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Variability in the activity of neurons
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Variability in the activity of neurons
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I am a mathematician.
All I need is paper, a pencil,
and a trash basket!

Too bad you're
not a philosopher,

you wouldn't need
the trash basket!

S

QUKL

— Eugene M. |zhikevich: Dynamical Systems in Neuroscience:
The Geometry of Excitability and Bursting



Formulating functional hypotheses

Levels of abstraction in neuroscience according to David Marr:

 Computation - specification of the brain function as an input-output
mapping

« Algorithm - a step-by-step mathematical description of how to
calculate the mapping

 Implementation - realisation of the algorithm by biological
structures and their dynamical properties

“A wing would be a most mystifying
structure if one did not know that
birds flew.”

Horace Barlow




Hierarchy of object recognition
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Relating environmental quantities to

blophysics

e receptive field: range of some
parameters defining a stimuli in which
the cell shows increased firing activity

V1 simple cells: localised oriented
edges

e can be used to predict the average
number of spikes generated by a cell
INn response to the repeated
presentation of a stimulus
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The role of variabillity

animals need to estimate their uncertainty

about various quantities in order to make O Lighting /
. trast
decisions oon
Localised
. . N edges
Hypothesis: the variability of neural @ @

responses codes for the uncertainty about
the quantity encoded in the receptive field

IN case of vision, a simple way to control the
animal’s uncertainty about a stimulus is
adjusting the contrast

Prediction: higher contrast -> lower variability
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Electropnysiological experiments
with awake monkeys

* you can teach a monkey to
fixate, as opposed to almost
any other animal

* ONe can measure under
anesthesia, but different
anesthetics will modulate neural
response statistics in arbitrary
ways (acting as a common
iInput to cells, it especially
disrupts response correlations)




Measurable quantities in the nervous system

e we would like to measure a lot of
cells at once (for our simple
example it's not really required, but
very often it is)

e calcium imaging

e low temporal resolution

e extracellular electrodes

(static, only
relevant for
assembly)
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Sorting the signals coming from single neurons

Tetrode

* clustering

* we can recover spike times

140 um

* not many ground truth datasets
(patch-clamp or juxtacellular
parallel with extracellular)

* however, a big parallel dataset
has just been released, so it may
change quickly

* it introduces confounds to the
response statistics that are hard to
characterise




How to measure variability”?

the base quantity number of spikes in a single time window

variability can be measured in standard deviation of spike counts in all

windows, or its square, variance

If we present a single stimuli for a long time, adaptation makes a lot of our

data useless -> we rather record a lot of short trials, each showing on elf our

stimuli, in randomised order

spike count variance can be measured over the trials showing the same

stimulus, always in the same time window
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Reliability of variance estimation

e gstatistical measures are random variables
themselves

e uncertainty in them depends on the sample size

 how many trials we need?

http://www.rmki.kfki.hu/~banmi/sote/spikingVariability.ipynb
https://colab.research.google.com/
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Characteristics of neural spiking statistics
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Characteristics of neural spiking statistics
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the mean and the variance of
the spike count tend to
change together

this may follow from a Poisson-
distributed spike generation
procedure

or simply the eftect of the firing
thresholad

we are interested in the
excess variabllity relative to
the mean -> Fano factor =
variance / mean
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Publicly avallable data

* http://bethgelab.org/datasets/vigratings/
 Awake monkeys

* Multielectrode recording from V1

e Clustered spikes
o Static grating stimuli (they have moving too)

o Stimuli with low and high contrast levels

http://www.rmki.kfki.hu/~banmi/sote/spikingVariability.ipynb
https://colab.research.google.com/


http://www.rmki.kfki.hu/~banmi/sote/ff.R
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Further possible controls

* We can throw out units deemed unreliable by the
clustering algorithm

* Units with low firing rates may be filtered out, as
few spikes mean unreliable statistics

* As changing contrast causes the mean and the
variance change together, we may try to separate
effects of the changing mean on the Fano factor



-unctional hypotheses about co-activation statistics

 Combination of edges -> texture/contour detection
-> object recognition
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Predicting co-activation statistics
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Predicting co-activation statistics
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Units

Predicting co-activation statistics
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Perception as probabillistic
iINnference

variability reflects uncertainty in a single feature

covariability retlects expectations about the co-occurrence
of features

perception, all the way up to object recognition can be
formalised as probabilistic inference of unobserved
quantities (features, objects) based on observed ones
(pixels, retinal activations)

probabilistic models provide a unitying framework for
understanding many brain functions and make
connections to artificial intelligence solutions



