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For some values of the G U T  energy scale parameter, irreversibilities essentially modify the cosmological expansion and may 
drive inflation even without supercooling. Since in this case the G U T  phase transition is affected too, a proper dynamical 
treatment of the evolution of the early universe is given. 

Grand unified theories (GUTs) are very successful 
in unifying all the known elementary interactions; 
however, when applying them to the very early uni- 
verse, they tend to give some disturbing predictions. 
One of them is the dominance of monopoles produc- 
ed in the symmetry breaking GUT phase transition; 
calculating the monopole/entropy ratio in the usual 
way, it is definitely not below 10 -8 [1]. This ratio 
may decrease to 10 -10 by subsequent pair annihila- 
tion [2], but thereafter it remains constant in the 
standard model. In view of the high monopole mass, 
such a ratio is definitely incompatible with astronom- 
ical facts [3]. Evidently, this contradiction could be 
solved by a sufficiently strong entropy producing pro- 
cess occurring after the monopole creation [4]. Va- 
rious candidate mechanisms have been proposed for 
realizing this idea, as, e.g. the old and new inflation 
[4~5]. The common feature of these models is some 
delay in GUT phase transition, leading to an inequi- 
librium transition, which obviously can generate extra 
entropy [7]. Unfortunately, in order to obtain long 
enough delay one has to accept specially adjusted 
Higgs self-interaction potentials [8]. However,entropy 
production can occur without supercooling too, e.g. 
via irreversible momentum transfer processes, which 
exist in any real continuum [9]. In fact, an estima- 
tion indicates that after the phase transition this pro- 
cess in itself may be sufficient to produce the requir- 
ed entropy if the scale parameter/2 of  the spontane- 
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ous symmetry breaking is as high as several times 
1015 GeV [10]. 

Some near-equilibrium irreversibilities are treatable 
even for two phases, and if the momentum transfer is 
sufficiently strong, then at the last stage of the transi- 
tion the irreversibilities become essential, but detailed 
calculations for the proper dynamics of  a first order 
phase transition have been performed only without 
taking the momentum transfer into account [11]. 
Therefore here we are going to extend these studies 
to include irreversibilities too. 

Of course, the proper dynamical treatment of  such 
a complex system as the GUT continuum at the phase 
transition is possible only with some technical simpli- 
fications. The details of the model can be found in 
ref. [ 11 ]. It contains a single Higgs field with a general 
quartic potential, and with self-consistently evaluated 
one-loop thermal corrections [ 12]; the contributions 
of the other particle degrees of  freedom being calcu- 
lated only in the high and low temperature limits. 
The quartic potential contains four essential param- 
eters, one of them is the scale parameter/2, the others 
are dimensionless constants: 

V0(~b) = C -  ½/.t2Tr ~b 2 + ~ e/xTr ~ 3 

+ ¼ [Xl(Tr~2)2 + X2Tr~ 4] . (1) 

In this approximation the model equations of state 
(for the symmetric and the deeper asymmetric states, 
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respectively) take the forms [ 11 ] 

s T2#2 Psym(T)  = - g 0 ( 0  ) + 

+ [ ~  lr 2 - ~-~ (7 h 1 +3h2)] T 4 , 

Pasym(T) = - ~  ~rZT4, (2) 

for the pressures, and for the energy density 

0 = r P r  - P .  (3) 

Here we are interested mainly in the dependence of  
the behaviour of  the model universe on the GUT scale 
parameter #, thus we accept some reasonable values 
for the numerical constants e, ~1 and ~.2. Since e is a 
measure of  the first order character o f  the phase tran- 
sition, we take two values for it, 0.1 and 1.0, corre- 
sponding to a weakly and an essentially first order 
transition, respectively. It seems as if the ~. values 
were to have less direct dynamical consequences. 
Thus we choose such h values that the self-consisten- 
cy of  the model be maximal. According to ref. [11], 

1 • this seems to happen near )k 1 = ~2 = 7, In conformity 
with some independent expectations that ;k would be 
in the order o f g  4 [13,14], where g2 = 4rra -~ 0.28 is 
the GUT coupling constant [1]. 

For the universe we accept the usual R o b e r t s o n -  
Walker metric [15] 

ds 2 = d t  2 - R2(t)  [dr 2 +S2(r) (dO 2 + sin20 d~02)], (4) 

where k = +1,0,  - 1 ,  for S(r) = sinr, r, sh r, respectively, 
for the symmetry  SO(4), E(3), SO(3, 1), respectively. 
R ( t )  is the scale factor o f  the geometry.  The dynamics 
of  the evolution is governed by  the Einstein equations, 
whose only non-trivial components are now 

k 2 = - k  + (87r/3M2)oR 2, R = - ( 4 7 r / 3 M 2 ) ( p + 3 P ) R ,  

(5) 

with such units that h = c = 1;M = 1.22 × 1019 GeV 
is the Planck mass .P  stands for the spatial stresses, 
while p is the energy density. This form o f  eqs. (5) is 
unique if the space curvature constant k of  eq. (4) is 
fixed by the specific symmetry.  

Because of  the possible irreversible processes in the 
cont inuum,P is generally not equal to the thermody- 
namic pressure p. In a homogeneous, isotropically ex- 
panding continuum it can be written as [9] 

P = p - ~ur;r ÷ (higher terms in ur;r ) , (6) 

where U i is the four-velocity. This correction leads to 
an entropy production proportional to ~ [10]: 

(sR3)" = 9 ( ~ / T ) I ~ 2 R .  (7) 

According to ref. [9], in a gas of  point particles the 
coefficient ~ takes the value (up to numerical con- 
stants depending on the details o f  the differential 
cross section) 

= a - 2 m 3 f ( T / m ) ,  

f ( z )  = z 9/2 i f z ' ~ l ,  

= z -1  if z >> 1 , (8) 

where T is the temperature.  One can see that the cor- 
rection to p is maximal somewhere at T ~  m; in the 
GUT continuum there are particles with mass of  the 
order of  the phase transition temperature,  e.g. the X 
bosons for which, after the symmetry breaking [16], 

m x = ( ~  lr~) 1/2 [#/(30X 1 + 7 •2)] 

X {e + [e 2 + 4(30~. 1 + 7~.2) ] 1/2).  (9) 

Now, substituting the right-hand side ofeqs .  (5) from 
eqs. (2), (3), (6) and (8), (9), one obtains two equa- 
tions for the two unknown quantities R and T. 

Nevertheless, during a first-order phase transition 
the temperature is constant, while the matter  is a 
mixture o f  phase domains. If  these domains are too 
large, the large scale homogeneity breaks down, and 
line element (4) is no more valid. In such cases the 
usual cosmological equations (5) are not applicable 
[ 11 ]. I f  the domains are small enough, then - because 
of  the long range character o f  gravity - the ene rgy -  
momentum tensor is to be substituted by its volume 
average [7], 

P = x P  l + ( 1 - x ) P  2 ,  p = x p  l + ( 1 - x ) p 2 ,  (10) 

where x is the volume ratio of  the first phase. 
The temperature of  the phase transition, Ttr, is 

determined by the Gibbs condition 

psym(Ttr) = Pasym(Ttr) .  (11) 

Therefore the temperature is constant during the 
transition, the two variables governed by  eqs. (5) are 
R and x there. 

Then the evolution of  our model universe consists 
of  three subsequent stages: T >  Ttr, T = Ttr and T <  
Ttr, respectively [ 11 ]. Since m X = 0 in the symmetric 
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phase, there ~ = 0, the equations o f  state are given by 
eqs. (2). Although analytic solutions cannot be given 
for the second and third stages, it is convenient to use 
again the dimensionless variables of  ref. [ 11 ] : 

r = ( # 2 / M ) t ,  y = T2/la 2 . (12) 

Then all but  the irreversible terms (containing ~) 
show scaling with/3 = #/M. Therefore the ent ropy 
production is a function of/3. 

For  early stages of  the evolution k = 0 can be used 
[1,4,15]. Then there is a scaling in R ,  so the specific 
initial condit ion for R is immaterial.  Choosing a con- 
venient initial value for T the equations of  motion 
can be numerically integrated. For/3 = #]M we took 
various values starting from 4.0 X 10 -5  suggested by 
the low energy coupling constants [ 17 ]. The main re- 
sults are displayed in figs. 1 - 3 .  

Fig. 1 shows the monopole /en t ropy  ratio at the 
final step o f  the calculation (at T = 0.1Ttr ) as a func- 
t ion of/3, for the two chosen values of  e. The initial 
monopole density just after the transition has been 
taken as the endproduct  o f  the annihilation [2] calcu- 
lated in the analytic adiabatic model of  the evolution 
[ 11 ]. One can observe a critical value of/3 (somewhere 

just above 6.0504 X 10 -4  when e = 0.1 and 5.655 X 
10 -4  when e = 1.0), at which nm/S -+ 0 because o f  
the strong ent ropy production just after the transi- 
t ion. 

Fig. 2 is R / R  0 versus r for various combinations o f  
e and/3. Near the critical value of/3 an almost expo- 
nential inflation can be seen. 
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Fig. 1. The monopole/entropy ratio,nm/s , at T = 0.1 Ttr for 
two different values of e as a function of # = #/M. 
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Fig. 2. The cosmological scale factor R (in arbitrary units) 
versus the dimensionless time r = #2tiM, for three charac- 
teristic combinations of the parameters e and/L 

The thermal history is displayed on fig. 3. Near 13cr 
a plateau can be observed just after the phase transi- 
tion; this plateau is in direct connection with the in- 
flation [10]. 

The curves near/3cr can be regarded as realizations 
of  the idea formulated in ref. [10]; for some special 
values of  the symmetry breaking scale parameter/a the 
irreversibilities (represented here by the momentum 
transfer) can drive an almost exponential  inflation 
even without  any supercooling; if/3 </3cr, after some 
time the universe automatically escapes from the in- 
flation. Some fine tuning is needed for a final ratio 
n m/s "- 10-23 [ 1 ],  the necessary tuning was estimated 
to be ~5% [10]. The critical value o f #  is very near to 
our order of  magnitude prediction in ref. [10], note 
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Fig. 3. Dimensionless temperature square y = T2[# 2 as a 
function of the dimensionless time r for three combinations 
of e and #. The arrows indicate the beginning and end of the 
phase transitions. Observe the plateau after the transition for 
high values of #, corresponding to an isothermal inflation. 
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also the numerical coincidence with ref. [18]. 
Thus one may conclude that this result seems to 

be promising to partially or fully eliminate the mono- 
pole dominance. Nevertheless, two major problems 

still remain. 
(a) The present calculation is merely a linear ap- 

proximation in the irreversibilities [cf. the neglected 
terms in eq. (6)] ,  it may become insufficient near/3cr 
where the irreversibilities are strong; and 

(b) the critical value of/a,  where the irreversibili- 
ties are strong enough is in the range ( 6 - 7 )  X 1015 
GeV, which seems to be uncomfortably  high from a 
particle physicist 's  viewpoint. 

The final version o f  this text  was writ ten in the ab- 
sence o f  one o f  the authors (B.K.); therefore she is not  
responsible for the formulation o f  the paper. 

References 

[ 1 ] T.W.B. Kibble,in: Monopoles in quantum field theories, 
eds. M.S. Craigie et al. (World Scientific, Singapore, 
1982) p. 341. 

[2] J.P. Preskill, Phys. Rev. Lett. 43 (1979) 1365. 
[3] S.M. Faber and J.S. Gallagher, Annu. Rev. Astron. 

Astrophys. 17 (1979) 135. 
[4] A. Guth, Phys. Rev. D23 (1981) 347. 
[5 ] A. Albrecht and P.J. Steinhardt, Phys. Rev. Lett. 48 

(1982) 1220. 
[6] A.D. Linde, Phys. Lett. 108B (1982) 389. 
[7] L.P. Csernai and B. Luk~ics, Phys. Lett. 132B (1983) 

295. 
[8] M.S. Turner, Proc. 4th Workshop on Grand unification 

(University of Pennsylvania, 1983). 
[9] J.M. Stewart, in: Carg~se lectures in physics VI, ed. 

E. Schatzman (Gordon and Breach, New York, 1973). 
[10] L. Di6si et al., Acta Phys. Pol. B15 (1984) 909. 
[ 11 ] L. Di6si et al., KFKI-1984-84, Astron. Nachr. 306 

(1985), to be published. 
[12] A.D. Linde, Rep. Prog. Phys. 42 (1979) 389. 
[13] J.Kodaira and J. Okada, Phys. Lett. l13B (1983) 291. 
[14] J.D. Breit, S. Gupta and A. Zaks, Phys. Rev. Lett. 51 

(1983) 1007. 
[15 ] S. Weinberg, Gravitation and cosmology (Wiley, New 

York, 1972). 
[16] P. Langaeker, Phys. Rep. 72C (1981) 185. 
[17] H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. 

Lett. 33 (1974)451. 
[18] L. Di6si et al., KFKI-1984-10. 

26 


