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Starting from recent results on the distribution of the thermodynamic fluctuations we propose a formula which expresses the 

correlation length by means of the derivatives of thermodynamic potentials. 

It was originally revealed by Einstein [ 1 ] that 
equilibrium thermodynamics can provide information 
on the magnitude of statistical fluctuations in thermo- 
dynamical systems. In this paper we shall propose a 
thermodynamical expression for the correlation 
length 6 of spatial fluctuations of local thermodynam- 

ic characteristics. The correlation length is an impor- 
tant quantity of systems, especially in second order 

phase transitions [2]. The size ,$ may probably char- 
acterize the formation of the new phase in first order 
transitions of classical thermodynamic systems as well 
as of the dense nuclear matter or the continuum of 

the very early universe [3]. 
Let us consider an inftitely large homogeneous 

equilibrium system characterized by the set of n in- 
dependent extensive densities x0 = (x:, xi, . . . . $). 
In a given subsystem of volume V the density xr will 
fluctuate around its average value xi with the follow- 
ing correlation [ 1,4] : 

((9 - x$(xk - x0”)> - v-lgik(xo) 

(i,k = 1,2, . . . . n), 

when V + =. On the r h s. the matrix gik is a pure 
thermodynamic quantity; it stands for the inverse 
of the matrix 

gik(X)=-a2s(X)/aXiaXk (i,k = 192, **.,n) 3 

where s(x) is the entropy density function of the 

given system. 

(1) 

(2) 

Now, observe that if the homogeneous thermody- 
namic system in question would be free of spatial 
correlations then eq. (1) should be correct for arbi- 
trary volumes I/, not only for V+ m. The l/V factor 

on the rhs. of es.(l) reflects the well-known statis- 
tical rule that the squared dispersion of an additive 
(i.e. extensive) quantity must be proportional to the 

volume if the given system is homogeneous and cor- 
relations between different parts of it can be ne- 
glected on the actual volume scale. 

We shall, therefore, attribute the breaking of eq. 
(1) to the spatial correlations between the fluctuations 

of the local thermodynamic characteristics [3]. 
Recently [5,6], the matrixgik was applied as the 

riemanman metric tensor on the space of thermody- 

namic states of a given system. One can expect [7 $1 
an intimate and direct connection between the metric 
tensor gik and the fluctuation probability 
Pv(x(xo)dnx of the subsystem densitiesxj (T/is 
the volume of the subsystem,xo stands for the exten- 
sive densities of the large reservoir system). 

Let us introduce an evolution variable r = l/ V(the 
underlying physical picture can be found e.g. in ref. 
[S]). Then the function p(~,xIx~) =p v(xIxo) fulfils 
the following evolution equation [8] 

g PtLxIx(j) = 
a2 

~ gik(x)P(~,xlxo) , 
aSa_& 

(3) 

with summation over the repeated indices i and k, 
according to Einstein’s notation. Starting from the 
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obvious initial condition [S] 

p(O,xlxu) = @)(x -XC)> ) (4) 

the fluctuation probability is uniquely determined for- 
arbitrary finite equilibrium systems. 

Now, we are going to apply eqs. (3), (4) for calcu- 
lating the correlations 

((X x&)(xk ~ X6)) 

E 
s (x’ x&)(x” ~~ .&P(~, xl-Q d”x (5) 

of the extensive densities in a system of volume V = 

1 /r. Assume that the correlation can be expanded 
into a Taylor series around 7 = 0. We can evaluate the 
r.h.s. of eq. (5) by substituting the T-derivatives via 
eq. (3) and after partial integrations we apply the ini- 
tial condition (4). Then the result is as follows: 

((x’ ~~ X&G ~ Xgk)) 

=g’k(xu) + ; 72gik(xu)*rsg’s(X()) + O(G) ) (6) 

where the subscripts preceeded by a comma stand for 

partial derivations. Thus we get the asymptotic cor- 
rection term to the rh.s. of eq. (1). It is obvious from 

eq. (6) that the correction term is negligible if 

V (= I/T) is large enough but it becomes essential that 
and below a certain correlation volume V = V,,,, 
which must be of the order of td (t is the usual cor- 
relation length,d denotes the number of the spatial 
dimensions of the system). 

Stopping at the quadratic term in eq. (6), one can 
evaluate the criterion for Vcor (x ,!$) by introducing 
the eigenvectors of the matrix 

Mik ,gik YS 
,rsg . (7) 

Namely, let II: fulfill the relations 

Miru 
ar 

= 111 ui 
a a’ gTlar lJas = 1 (a = 1 ) 2, . ..) n) . 

(8) 

(The raising of the indices is done, of course, by the 
metric gik .) Then, in the usual way, one gets that the 
eigenvectors belonging to different eigenvalues m, are 
orthogonal to each other. Here we restrict ourselves 
to the generic case when Mik possesses n eigenvectors. 
Rewriting the r .h.s. of eq. (6) by means of m, and ui, 
one gets 
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((x’ - x6)(x” xi), 

=c (1 t f V-ha) u(: u,k Y--l t O( Y--3) . (1)) 
a 

Therefore the first term dominates if 1 >> k YM1wta 
Eq. (9) clearly indicates that there may exist differ- 
ent correlation mechanisms with different character- 
istic volumes (lengths). One can choose the maximal 
of them, and then we have [3] 

V,,,(= cd) = i max, (m,) f 10) 

This is our central result and it should be consid- 

ered as a possible alternative to Ruppeiner’s sugges- 
tion in ref. [7]. His suggestion was V,,, = IRl/Z, 
where R is the Ricci scalar curvature of the metric gih_ . 

However, this is only a lower bound for Vcor. We do 
not have to perform lengthy calculations for verifying 
this statement, rather a simple gedankenexperiment 

will serve. Consider a system whose local state is com- 
pletely determined by its energy density E. Now, such 
a system still may contain interactions between par- 
ticles the system is made of (cf. e.g. the charge-sym- 

metric state of the hot nuclear matter in ref. [9]), then 
spatial correlations will exist. However, the scalar cur- 
vature R is zero for any one-dimensional Riemann 

space, so there Ruppeiner’s correlation vanishes. 
Now we are going to investigate two special sys- 

tems, which are sufficiently simple, and do not con- 

tain any interactions in the usual sense, the ideal 
Boltzmann and the photon gases. 

For an ideal Boltzmann gas, the entropy density 
function is of the form [4 ] 

s =fn ln(E/f()) ;rl In(n) . (111 

where eO is a scale constant, c is the energy density 
and n is the particle density. Hence x = (xl , x2) = 
(E, n), and using eqs. (2) (7) one gets 

(S/3)e*/n 
~1 

t‘ j 

R ik = 

( 

I 

f II I * 

Mik = 

i 

(‘0/9)E2/1? 0 1 
/ 

0 I 
(17) 

OJ 

Then eq. (10) yields 



V coT = 2j3n . (13) 

The result is simple enough, but cannot be interpreted 
as a volume in which the local interactions become im- 
portant, since in our system all interactions have been 
neglected. However, eq. (13) possesses a clear physical 

meaning. 
Observe that, apart from the factor 2/3, the corre- 

lation volume is the specific volume occupied by a 
single particle in average. At this order of volumes, the 

indivisibility of particles itself gives spatial correlation. 

The second example is the photon gas. Here the 
only independent extensive density is the energy den- 
sity E. The equation of state for a pure photon gas is 

t41 

~=&,$(Iic)-~ T4 , (14) 

on a temperature scale where the Boltzmann constant 
is unity. Then the entropy density 

s = ; (2n2/30)1/4(k)-3/4 e3j4 , (19 

whence 

gee = -(d2s/de2)-1 = 4(30/2n2)1/4(k)3/4f5/4 , (16) 

MEE = (d2gfe/de2)gee 

= 5(30/2n2)1/2(k)3/2e1/2 . (17) 

Hence, eq . ( 10) leads to 

V col: = (75/87?)(fic/z+)3 . (18) 

We can see that quantum properties lead to correlation 
between local energy density fluctuations. The corre- 

lation length is of the order of the dominant wavelength 

of the radiation , xRc/3T. This result could be verified 

by statistical calculation of the energy density fluctua- 

tion in the photon gas. 
Finally, we are going to apply our main formula (10) 

in the vicinity of critical points [2]. Here we do not 

perform a detailed analysis, instead, we show only an 
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illustration. Let us assume that the critical exponent (Y 
of the specific heat C determines uniquely the critical 
exponent v of the correlation Length $. It can be shown 
that the above assumption formally leads to the neglec- 

tion of ah independent extensive variables except the 
energy density E, when applying eqs. (2) (7), (8) and 

(IO): 

g EE 
= -&l&2 = - V/T2C - (T - T,)& , (19) 

gee = l/gee -(T - T,)-” , (20) 

MEE =gfca2geElae2 

-g” [(T - TJQ d/dT12(T - T,)-Q , (21) 

V coI z .$d = ;ME’/gee - (T - Tc)a-2 , (22) 

where T, is the critical temperature. Since the correla- 
tion length .$j diverges as (T - T,)-“, we arrive at the 
famous rule [2] vd = 2 - (Y. Thus we have verified that 
our correlation length (10) is probably consistent with 
the predictions of critical scaling theories [2]. 

In conclusion, one can state that the thermodynam- 
ic limit preserves information on the spatial correlation 
of thermodynamic fluctuations. Nevertheless, the in- 
vestigation of less ideal systems should be necessary. 
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