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The master equation of the quantum noise theory is derived by means of Feynman's path integral method. We propose an 
equivalent stochastic process where the wavefunction satisfies a nonlinear SchrOdinger equation except for random moments at 
which it shows orthogonal jumps. 

Since the early works [ 1-3] on the theory of quantum noise, great interest has been shown in quantum-me- 
chanical systems affected by random external forces and also new aspects have appeared [4-6] .  Usually, the quan- 
tum state of such systems is described by a density operator obeying a deterministic differential equation (master 
equation). If we attribute a state vector (instead of the density operator) to the given system, then the state vector 
should be considered as a stochastic variable governed by a certain stochastic process. 

In the first part of our work we derive the master equation for the density operator by a seemingly new applica- 
tion of the path integral technique. Then, we construct a stochastic process for the wavefunction of the system, 
while retaining its equivalence with the density operator formalism. In the final part we shortly discuss favoured 
features of the above stochastic process proposed for the wavefunction. 

This work is an anticipation of a more general and lengthy explanation of the stochastic properties of the wave- 
function in the presence of random forces. 

Now, we are going to introduce the notion of stochastic potential of white-noise type. Here we shall investigate 
the effect of gaussian white-noise potentials. For brevity, we restrict ourselves to the case of a single point.like par- 
ticle moving in one dimension. 

Let us assume that the potential V(x, t) acting on the particle is a stochastic variable (x, t stand for the coordi- 
nate and time). We define the probability distribution of V by the following generator functional G [h] : 

G[h] =- ( e x p ( i f V ( r , t ) h ( r , t ) d r d t ) ) = e x p  ( -½ f h ( r , t ) h ( r ' , t ) f ( r - r ' ) d r d r ' d t ) ,  (1) 

where h is an arbitrary function. The symbol ( ) stands for expectation values evaluated by means of the probabil- 
ity distribution of V. Functional differentiation of G[h] gives rise to the two typical relations of moments of 
white-noise type: 

( V(r, t) ) = O, ( V(r, t) V(r ', t') ) = 8 (t - t ')f(r - r '). 

For further use, we introduce the following notation: 

g ( r )  = f ( 0 )  - f ( r ) .  

(2, 3) 

(4) 

Now we investigate the effect of the white-noise potential (1) on the quantum-mechanical motion of a given 
point-like particle of mass m. 

If  we single out a given potential V then the wavefunction ~bt(x ) of the particle will satisfy the Schr6dinger 
equation of motion 
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ae t(x)/at = (ili/2m)a2~ t(x)/~x2 - (i/h )V(x, t)~ t(x), (5) 

where x is the spatial coordinate and t refers to the actual value of the time. Taking the initial wavefunction ~b0(x ) 
at t = 0, one can express the solution for t~t(x ) by means of Feynman's path integral formula [7] : 

= f exp f ' • 2 ~t(xt) [~rnx r - V(xr, r)] dr ~b0(x0) Dxr, t > r/> 0. (6) 
0 

In our case, V(x, t) is a stochastic variable, thus ~t(x) will evolve in time according to a given stochastic process. 
We shall not derive the rules of this stochastic process. Instead, we shall construct another stochastic process for 
~t(x) which leads to the correct statistical predictions and which has genuine features from the viewpoint of mea- 
surement theory. 

In the generic case, the quantum state of the particle is uniquely characterized by the density matrix [8] 

Pt(X,y) ---- (~bt(X)~(y)).  (7) 

Indeed, it can be shown [9] that Pt yields all the usual statistical predictions of quantum mechanics. Namely, 

o, = f oo,, x)p,(x, y) dy, (8) 

where 0 is the hermitian operator of an arbitrarily given dynamical quantity and 0 t stands for its predicted value 
at time t. 

First, we shall prove that the density matrix (7) satisfies a parabolic differential equation of motion. Using eq. 
(6) along with eq. (7), one gets 

t 

#t(xt,Yt)= ( f  exp( ~ f 0 (~m(~c2- y 2 ) -  [V(xr, r ) -  V(yr, r)] } dl")Po(Xo,Yo)DxrDyr), , > r ~ > 0 ,  (9) 

where P0 is the initially given density matrix: Po(X, y) = ~b0(x)~0, ). On the r.h.s, one can substitute 

-~0 ~ 1 f g ( x z - y z ) d ~ "  ) ,  (10) 

which obviously follows from eq. (I) if we insert there h(r, r) = --(1/h)(5(r - xr) - 8(r -Yz))  and use eq. (4). 
Thus we have a path.integral representation for the density matrix at arbitrary time t: 

t 

Pt(xt,Yt) = f e x p ( f  [i(m/2h)(k2-j~2)-(1/ti2)g(xr-yr)] dr)Po(xo,Yo)DxrDyr, t > z > ~ 0 .  (11) 
0 

Differentiating both sides of eq. (11) with respect to t, one gets the equation of motion for the density matrix 
in the gaussian white-noise potential (1): 

OPt(x, y)/Ot = (it~/2mXa2/ax 2 - a2/ay2)pt(x , y) - (1/h2~(x - y)pt(x, y). (12) 

This equation is sometimes called the master equation of the quantum noise theory. Our path integral method 
seems to be very effective for deriving the master equation even in more general external noises. 

The second term on the r.h.s, of eq. (12) is a typical damping term known from the quantum theory of reser- 
voir effects (cf. coarse grained approximation in ref. [3]). This term cannot be reproduced by any given non-sto- 
chastic hamiltonian. 

Besides damping, a very peculiar feature of eq. (12) is that it produces mixed quantum states from a pure one in 
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a continuous manner. Exploiting the nature of  this permanent quantum state mixing we shall construct the stochas- 
tic process for the evolution of  the wavefunction itself. 

In order to make the calculations as simple as possible we suppose that 

g(r) = ½A2r 2 + higher order terms in r, A = const, (13) 

and we shall neglect the "higher order terms" by assuming that the width of the wavefunction will always be small 
enough. 

Thus, eq. (12) takes the form 

OPt(x , y)/Ot = [(ih/2mXO2/Ox 2 - 02/0y2) - (A 2/2h2Xx - y)2] Pt(X ' y).  (14) 

If  at time t the particle is in a pure quantum state with the given wavefunction ~b t then [7] 

Pt(x ,y)  = t~ t (x )~ t  (y), (15) 

and eq. (14) yields 

pt+e(x,y)  = [1 - ( eA2 /2h2 ) (x  - y ) 2 ]  [1 + i(he/2m)a2/Ox 2] Ct(x)[1 - i (he/2m)O2/Oy 2 ] f i t  Cv), (16) 

for infinitesimal e > 0. Now, the r.h.s, is not a single product like it was in eq. (15). Nevertheless, it can be orthog- 
onally decomposed into the sum of  hermitian diadic terms. The diagonalization of the operator pt+e(x, y)  in the 
lowest order of  e yields only two diads due to the approximation made by eq. (13): 

Pt+e(x,y) = (1 ew)tbt+e(x)~bt+e(y ) + ~ ~* - ewCt+e(x)~/t+e(y), (17) 

where 

w = (.4 2/h2)o 2 (18) 

is the mixing rate, the dominant wavefunction ~t+e is infinitesimally close to ~t: 

t~t+e(x ) = {1 - (eA2/ZPtZ)[(x - x~)  2 - 02 ] + i(eh/2m)O2/Ox 2 } ~t(x), (19) 

and the contaminating wavefunction ~t+e is orthogonal to ~t+e, 

~t+e(x) = [(x - x ¢ ) / %  + (eA2/2h2)a3 / %  ] [1 + i(he/2m)O2/Ox 2] ¢t(x).  (20) 

We have introduced the following notations: 

(21) 

It is easy to verify that qJt+e and ~t+e are normalized to unity and orthogonal to each other (in the lowest order 
of  e, of  course). After straightforward calculations eqs. ( I  8 ) - (21 )  lead to identity of  the r.h.s.'s of  eqs. (16) and 
(17). 

Now, let us read out the statistical meaning of  eq. (17): in an infinitesimally short time e, the quantum state 
~t  of  the particle either evolves continuously into the neighbouring state ~bt+e, or, with the infinitesimal probabil- 
ity ew, jumps to the state t~t+e, which is orthogonal to qJt+e" 

Thus, the stochastic process governing the evolution of  the wavefunction is as follows. The wavefunction tPt(x ) 
of  the given particle satisfies the following non-linear equation of motion * 1. 

O~ t(x)/Ot = i(¢t/2m)OZ~ t(x)/Ox2 - (A 2/2~z)[(x - xg,) 2 - 02 ] ~ t(x), 

x~ = f xl~kt(x)12dx, 02 = f (x - xqj) 2 I~bt(x)12dx, (22) 

#1 Eq. (22) in itself, possesses soliton-like solutions. For a similar mechanism see, e.g., ref. [ t0]. 
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apart from discrete orthogonal jumps 

~t+o(X) = [(x - xq~)/o¢] ~kt(x ) =- ~t(x), (23) 

which occur at random in time. A jump is performed with probability according to the time-dependent transition 
rate 

w = (.42/h2)o2~. (24) 

By its construction, this stochastic process leads to the same physical predictions in average as eq. (14) did. 
Namely, given the initial density matrix Po(X,y), we can decompose it as 

Po(X, y) = ~ pr@~r)(x) [~k~r)(y)] *, (25) 
r 

where the ff~r) form an orthonormal system. Let us regard equality (25) as if the particle were in the pure state 
ff~r) with probability Pr" Starting the stochastic process (22)--(24) from these initial wavefunetions, each of them 
will give rise to the quantity 

Pr~r)(x)[ qJ~r)(y)l *. (26) 
r 

The stochastic average of this expression over the histories ~k~ r) is equal to Pt(x, y). 
We have to note that many other stochastic processes for ~b t can be constructed with the same Ot(x,y). Never- 

theless, we would like to underline that the orthogonality of the stochastic jumps (23) is very crucial from the 
viewpoint of measurement theory. We show that by means of continuous measurement ,2 we can registrate all 
stochastic jumps, without disturbing the measured particle. A more sophisticated formalism of non-demolition con- 
tinuous quantum measurements was recently constructed by Barchielli [ 12]. 

Let us suppose that we know the wavefunction ~b t at a given moment t. Then we define the following hermitian 
operator 

Ot+o(X, Y) = ~ t(x)@ ~ (Y). (27) 

If at time t we measure the dynamical quantity corresponding to the operator 0 then the result of the measure- 
ment is 

o,+0 = dy (28) 

If at time t the wavefunction evolves continuously then @t+0 = ~kt and Or+ 0 = 1. Oppositely, if ~t jumps then 
~t+O = t~t (cf. eq. (23)) and Ot+ 0 vanishes. Observe that in both cases St+0 is an eigenvector of Ot+o, therefore 
this measurement does not react on the measured system (i.e. it does not force the wavefunction @t+0 to collapse). 
In addition, the measured value (28) is definitely 0 if a jump has occurred and it is 1 in the opposite case. 

Thus, keeping in mind the causal equation (22), we can follow the stochastic changes too, if we continuously 
measure the operator (27). Of course, it is not obvious at all how should we realize the proper measuring apparatus 
in practice. 

Finally, we note that in the Langevin approach of quantum damping [2] also a stochastic process is constructed, 
but this process is related to the evolution of the density matrix, not to the pure quantum state of the system. 

I wish to thank the authors of ref. [4] and also Dr. P. Hrask6 for illuminating discussions. 

,2  Continuous measurement may totally suppress the own dynamics of  the measured system ("Zeno paradox", see e.g. ref. [ 11] .) 
In white-noise potentials, however, this paradox can easily be disproved. 
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