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We propose a nonlinear Schr6dinger equation with a gravitational self-interacting term. The separability conditions of 
Bialynicki-Birula are satisfied in an asymptotic sense. Soliton-like solutions were found. 

There is an old-established common knowledge 
that when extending quantum-mechanical laws to 
macroscopic bodies one is confronted, among other 
things, with the following problem. 

According to classical physics, in the absence of  
external forces the center o f  mass of  a given macro- 
object either moves uniformly along a straight line 
or, in the particular case, rests at a certain point. Un- 
fortunately, the Schr6dinger equation of  a free par- 
ticle does not have localized stationary solutions. 
Wave-packet solutions which are possibly the best 
representation for the free motion of  a macroscopic 
body are not stationary. On the contrary, the wave- 
packet corresponding to the CM continually widens 
with time, thus the position of  the CM becomes more 
and more uncertain. At the same time, experience 
shows that a macroscopic object always has a well- 
defined position. 

A possible way to circumvent this contradiction 
is to exclude the initial states which develop a mea- 
surable spread of  the CM of  the given macro-object. 
For instance, if the wavefunction of  a given body 
with a weight of  several grams is initially localized in 
a volume with a linear size of about 10 -8  cm (or 
larger), the quantum-mechanical spreading of  its CM 
will be extremely slow. The initial position displays 
no change even for thousands of  years, and the wave- 
packet of  the CM is apparently stationary with very 
good precision. 

People often argue that it is meaningless to sup- 
pose that a macroscopic body can have a more accu- 
rate localization than a typical atomic size of  10 -8  cm. 
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Nevertheless, this is merely a bad guess. Let us accept 
that the position of  a single atom is usually in a vol- 
ume of  atomic size. Then we must conclude that the 
CM position of  a group of  many atoms will be defined 
much more accurately than the position of  the single 
atoms. 

This reasoning shows that the atomic size of  10 -8  
cm does not give an absolute limitation for localizing 
macro-objects. Thus it would be conceivable to sup- 
pose a macroscopic object of  1 mg with a wave-packet 
of  10 -12 cm width. However, this initial width be- 
comes several times larger even in a few minutes. 
Hence, quantum mechanics would predict non- 
stationary behavior for the free motion of  a macro- 
object and this anomaly could, in principle, be detect- 
ed in certain extreme experiments [1]. 

However, Nature can single out another possible 
way for solving the problem of wavefunction locali- 
zation: we cannot exclude the existence of a mech- 
anism which modifies the laws of  quantum mechanics 
for macroscopic objects. A modified Schrbdinger 
equation will then have localized stationary solutions 
describing the state of macro-objects. Such arguments 
were put forward in ref. [2],  where a nonlinear but 
local term was added to the Schrbdinger equation and 
soliton-like solutions were found. 

In the present work we show that the gravitational 
interaction possibly could prevent the unbounded 
quantum-mechanical spreading of  the CM position 
of  macro-objects, at least in certain quantum states. 
If  this interaction is included, it destroys the lineari- 
ty of  quantum mechanics [3].  In the nonrelativistic 
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case, newtonian gravitation can explicitly be built in- 
to the Schr6dinger equation. We arrive then at a non- 
linear integro-differential equation possessing soliton- 
like solutions, the ones we need to describe the well- 
localized macro-objects. 

A theory, satisfactorily unifying quantum mechan- 
ics and gravitation in every respect, still has not been 
found. Here we are going to apply the approach of 
M~bller and Rosenfeld [4,5] : 

R ab - ~gab R = (8rrG/c4)(~[ Tab I~), (1) 

where g is the metric, Rab is the Ricci tensor, G stands 
for the constant of Newton and c denotes the veloci- 
ty of light. We put the expectation value of the ener- 
gy-momentum tensor operator i"ab in the actual 
quantum state ff on the RHS of the Einstein equation. 

This equation is certainly not correct if the fluc- 
tuation of Tab is too large in the quantum state ~, 
e.g. when macroscopically different densities of the 
energy and momentum are superposed [6]. But, if 
the given quantum state ff can definitely be asso- 
ciated with only one macrostate, there can be no a 
priori objection against eq. (1). Actually, this equa- 
tion is to be applied as long as we do not quantize 
gravity. 

Henceforth we shall discuss nonrelativistic systems. 
Let us consider the Schr6dinger equation for a sys- 
tem of N particles having masses m 1, m 2, ..., mN: 

i~ ~ ( X ,  O/at 

~ h2 ~2 

2m r ~x 2 
Y 

N 

- -  + Z ;  r - x )  
r,s=X 

N 

+ ~ m r ~Xr, t)) ~(X, t). (2) 
r=l 

Here, X = (Xl, X2, ..., XN) stands for the space coor- 
dinates of the particles, Vrs is the interaction poten- 
tial and ~b denotes the newtonian gravitational poten- 
tial given by the nonrelativistic equivalent of the Ein- 
stein equation (1): 

a~(x, 0 
N 

= -4nGfd3Nx'tqJ(X',t)l  2 ~ 6(3)(x - Xr). (3) 
r=l 

If we solve the Poisson equation (3) explicitly, we 
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can eliminate the potential ¢ from eq. (2). Thus we 
are led to the following nonlinear integro-differential 
equation : 

ih ~tk(X, O/at 

= - U m  + V ( x  - x )  
~¢r r's=l 

N 
,, mrm s d3N x , ]  

- G  2_J J x-V---x I~b(S',t)l 2 ~(x, t). ! r,s=l t s -- rl 
(4) 

For one free point-like object of massM, eq. (4) 
reduces to the following nonlinear Schr6dinger equa- 
tion with a non-local self-interacting term: 

ih a~(x, O/at = - ( h  2/2M)a~(x, 0 

GM 2 I~(x',012d3x , x t 

An important feature ofeq. (4) is that it asympto- 
tically satisfies the separability condition of Bialyniki- 
Birula [2] : Let ~b(A)(XA, t) and ff(B)(XB, t) be solutions 
to eq. (5) for single particles A and B, respectively. If 
the spatial separation of A and B is large enough to 
neglect both the potential VAB and the gravitational 
interaction between A and B, then the wavefunction 
I,O(AB)(XA, XB, t) = ~(A)(XA, t) I~(B)(XB, t) is a solution 
to the two-particle equation (4) with N = 2. 

Let us remind that in ref. [2] only mathematical- 
ly local nonlinearities were discussed. Our nonlinear 
term is nonlocal. 

We note that in eqs. (4), (5) the wavefunctions must 
be normalized to unity. The nonlinear Schr6dinger 
equation (5) preserves this normalization: 

dfl~(x,t)12 d3x = 0, (6) 

and the expectation value of the momentum opera- 
tor i0 and that of the energy operator E are conserved 
as well: 

d (~lf i l~}=d f ~/*(x,t)(-ihV)~(x,t)d3x=O, (7) 

=~ -Tf  ~ ( x , t ) ( - ~  A d <~IEI~>- d . ~2 

GM2/'lff(x',t)l 2 ,3 ,~ - 
-~ d 1~7-L-_-~l cl x J~O(x,t) d3x = 0. (8) 
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Naturally, eq. (5) is covariant against galilean trans- 
formations. It can be shown that if if(x, t) solves eq. 
(5) then the function 

~(x - r - vt, t ) e x p [ - ( i / ~ ) ~ g o 2 t  + (i/h)Mvx] (9) 

will also be a solution, where r and v are arbitrary 
constants. 

Certain solutions of  unit norm can conveniently 
describe the quantum-mechanical propagation of  a 
given point-like macro-object of  mass M. We are go- 
ing to show that the solution of minimal energy is a 
soliton-like fixed wave-packet with static spatial den- 
sity. 

Let us consider the normalized function ¢(x) min- 
imizing the energy functional (8): 

~2 GM 2 [, [~o(x,)12 d3x,)~p(x) d3x 
E = f s o * ( X ) ( - - ~ A  2 J l x ' - x l  

= min. ,  (10)  

f l~x) l  z d3x = 1. (11) 

One can easily verify that the phase of  ~ will not 
depend on the variable x, thus we can choose ~ x )  to 
be a real function. The resulting minimum problem 
is 

 f[v Kx)l 2dSx GM2 FFtp2(x')~°2(x) -3 , - - - ~ ' - d d  I~C-_~ a x d3x 

- ef~2(x) d3x = min., (12) 

where e is a Lagrange multiplier. 
It can be proved that if C0(x), e 0 satisfy the min- 

imum condition (12) and also the normalization (11) 
then the wavefunction 

~0(x, t) = ~0(x) exp ( - i e  0 t) (13) 

is a solution to the nonlinear Schr6dinger equation 
(5). Indeed, substituting the ansatz (13) into eq. (5) 
one arrives at the nonlinear time-independent Schr6- 
dinger equation for C0(x). This latter equation is the 
same as the variational equation corresponding to the 
minimum problem (12). Thus, the function (13) 
proves to be the ground-state solution to eq. (5). 

Finally, we have to find the function ¢0(x). Let 
us suppose that C0(x) is a smooth real function of 
unit norm, which has a peak with a characteristic 

width a at the origin and tends to zero outside this 
region. We can qualitatively evaluate the expression 
(10) of  the energy E, which is now depending on the 
width a: 

E ~ ~2/Ma2 - GM2/a. (14) 

By minimizing this expression we get the charac- 
teristic width a 0 of  the ground-state wavefunction 

~Oo(X): 
a 0 - ~ 2 / G M 3 .  (15) 

Hence, this value can be taken as the measure of  
the quantum-mechanical uncertainty in the position 
of a free point-like macroscopic object. The expres- 
sion (13) is the stationary ground-state wavefunction 
of  an object located at the origin. Applying the galilean 
transformation (9), one can construct the stationary 
wavefunction corresponding to an arbitrary uniform 
rectilinear motion of  the object. 

In addition to these one-soliton solutions, the non- 
linear Schr6dinger equation (5), unfortunately, pos- 
sesses other solutions too. These latter are associated 
with quantum-mechanical states which generally can- 
not occur in the world of  macro-objects. We do not 
know precisely how to exclude these paradoxical so- 
lutions from the theory. The most natural idea is to 
suppose that a certain physical mechanism destroys 
such states. 

Let us demonstrate a typically unphysical two- 
soliton solution. The propagation of  the given point- 
like macro-object is described by two wave-packets of  
width of  about a 0. Both of  them are normalized to 
1/2. The two wave-packets are moving around each 
other as if they were two objects with mass M/2, gra- 
vitationally attracting each other. 

Formula (15) yields the width of  the wave-packet 
of  a free point-like macro-object, i.e., the extension 
of the object is much less than the spread a 0 of  its po- 
sition. Now we estimate the value o f a  0 for a homo- 
geneous spherical object of  radius R and mass M, sup- 
posing that a 0 ,~ R. The only change appears in the 
interaction term in the functionals (10), (12). The 
simple newtonian kernel - G M  2 I x ' -  x1-1 has to be 
substituted by the effective interaction potential 
V(x' - x )  of  two homogeneous spheres with radius R 
and mass M: 
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V(X t -  X) 
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= _  G M  2 / ' d 3  r f d3r, 1 
(47rR 3/3)2 r <R r '<R Ix' + r' - x - rl 

= ( G M 2 / R ) [ - ~  + ½ [ ( x ' -  x ) / R  12 

+ O ( l ( x ' -  x ) / R I 3 ) I .  (16) 

The characteristic a-dependence of  the energy E 
is the following: 

E ~ h2/Ma 2 - GM2/R + ( G M 2 / R 3 ) a  2. (17) 

The width a0(R) o f  the ground-state wave-packet is 
given by the minimization of  E: 

ao~) ~ (h2/GM3)I /a  R 3/4 = al/a R 3/4, (18) 

where a 0 is the spread of  the point-like object, see 
formula (15). 

We consider formulae (15) and (18) as the main 
result of  this work. We claim that these expressions 
define the natural width of  the wave-packet of  any 
macroscopic object. The similar problem of  the na- 
tural uncertainty in the orientation of  an extended 
macro-object can be discussed in this frame also. 

It is interesting to note that, in ref. [1 ] ,  the same 
result (15) was obtained from certain principles of  
the metrical smearing of  space-t ime. For extended 
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the relation a(oR) ~ ala/3R 2/3 was derived, objects 
which is not identical with our result (18). However, 
if a critical size R c is defined by the condition a(0R) 
= R c ,  then ref. [1] and formula (18) yield the same 
value, R c ~ 10 -5 cm, for objects of  normal density. 
In ref. [2] special considerations are used to estimate 
the critical size and also a value of  about 10 -5 cm 
was predicted. Both papers [ 1,2] and the present one 
too, adopt the idea that a breakdown of  the super- 
position principle is foreseen in the macroworld and 
R c defines the line o f  demarcation between micro- 
and macro-objects. 
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