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We prove the Stokes theorem for non-Abelian gauge fields using general surface coordinates.
Our result contains both of the known versions of the non-Abelian Stokes theorem and allows
us to get a new one which is explicitly invariant under rotations of coordinates.

I. INTRODUCTION

The partial differential equations of classical elec-
trodynamics can be reformulated in the form of man-
ifestly gauge-invariant integral rules. The well-known
equivalence between differential and integral formu-
lations is partially based on the Stokes theorem of
differential geometry. In some recent papers,'™
Stokes’s theorem has been formulated in non-
Abelian gauge theories. Below we shall review the
existing and the possible versions of the non-Abelian
Stokes theorems (NAST’s).

In Sec. II, we emphasize the restricted efficiency of
NAST’s compared to the Abelian one. Section III
contains a proof of the NAST in a special coordinate
system. Using this result we shall derive variants of
the NAST in Sec. IV. Two of them will be equiva-
lent to the results of Refs. 1 and 2. The third variant
is the result of the present work.

II. NON-ABELIAN STOKES THEOREM

Consider a smooth simple connected surface o and
its boundary do which forms a smooth closed con-
tour. The Wilson loop operator* for a gauge field 4
is defined as

OA(BU)E[Pexp[ﬁUA“(x)dx"]] , Q.1

where P represents path ordering in the integral
which starts from a given point A4 of the contour do
(see Fig. 1).

In a given Abelian vector field 4, the Stokes
theorem states the following:

0(30) =exp| [ Gulxrdom] 2.2)

where G, stands for the curl of the field 4 and do*”
is the infinitesimal surface element. [In the Abelian
case O(dc) does not depend on the point 4.1 The
content of the Abelian Stokes theorem can be sum-
marized as follows: The contour integral (2.1) can
always be expressed in terms of the normal com-
ponent of the field-strength tensor G,,=4,, ,—4,,
on the surface o spanned by the contour do.

In the non-Abelian case the situation will change.
Usually, the non-Abelian field-strength tensor is de-
fined as

Gu(x)=4,,(x)—4,,(x)-14,(x),4,(x)] .
(2.3)

Here G,,, taken on the surface o, does not deter-
mine the loop integral O4(dc). In the general case,
we also need some surface component of the gauge
field A itself for calculating O4. The second anomaly
of NAST’s is that the integral in the right-hand side

3o

A

FIG. 1. Scheme of the simple connected smooth surface
o. The Wilson loop operator is defined on its boundary do.
The loop integral starts from point 4 and goes in the ar-
rowed direction.
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(RHS) of Eq. (2.2) becomes a formal quadrature as it
contains double ordering along certain surface coordi-
nate lines.

III. NON-ABELIAN STOKES THEOREM
FOR A SECTOR

Consider a smooth simple connected surface o in
the space of Cartesian coordinates x* and suppose it
can be continuously mapped into a given sector ABC
of the unit circle (see Fig. 2). Use polar coordinates
rand ¢ for parametrizing the surface o

o={(re)0<sr<s10s0o=<¢} . 3.1

Here, ¢ is the central angle of the sector. We also
require that the mapping x(r, ¢) be continuously dif-
ferentiable.

Let us introduce new notation for gauge-field and
field-strength variables according to our surface coor-
dinates:

a,(r,0)=A4,(x)x*, , (3.2)

Q,(r,0)=A4,(x)x* , , (3.3)

S(re)=Gu(x)x*,x* ¢ =QRo,—qo— (@, Q0] .
3.4

Let us define the Wilson loop operator (2.1) for
the boundary do of o, with the starting point of this
loop integral being at the vertex A of the sector ABC:

04(d0)= [P, exp[j;l(i,(r, <i>)a7r]]‘1
X [P¢ exp[ﬁf G.w(l,cv)d<0]]
X [P,exp[Lla,(r,O)dr” . (3.5)

Here, symbols P, and Py stand for ordering to the
left with increasing r and ¢, respectively.
In our formulation the NAST is expressed as

04(d0) =[P,,, exp[f:[j: S(r,p)dr d<p]] (3.6a)

J

dRs($) _ d [U¢—1[p exp[f a1, w)drﬂ]] }=[

dd) d¢

=0 A

FIG. 2. Sector ABC and its parametrization by (r, ¢) po-
lar coordinates.

or, in more compact notation,

OA(60)=[P¢ exp[f¢y Cdr dw” , (3.6b)

where
G(r,9)= [Pr exp[ J;’a,(r’, @ )dr’”_lg (r, @)
X [P,exp[j;r(!,(r',cﬂ )dr’]] 3.7

is the normal component G of the curl tensor G hav-
ing been parallel transferred along a ¢ =const string
to the point A4.

Proof: Let us consider the RHS of (3.5) and (3.6)
as functions of the central angle ¢, and denote them
by Rs(¢) and R4(¢), respectively. Note the obvious
fact

R5(0) =R¢(0) =1 . (3.8)
From (3.6), one gets
dR6(¢) f §(r,¢)dr Re(¢) . (3.9)

Now we calculate the same derivative of Rs. With
the introduction of the brief notation

U,= [P,exp[‘!:a,(r,w)dr]] , (3.10)

the derivative can be written in the following form:

4y, Rs(¢) . (311

70 Upy+Uys'4,(1,9) Uy

Let us perform identity transformations on the first term in square brackets:

1 1
["% ¢—1]U¢=—U¢ [—_U¢]_—U¢—1[P,L Q,‘w(r,dz)dr U¢]=‘—J; U¢_1[P,ﬁ,,(,(r,<b)U¢]dr

=— J; [P, exp [ j;'a,(r’, qS)dr’]]‘l(i,_(,,(r, ) [P, exp[ J;VG,(r', ¢>)dr’”dr . (3.12)

Note that the second term in square brackets can be rewritten as

U¢_la¢(1; ¢) U¢=F(r)|r—l »

(3.13)
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FIG. 3. Scheme of the coordinate choice of o (see Fig. 1)
induced by a continuous mapping of the surface o onto the

sector ABC of Fig. 2.

where

F(r)= [P,exp[ J;’a,(r', ¢)dr’”_ldq,( r,¢) [P, exp [ j;,a,(r', qS)dr’” .

Now we take the derivative with respect to r, and subsequently the integral over r, which results in

1
Us' @ (1,¢) Uy= j; dFd(r’) dr

COMMENTS

FIG. 4. Scheme of the degenerate case of Fig. 3-type
coordinate choice of o, when points C and B coincide.

(3.14)

[ eew( [ 9a)] 1@ertr 9 ~16,0 ). 0utr OV |Prexo [ [ @ gy )|

(3.15)
In the first line of the above formula we made use of the fact that @, =0 at the origin of the polar coordinate

system since x* , vanishes at r =0.

Substituting (3.12) and (3.15) into (3.11) we derive

dRs()

where G is taken from (3.4).

Considering (3.7), (3.9), and (3.16) one can see
that both Rs and R satisfy the same first-order dif-
ferential equation. Since the initial conditions (3.8)
are the same for Rs and R4 we can conclude that
Rs(¢) =R4(¢) for all possible values of ¢. Thus
statement ( 3.5) and (3.6) of the NAST is proved.

We can observe an explicit dependence of the RHS
of (3.6) on the @, component of the gauge field it-
self. However, any other components of the field 4
appear only indirectly through the field-strength ten-
sor G. In some special cases, even this dependence

on @, can be eliminated if, for a proper choice of
mapping and/or gauge, @, would vanish.!

IV. ON SURFACE PARAMETRIZATION

In Ref. 3 an original proof of the NAST is given.
The authors arrive at the heuristic analog of formulas
(3.6) and (3.7), and they call attention to the broad
ambiguity in the choice of string operators appearing
in Eq. (3.7). We claim that this ambiguity corre-
sponds to that of surface parametrization the ordered
integrals in Egs. (3.6) and (3.7) are depending on.

The RHS of Eq. (3.6) is, of course, invariant if we

P =j;1 [P,exp[J;ra,(r',d))dr'”_lg(r,d))[P,exp(];ra,(r',¢)dr’]]drR5(¢) ,

(3.16)

I
continuously change the mapping of the surface o
onto the sector ABC, i.e., change the parametrization
of o. This reparametrization is always possible.
However, Egs. (3.6) and (3.7) are not explicitly in-
variant for those changes.

In what follows, we shall point out that a special
choice of (r, ¢) coordinates on o makes our NAST
(3.6) and (3.7) equivalent with the result of Ref. 1
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FIG. 5. Scheme of coordinate choice of the unit square

induced by its continuous mapping (4.1) onto the sector

ABC of Fig. 2. Coordinate system is degenerate along the
s =0 side of the square.
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FIG. 6. Pattern of coordinate lines if one resolves the de-
generation of the Fig. S case.

and another coordinate choice gives the result of Ref. 2.
On Fig. 3 we have displayed our simple connected
surface o as an area enclosed by a circle and sketched
the parametrization according to the case of Sec. III
where o was mapped on the sector ABC. As the
most natural choice for the central angle ¢ of the
sector we take m. If one starts to move points B and
C closer and closer to each other, we obtain, finally,
the parametrization of Fig. 4. The corresponding
NAST is completely the same as that of Brali¢ in Ref. 1.
In Ref. 2 Aref’eva published a complete proof for a
version of the NAST. Her paper contains results for
o’s which can be mapped on the unit square
{(5,8);0=<s5=<1; 0=<¢=1)} of the (5,¢) plane.
Aref’eva’s result belongs to extreme cases of Fig. 2-
type parametrization where the coordinate system is
degenerate along the s =0 side of the surface boun-
dary do. A possible mapping of this kind from the
unit square into a sector ABC with central angle
¢ =1 can be done by the following formulas:

thl’ if s=0 ,
r= r+ Q=5 . (41)
S ifo<s=<l,
t+1

The corresponding parametrization is shown in Fig. 5
and a qualitative picture is given in Fig. 6 showing
coordinates before degeneration has been entered.
With the use of (4.1), the equivalence of Egs.
(3.5)—(3.7) and the results of Ref. 2 can be verified.
We have to note that in the parametrization of Ref.
2 the surface integral of the NAST has an explicit

AA

FIG. 7. Parametrization scheme of the surface o induced
by polar coordinates of the 27 angle sector 044, on which
the surface o is being continuously mapped.

dependence on the gauge-field components @,(¢,0)
and @,(1s), where

aS=A‘L‘xﬂ,sp G.,=A“x“,, . (42)

Finally, we construct a new form of NAST which
fits, first of all, to rotation-invariant fields. Let us
map the simple connected surface o on the unit cir-
cle area which is parametrized by (r, ¢) polar coordi-
nates. Let ¢ =0 correspond to the point 4 on da
where the Wilson loop (2.1) starts. Then make a cut
on o at the corresponding ¢ =0 line; thus we get a
sector 04A4" with the central angle 27 , see Fig. 7.
For this new surface we can apply formulas (3.6) and
3.7):

0,4 (30 yith cur) = [Pw exp ( fa Gadr d(p]] . 4.3)

The original Wilson loop operator (2.1) then will be
the following:

OA(BU)=U0"1[P¢exp[fa§dr d¢]]U0 . 449

where string operator Uy is defined by Eq. (3.10).
Note that the U’s are canceled from the trace of the
Wilson loop operator:

W(d0)=Tr0,(dc)=Tr [Pw exp U; G drde ” .
4.5)

The resulting formula is explicitly rotation invariant.
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