Does Cronin Peak Disappear at LHC Energies?

Gergely Gábor Barnaföldi – RMKI, CNR

in collaboration with:
George Fai – CNR, Kent State University;
Péter Lévai – RMKI, CNR;
Gábor Papp – ELTE;

Seminar at Center for Nuclear Research
Kent State Univeristy
28th November 2006
OUTLINE

0. Motivation
 – Nuclear Modification Factor and the Cronin effect
 – Historical survey of the Cronin effect from SPS to RHIC
 – Is the $R_{AA'}$ boring, ”flat” at high-p_T?

I. Theoretical Background
 – pQCD improved parton model for pp, pA and AA'

II. Initial state effects at very high p_T
 – Analysing EMC effect in high-energy AA' collisions
 – Predictions for LHC at $0.2 - 14$ TeV dPb collisions

III. What can we learn from HOT Quenching?
 – Jet tomography results at $y = 0$ for $AuAu$ and $CuCu$
 – Is there room for COLD Quenching in dA collisions?

IV. Does the Cronin Peak disappear at LHC?
Hunting for Nuclear Effects (Cronin) at High-p_T \(R_{AA'} \)

Historically the Cronin effect:

increased particle production in

\[3 \text{ GeV} < p_T < 6 \text{ GeV}\] range (1975)

"increased" means more particles
are produced in pA than expected
from N_{bin} scaled pp collisions

Nuclear Modification Factor (NMF)

\[R_{AA} = \frac{1}{N_{bin}} \frac{dN_{AA}/dy}{dN_{pp}/dy} \frac{d^2p_T}{d^2p_T} \]
History of the Experiments ”for” Cronin Effect

<table>
<thead>
<tr>
<th>Experiment</th>
<th>p</th>
<th>Target</th>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>y or η</th>
<th>p_T (GeV)</th>
<th>Hadron</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>p</td>
<td>d, Be, Ti, W</td>
<td>19.4; 23.7; 27.4</td>
<td>≈ 0</td>
<td>0.77; 6.91</td>
<td>$\pi^\pm, K^\pm, p^\pm, d^\pm$</td>
</tr>
<tr>
<td>ITA</td>
<td>p</td>
<td>C, W</td>
<td>$p_{\text{inc}} = 50 - 275$</td>
<td>[0.7; 1.0]</td>
<td>0.2; 2.35</td>
<td>π^\pm, K^\pm, p^\pm</td>
</tr>
<tr>
<td>FNAL</td>
<td>n</td>
<td>Be, Al, C, Sn, Pb</td>
<td>27.4</td>
<td>[4.0; 8.0]</td>
<td>0.1; 1.7</td>
<td>h^\pm, π^+, p</td>
</tr>
<tr>
<td>FNAL</td>
<td>p</td>
<td>Be, W</td>
<td>19.4; 23.7; 27.4</td>
<td>≈ 0</td>
<td>0.2; 4.5</td>
<td>$\pi^\pm, K^\pm, p^\pm, h^\pm$</td>
</tr>
<tr>
<td>CP</td>
<td>π^-</td>
<td>p, Be, Cu, W</td>
<td>19.4; 23.7</td>
<td>≈ 0</td>
<td>0.8; 5.78</td>
<td>π^\pm, K^\pm, p^\pm</td>
</tr>
<tr>
<td>E577/E672</td>
<td>p</td>
<td>p, Be, C, Al, Cu, Pb</td>
<td>38.8</td>
<td>$[-0.75; 0.75]$</td>
<td>0.6; 11.5</td>
<td>h^\pm</td>
</tr>
<tr>
<td>E605/E789</td>
<td>p</td>
<td>Be, W</td>
<td>38.8</td>
<td>≈ 0</td>
<td>0.5; 11.5</td>
<td>h^\pm</td>
</tr>
<tr>
<td>E605</td>
<td>p</td>
<td>d, Be, W</td>
<td>38.8</td>
<td>≈ 0</td>
<td>0.5; 11.0</td>
<td>π^\pm, K^\pm, p^\pm</td>
</tr>
<tr>
<td>E706</td>
<td>p</td>
<td>Be</td>
<td>31.6; 38.8</td>
<td>$[-0.75; 0.75]$</td>
<td>1.0; 12.0</td>
<td>π^0, η</td>
</tr>
<tr>
<td>E706</td>
<td>p, π^-</td>
<td>Be, Cu</td>
<td>30.7</td>
<td>$[-0.7; 0.7]$</td>
<td>3.5; 10.0</td>
<td>π^0, γ</td>
</tr>
<tr>
<td>WA80</td>
<td>S</td>
<td>S, Au</td>
<td>19.4</td>
<td>$[2.1; 2.9]$</td>
<td>0.3; 3.9</td>
<td>π^0, γ</td>
</tr>
<tr>
<td>WA98</td>
<td>Pb</td>
<td>Pb, Nb</td>
<td>17.3</td>
<td>$[2.3; 4.4]$</td>
<td>0.3; 3.7</td>
<td>π^0, γ</td>
</tr>
<tr>
<td>CERES</td>
<td>Pb</td>
<td>Au</td>
<td>17.3</td>
<td>$[2.1; 2.6]$</td>
<td>1.5; 3.3</td>
<td>π^\pm</td>
</tr>
<tr>
<td>PHENIX</td>
<td>p, Au</td>
<td>p, d, Au</td>
<td>130, 200</td>
<td>$</td>
<td>\eta</td>
<td>\leq 0.35; 2.0$</td>
</tr>
<tr>
<td>BRAHMS</td>
<td>p, Au</td>
<td>p, d, Au</td>
<td>130, 200</td>
<td>$0.0; 1.0; 2.2; 3.2$</td>
<td>0.5; 6.0</td>
<td>π^0, h^\pm</td>
</tr>
<tr>
<td>STAR</td>
<td>p, Au</td>
<td>p, d, Au</td>
<td>130, 200</td>
<td>$</td>
<td>\eta</td>
<td>\leq 0.5; 2.0$</td>
</tr>
<tr>
<td>PHOBOS</td>
<td>p, Au</td>
<td>p, d, Au</td>
<td>62.4; 130; 200</td>
<td>0.4; 0.8; 1.2</td>
<td>0.5; 3.5</td>
<td>$K^\pm, p^\pm \pi^0, h^\pm$</td>
</tr>
</tbody>
</table>
Motivation for LHC – low-\(x\) physics

Suppression in \(h^+, h^-\) spectra in \(dAu\) by BRAHMS, \(\eta > 0\)

Testing small-\(x\) in heavy-ion collisions via analysing forward (\(\eta > 0\)) PHOBOS and BRAHMS
Motivation for LHC – high-x and high-p_T physics

$R_{AA'}$ and π spectra in dAu and $AuAu$ by PHENIX, $y = 0$

How will move the high-p_T tail in dAu at RHIC

Suppression in $AuAu$ at RHIC is really flat?
I. (SHORT) INTRODUCTION TO THE THEORETICAL BACKGROUND
I/1. pQCD Improved Parton Model for pA Collisions

\[
E_{\pi} \frac{d\sigma_{pA}^{pA}}{d^3 p_\pi} \sim f_{a/p}(x_a, Q^2; k_T) \otimes f_{b/A}(x_b, Q^2; k_T, b) \otimes \frac{d\sigma_{ab \rightarrow cd}^{ab \rightarrow cd}}{dt} \otimes \frac{D_{\pi/c}(z_c, \hat{Q}^2)}{\pi z_c^2}.
\]

$f_{a/A}(x_a, Q^2; k_T, b)$: Nucl. Parton Dist. Function (PDF), at scale Q^2

$D_{\pi/c}(z_c, \hat{Q}^2)$: Fragmentation Function for π (FF), at scale \hat{Q}^2

$\frac{d\sigma_{ab \rightarrow cd}^{ab \rightarrow cd}}{dt}$: Partonic cross section
I/2. Longitudinal 1-Dimensional PDFs and FFs in General

(a) Parton Distribution Functions (PDF) :

(LO case) GRV – Glück, Reya, Vogt
Z. Phys C 53 127 (1992)

(NLO case) MRST-(c-g) – A.D. Martin et al.
CTEQ5M – H. L. Lai et al.

(b) Fragmentation Functions (FF) :

KKP – Kniehl, Kramer, Pötter.
I/3. Phenomenological introduction of intrinsic k_T

Introducing intrinsic k_T for colliding partons (in pp coll.)

Phenomenological assumption: PDFs are modified
1 dimensional PDFs are changed to 1+2 dimensional ones

$$\int dx \, f_{a/p}(x, Q^2) \longrightarrow \int dx \, d^2k_T \, g_{pp}(\vec{k}_T) \, f_{a/p}(x, Q^2)$$

where $g(\vec{k}_T)$ is a Gauss distribution function:

$$g_{pp}(\vec{k}_T) = \frac{e^{-\vec{k}_T^2/\langle k_T^2 \rangle}}{\pi \langle k_T^2 \rangle} \quad \text{and} \quad \langle k_T^2 \rangle = \frac{4\langle k_T^2 \rangle^2}{\pi}$$

Baseline $\langle k_T^2 \rangle$ values for pp: Phys. Rev. C65 034903 (2002)

$\langle k_T^2 \rangle \sim$ value agrees with measured values by PHENIX,
Pion Production in pp Collisions at RHIC Energies

\[p+p \rightarrow \pi^0 + X \text{ at } s^{1/2} = 200 \text{ GeV} \]

- LO PQCD, $\kappa = 2/3$, $<k_t^2> = 2.5 \text{ GeV}^2$
- NLO PQCD, $\kappa = 2/3$, $<k_t^2> = 0.0 \text{ GeV}^2$
- NLO PQCD, $\kappa = 4/3$, $<k_t^2> = 2.5 \text{ GeV}^2$

Data/\overline{QCD}

- LO PQCD, $\kappa = 2/3$
- NLO PQCD, $\kappa = 2/3$
- NLO PQCD, $\kappa = 4/3$

\[p_t (\text{GeV}) \]

P. Lévai, G. Papp, G.G. Barnaföldi, G. Fai nucl-th/0306019
I/4. Collision Geometry – Glauber Model in $pA \to \pi$

Glauber model: an incoming p collides with **ALL** nucleons along its travelling tube at b impact param.

\[
E_\pi \frac{d\sigma_{\pi}^{pA}}{d^3p} = \int d^2b \ t_A(b) \ \int \cdots f_{a/A} (x_a, Q^2; \cdots) \cdots
\]

Nuclear thickness function:

\[
t_A(b) = \int dz \ \rho(b, z) \text{ normalized as:}
\]

\[
A = \int_0^{b_{max}} t_A(b) d^2b
\]

where $\rho(b, z)$ is the nuclear density distribution

$\rho(b, z)$: for small A: sharp sphere: $t_A(b) = 2\rho_0 \sqrt{R_A^2 - b^2}$

Shadowing – PDFs are modified inside the nucleus:

\[
f_{a/A}(x, Q^2) = S_{a/A}(x, b) \left[\frac{Z}{A} f_{a/p}(x, Q^2) + \left(1 - \frac{Z}{A}\right) f_{a/n}(x, Q^2) \right]
\]

\(S_{a/A}(x, b)\): Shadowing function (ex.: HIJING);
\(A\) atomic- and \(Z\) the proton number

\[
S_{a/A}(x) = 1 + 1.19 \ln^{1/6} A[x^3 - 1.5(x_0 + x_L)x^2 + 3x_0x_Lx]
- \left[\alpha_A - \frac{1.08(A^{1/3} - 1)}{\ln(A + 1)} \sqrt{x} \right] e^{-x^2/x_0^2}
\]

where: \(\alpha_A = 0.1(A^{1/3} - 1)\) and \(x_0 = 1, x_L = 0.7\).

Measured by many different experimental collaborations
I/7. (b) Different Shadowing Parameterizations

I/8. Nuclear Modification Factor for dAu at $\sqrt{s} = 200$ GeV

- **PHENIX data at** $y = 0$

- **Shadowing inside nucleus is small effect at PHENIX at** $y = 0 \iff$ we are at moderate-x region ($\langle x \rangle \sim 0.05$)

 $S_i(x)$ shadowing functions

 - Quarks
 - Gluons

 Li, Wang: PLB527(2002)85

Calculations with ONLY nuclear shadowing is NOT enough!!!
I/9. From where Comes the Shadowing Contribution

- Cumulative probability

\[P_{>}(x_{Au}) = \frac{\int_{0}^{x_{Au}} d\sigma(x') dx'}{\int_{0}^{1} d\sigma(x') dx'} \]

- substantial contribution from higher-\(x\) region

Can we understand high-\(x\) physics well?
I/10. Multiple Scattering – Cronin Effect

Improve Glauber model:
assuming saturation in the number of \(NN \) collisions

\[
E_\pi \frac{d\sigma_{pA}^{pA}}{d^3p} = \int d^2b \ t_A(b) E_\pi \frac{d\sigma_{pp}^{pp}(\langle k_T^2 \rangle_{pA}, \langle k_T^2 \rangle_{pp})}{d^3p}
\]

\[
\langle k_T^2 \rangle_{pA} = \langle k_T^2 \rangle_{pp} + C \ h_{pA}(b)
\]

Total broadening = \(pp \) baseline + nuclear broadening

See details in PRC\textbf{65} 034903 (2002) and hep-ph/0212249

\[h(\nu_A(b) - 1) : \text{number of effective NN collisions} \quad \nu_{max} = 3 - 4 \]

\[C : (\text{average mom. broadening})^2 / \text{coll.} \quad C \approx 0.35 \text{ GeV}^2 \]

\[t_A(b) : \text{nuclear thickness function} \]
The Effect of Multiple Scattering in at SPS and RHIC

Nuclear Modification Factor (NMF)

→ theoretical def.: \(R_{AA'}^{\pi} := \frac{d\sigma^{AA' \to \pi} / d^3p}{d\sigma^{AA' \to \pi} / d^3p} \) ("shadowing+multiscattering")

\(\frac{d\sigma^{AA' \to \pi} / d^3p}{d\sigma^{AA' \to \pi} / d^3p} \) ("NO nuclear effect")
II. INITIAL STATE EFFECTS IN

VERY HIGH-\(p_T \) \(\pi^0 \) PRODUCTION IN \(dAu \)
Cronin effect at very high-p_T in central dAu collision

Extracting the slope of R_{dAu} in dAu collision at PHENIX

Comparing different shadowing parameterisations

Fit $8 < p_T < 30$ GeV/c range

Huge errors at peripheral collisions

Different parameterisations have the same slope for EMC region

Is there any room for nuclear effect in $0 - 40\%$ centrality region
Suppression can be strong at high-p_T at the LHC energies.
Change of multiscattering at higher-$\sqrt{s_{NN}}$ in dPb

Cronin peak is slightly moving towards higher-p_T values.
III. FROM HOT TO COLD QUENCHING

FINAL STATE EFFECTS IN dA COLLISIONS?
III/1. Non-abelian Jet Energy Loss – Jet-Quenching

Energy loss of jets in hot, dense non-Abelian plasma:
— energy loss in a **THICK** plasma - BDMS, LCPI
— energy loss in a **THIN** plasma - GLV method

Medium induced radiative energy loss - for thin plasma: $L \sim \lambda_g$

GLV: time-ordered pQCD (Feynman diagramms)
 + OPACITY expansion ($N = 1, 2, 3, ...$)
 + kinematical cuts

\[
M_J \times M_0
\]

\[
M_{j_0, t_0}^{k_c}
\]

\[
M_{J, 1, 0, 0}^{k_c}
\]

\[
M_{J, 1, 1, 1}^{k_c}
\]

\[
\cdots
\]

\[
M_{n_s, m, l}^{n_s, m, l}
\]

where $l = 2^{n_s - m} - 1$
III/2. Calculations of Relative Energy Loss – Results

Energy dependence of GLV jet energy loss

\[\Delta E_{GLV} \approx \Delta E_{GLV}^{(1)} \approx \frac{C_R \alpha_s}{N(E)} \frac{L^2 \mu^2}{\lambda_g} \log \frac{E}{\mu} \]

- \(\Delta E \) is \(E \)-dependent

 \(N(E) \) is a numerical function, \(N(E) \rightarrow 4 \) at \(E \rightarrow \infty \).

- \(\approx \) \(E \)-independent \(\Delta E/E \) in \(3 < \text{GeV} \: E < 10 \text{ GeV} \)

- Opacity \(n = L/\lambda \)
III/3. \(\pi \)-suppression in \(AuAu \) collisions at RHIC energies

GLV jet-quenching in thin plasma approximation \(L \sim \lambda_g \):

\[
\Delta E_{GLV} \sim \frac{L^2 \mu^2}{\lambda_g} \log \frac{E}{\mu}
\]

Energy loss of jet decreases the \(p_c \) momenta of \(c \) before fragmentation:

\[
\frac{D_{\pi/c}(z_c, Q'^2)}{\pi z_c^2} \rightarrow \frac{z_c^*}{z_c} \frac{D_{\pi/c}(z_c^*, Q'^2)}{\pi z_c^2}, \text{ where } z_c^* = \frac{z_c}{1 - \Delta E/p_c},
\]
Jet tomography in \textit{AuAu} and \textit{dAu} collision at PHENIX

Jet-tomography at midrapidity in $AuAu$ and $CuCu$ collisions

Extracting opacities in all centralities for $p_T > 4$ GeV/c

All of these information is summarised →
Analysing opacity dependence in midrapidity AA' collisions

\[L \propto A^{1/3} \propto N_{\text{part}}^{1/3} \]

\[\varepsilon = \Delta E/E \propto L^2 \propto N_{\text{part}}^{2/3} \]

L/λ will NOT disappear at very peripherical collision \implies

WHAT DOES THIS MEAN?
WHAT KIND OF ANIMAL IS THIS?

KITTEN?, BUNNY? or something ELSE?
IS THERE ROOM FOR COLD QUENCHING

IN dA COLLISIONS AT RHIC AND LHC?
Cold Quenching in \(dAu \) collision at PHENIX

Barnaföldi, Fai, Levai, Papp

Calculations for \(dAu \) with HKN shadowing

Cold quenching in \(dAu \) collision at a small \(n\sim1 \) opacity

and this effect is stronger at LHC energies....
Suppression at LHC?

C.M. Energy dependence of GLV jet energy loss

\[\Delta E_{GLV} \approx \frac{C_R \alpha s}{N(E)} \frac{L^2 \mu^2}{\lambda_g} \log \frac{E}{\mu} = \frac{C_R \alpha s}{N(E)} \frac{1}{A_\perp} \frac{dN}{dy} \langle L \rangle \log \frac{E}{\langle \mu \rangle} \]

- For central \(AuAu\) collision at RHIC \(\frac{1}{A_\perp} \frac{dN}{dy} \approx 5.1\)

- For \(dAu\) collision at RHIC \(\frac{1}{A_\perp} \frac{dN}{dy} \approx 2.54\)

- Without suppression \(\frac{dN}{dy} \sim \ln \sqrt{s}\)

- At LHC this \(\frac{dN}{dy}\) will be \(\sim 1500 - 2000\)
SUMMARY: So, does the Cronin Peak Disapper at LHC?

⇒ Strong, 30 – 40% shadowing effect at intermediate p_T

⇒ Cronin peak moves towards higher p_T

⇒ Peripheral $AuAu$ and $CuCu$ collisons data and dAu data 'need' a $L/\lambda \sim 1$ quenching at RHIC.

⇒ There are strong suppression effects at LHC! – Hmmm?!
BACKUP SLIDES
Jet-tomography in AuAu Collisions at Large η

In the forward directions L/λ is smaller, due to less matter.

$AuAu$, dAu data for π^0 by PHENIX and h^\pm and π^+, π^- by BRAHMS
Jet-tomography in AuAu Collisions at 62.4 and 200 AGeV

Decreasing \sqrt{s} the L/λ is smaller, due

<table>
<thead>
<tr>
<th>Reaction</th>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>ϵ_{Bj} (GeV/fm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S + S$</td>
<td>17, 3</td>
<td>\gtrsim 1, 3</td>
</tr>
<tr>
<td>$S + Au$</td>
<td>19, 4</td>
<td>\gtrsim 2, 6</td>
</tr>
<tr>
<td>$Pb + Pb$</td>
<td>17, 3</td>
<td>\gtrsim 3, 2</td>
</tr>
<tr>
<td>$Pb + Au$</td>
<td>17, 3</td>
<td>\gtrsim 3, 0</td>
</tr>
<tr>
<td>$Au + Au$</td>
<td>62.4</td>
<td>\gtrsim 3, 7</td>
</tr>
<tr>
<td>$Au + Au$</td>
<td>130</td>
<td>\gtrsim 4, 4</td>
</tr>
<tr>
<td>$Au + Au$</td>
<td>200</td>
<td>\gtrsim 5, 0</td>
</tr>
</tbody>
</table>

Getting close to compare geometrical and ϵ properties