/sote/spikingVariability.ipynb
https://colab.research.google.com/

http://www.rmki.kfki.hu/~banmi/sote/spikingVariability.ipynb


Characteristics of neural spiking statistics
• the mean and the variance of 

the spike count tend to 
change together 

• this may follow from a Poisson-
distributed spike generation 
procedure 

• or simply the effect of the firing 
threshold 

• we are interested in the 
excess variability relative to 
the mean -> Fano factor = 
variance / mean



Publicly available data
• http://bethgelab.org/datasets/v1gratings/ 

• Awake monkeys 

• Multielectrode recording from V1 

• Clustered spikes 

• Static grating stimuli (they have moving too) 

• Stimuli with low and high contrast levels

 
http://www.rmki.kfki.hu/~banmi/sote/spikingVariability.ipynb

https://colab.research.google.com/

http://www.rmki.kfki.hu/~banmi/sote/ff.R


Further possible controls

• We can throw out units deemed unreliable by the 
clustering algorithm 

• Units with low firing rates may be filtered out, as 
few spikes mean unreliable statistics 

• As changing contrast causes the mean and the 
variance change together, we may try to separate 
effects of the changing mean on the Fano factor



Functional hypotheses about co-activation statistics

• Combination of edges -> texture/contour detection 
-> object recognition

Stimulus

Learned 
regularities

Perception

Retina

Thalamus

ANATOMY MODEL FUNCTION
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Predicting co-activation statistics
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Perception as probabilistic 
inference

• variability reflects uncertainty in a single feature 

• covariability reflects expectations about the co-occurrence 
of features 

• perception, all the way up to object recognition can be 
formalised as probabilistic inference of unobserved 
quantities (features, objects) based on observed ones 
(pixels, retinal activations) 

• probabilistic models provide a unifying framework for 
understanding many brain functions and make 
connections to artificial intelligence solutions


