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Covariant evolution equation for the thermodynamic fluctuations
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Recently, by exploiting the Riemannian structure of the thermodynamic state space, a system of
equations was given for the distribution of the fluctuations of arbitrary thermodynamic state vari-
ables. Here we present an alternative version of the theory, which incorporates explicitly the balance
equations for the extensive parameters. For small fluctuations the usual Gaussian law ip repro-
duced.

I. INTRODUCTION

Statistical mechanics yields a foundation for thermo-
dynamics, through the so-called thermodynamic limit.
Here, of course, the fluctuations of the thermodynamic
characteristics vanish.

- When the system is macroscopic but finite, fluctuations
appear with some probability distribution, and thermo-
dynamic expressions can be derived for their first and
second moments. ' Thus, although the thermodynamic
limit cannot give all the information on finite systems,
one may expect a thermodynamic formulation for the dis-
tribution of fiuctuations. In fact, various distributions
can be constructed which differ in higher moments; the
first and simplest one was proposed by Einstein.

However, the Einstein theory cannot yield a realistic
distribution for large fluctuations, and it also fails for sys-
tems of the size of about the correlation volume. We
must add that, originally, Einstein himself regarded his
formula as a mere approximation to the true distribution.

It is also unclear if the distribution of the fluctuations
should be calculated as a function of the extensive para-
meters or can be expressed in terms of arbitrary thermo-
dynamic variables.

Recently, Ruppeiner introduced a Riemannian struc-
ture in the thermodynamic state space, which enables us
to formulate coordinate-invariant relations. Obviously,
the probability of the fluctuations must be independent of
the actual coordinate system; if the Riemannian structure
has indeed a deep physical meaning, the probability must
be expressed by a covariant formula.

In fact, Ruppeiner presented a covariant expression
whose V~ oo limit is equivalent to the Gaussian approxi-
mation of Einstein s theory. His distribution function sat-
isfies the same differential equation as the Cxaussian ap-
proximation, but partial derivatives were replaced by co-
variant ones. In another paper a path-integral formalism
gave the same distribution function. Here, the "comma-
goes-to-semicolon rule" was not used; instead, a covariant
"fluctuation hypothesis" was adopted from a recent
theory of nonlinear relaxation processes.

Here we are going to construct an alternative fluctua-
tion formula, which is also cast into covariant form. It is
somewhat more complicated, but as a reward, it automati-
cally conserves balance for the extensive thermodynamic
characteristics.

In Sec. II we formulate, in extensive coordinates, the
equations which must be satisfied by the fluctuation prob-
ability; Sec. III gives the covariant formulation of the
same equations. In Sec. IV we repeat Ruppeiner's sto-
chastic construction without assuming either the comma-
goes-to-semicolon rule or the fluctuation hypothesis.

II. EVOLUTION EQUATION FOR THE
EXTENSIVE FLUCTUATIONS

Consider a homogeneous equilibrium system of infinite
volume. The thermodynamic state of this system is com-
pletely determined by the set of n independent extensive
densities I x', i =1,2, . . . , n I.

Take a subsystem of finite volume V. For this, the
remainder of the infinite system is a reservoir. Denote the
state of the reservoir with xo and that of the finite subsys-
tem with x'. Obviously, x will fiuctuate around xo with
certain probability pt (x

~
xo)d "x.

The most delicate assumption in the new thermo-
dynamic fluctuation theory is that p depends only on the
thermodynamic quantities x ', x 0, and V; thus all
geometric and wall effects should be negligible. In this
section, for the sake of simplicity, the reservoir system is
taken to be infinite; 'the more general case will be dis-
cussed in Sec. IV. When the subsystem is also infinite
there will be no fluctuations, i.e.,

p„(xixo)=5'"'(x —xo) . (2.1)

J x'pv(x ~xo)d"x=xo, i =1,2, . . . , n . (2.2)

Now, there exists an approximate pt (x
~

xo) for
pv(x

~
xo) if fluctuations are small:

Now, we turn to the function pt (x
~
xo). Observe that

the actual variables are extensive densities. By definition,
extensive parameters are additive, so their expectation
values in a homogeneous system must be proportional to
the volume; in our case the coefficients of proportionality
are obviously the xo's. Therefore, a fluctuation law is
consistent with the balance equations only if
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G V
pv(x

I
xo) =

2&

n/2

&
I
g(xo)

I

p(~x lxo)= f p(r x Ixo)dx" . (2.9)

V
)& exp ——g g;k(xp )(x' —xp )

i, k =1

X(x —x, )
k k (2.3)

By integrating Eqs. (2.7) and (2.8) by dx", if g'" „=—0, it
can be shown that p(~,x lxp) obeys the same evolution
equation as p(r, x lxp) does, with the substitutions
n~n —1, x~x. This attractive feature is absent in the
previous version of the new thermodynamic fluctuation
theory. '

III. EVOLUTION EQUATION FOR THE
FLUCTUATION OF GENERAL VARIABLES

where coefficients g~k are derived from the entropy densi-
ty s,

a's(x)gk(x)=— (2.4)

and
I g I

denotes the determinant of g;k. This probability
function fulfills the constraints (2.2).

There is no reason to retain the form (2.3) if x is far
from xo since g;k is taken at xo, thus, the distribution pz
is not affected by the global properties of the state space.

Nevertheless, the leading terms seem correct; thus, we
may start with the Gaussian approximation of pv(x

I
xp).

Introducing a "time" variable r=1/V instead of V, the
Gaussian distribution p (r,x lxp)=pv(x lxp) fulfills a
diffusion-type evolution equation:

x'=y'(~)

and the metric

g;k(~) =g„(x)Bg Bg
8

(3.1)

(32)

In Sec. II an equation was proposed for the fluctuations
of extensive densities, which (1) is of quite natural form,
(2) conserves the extensive parameters in mean, and (3)
yields the CJaussian approximation for large volumes.
Now, we adopt the idea" that the thermodynamic state
space is a Riemannian metric space and require that the
fluctuation fgrmula be covariant.

Let us introduce a general complete set of parameters ~'
instead of the extensive densities

p (r,x lxp)=g' (xp),. „p(~,x lx, ),a7 BX BX
(2.5) The distribution function p of the general parameter ~

can be written in the followjng form:
where g is the inverse matrix of g;k, with the initial con-
dition pv(

I
o)=p(&

I
o)+ lg( (3.3)

p (O,x lxp)=5'")(x —xp) . (2.6) where p is a Riemannian scalar field while p is not. Obvi-
ously, the initial condition for p is

p(r, x
I
xo) = kg' (x)p(r, x

I
xo) .

BX BX
(2.7)

We suggest this generalized evolution equation and the
initial condition

p(o, x
I
x, ) =S'")(x —x, ) (2 8)

as describing the probability distribution of the fluctua-
tion of the extensive thermodynamic parameters in a
given subsystem of finite volume V=1/7. Obviously, as
V~ ca (~~0) and g;k is more and more constant in the
expected range of fluctuations, Eq. (2.7) becomes
equivalent with the usual Gaussian law (2.5).

Finally, consider the case when we are not interested in
the distribution of the nth extensive x", looking for the
distribution P(~,x I

xo) of x—:(x ',x, . . . , x" '):

Henceforth, we adopt the Einstein convention: There is a
summation if an index occurs twice, above and below.

As already mentioned, the evolution equation should
contain the local structure of the thermodynamic state
space even for x's far from the initial xp. In order to en-
sure this property we must generalize the Gaussian equa-
tion (2.5).

Obviously, in Eq. (2.5) we should use g' (x) instead of
g' (xp) and complete this expression with terms contain-
ing the derivatives of g' . We have to obtain total diver-
gence on the right-hand side and satisfy the constraints
(2.2) at the same time. The only possible choice is then

1
p(0,~

I
~p) = g( )(

I g (~o)
I

(3.4)

a
p(r, ~

I
~p) =bp(r, ~

I
~p)+V;(h'(~)p(r, ~

I
~p)), (3.5)

a7

where V; stands for the covariant derivative, b, is the co-
variant Laplacian, ' and h' is a vector field guaranteeing
constraints (2.2),

f q' '( )p(r
I

o)+ Ig(~) ld "~:y'(~o) . (36)

Here the bar in y' ~ denotes that i is not a vectorial index
but a name.

By differentiating this equation with respect to 7, using
Eq. (3.5), and performing partial integrations, one arrives
at

i
/f b,cp' ' — h" pV

I g I

d "~=0 .
a~" (3.7)

The form of Eq. (2.7) would suggest a covariant Lapla-
cian equation. However, if Eq. (2.7) holds in extensive
coordinates, then the covariant equation for p definitely
cannot be a pure Laplacian. Furthermore, a Laplacian
equation would not be consistent with the constraints
(2.2}. Therefore we claim that the proper covariant form
must also contain a drift term:
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Since this equation must hold for any p, the result is

(3.8)

system.
Now, suppose that this stochastic process is of finite

variance. Then it should be governed by the Fokker-
Planck-Kolmogorov differential equation:

B,(g ~(g()
and Eq. (3.5) can be written as

(3.9)

p=B, g"'&~g ~B,
P +h" (3.10)

By combining Eqs. (3.9) and (3.10) they reduce to Eq.
(2.7). Thus Eqs. (3.3)—(3.5) and (3.8) are the covariant
forms of the evolution equations (2.7) and (2.8).

According to Eq. (3.1), (p' ~ occurs in a coordinate
transformation, so B(p' ~ /B~" must possess a regular ma-
trix, and the vector field h' is then uniquely determined
by Eq. (3.8).

Equations (3.5) and (3.8) are covariant. In extensive
coordinates Eq. (3.8) gives

82
, ( V', x'

i
V,x) = —,k

6'"( V', x')
Bx"Bx'

+,H'(V', x') P(V', x'
~

V,x) .
a

(4.5)

The solution to this equation can be formally expressed by
path integrals. ' '

In order to find the coefficients of the differential equa-
tion, we have to consider the following two limits:"

;k l. ((x"—x')(x' —x"))O' V,x = hmv'~ v V —V'

(x"—x')(x' —x")
11m
V'~ V V —V'

IV. STOCHASTIC FOUNDATION OF THE
EVOLUTION EQUATION

XP(V',x'
~

Vx)d"x', (4.6)

Q( V', x')t:Q(V, x), V'( V (4.1)

and denote the probability of finding x' at a given value
by P(V', x'

~
V,x)d"x'. Obviously,

P(Vx'
~

Vx)=5'"'(x' —x) . (4.2)

Repeating the above procedure and choosing a subsys-
tem Q(V",x") in Q(V', x'), we obtain the conditional dis-
tribution P(V",x"

~

V', x') for x". It can obviously be
supposed ' that the final distribution of x", i.e.,

f P(V",x"
I

V', x')P(V', x'
~

V,x)d"x', (43)

is not affected by the intermediate separation of Q( V', x').
Therefore the probability (4.3) must be equal to the proba-
bility distribution of x" in a subsystem Q(-V",x") which
is directly chosen from Q( V,x):

f P(V",x"
i

V', x')P(V', x'
i

V,x)d"x'=P(V",x"
i

V,x),

In Secs. II and III we proposed a new evolution equa-
tion governing the distribution of the thermodynamic
fluctuations arising in finite equilibrium systems. An
elegant form of the covariant diffusion equation on the
Riemannian metricized state space was found. It can be
shown that this diffusion comes from a true stochastic
process which is accomplished on the state space.

Consider a homogeneous closed equilibrium system
Q( V,x) of volume V and extensive densities
x =(x',x, . . . , x"). Now, at random, let us choose and
separate a subsystem Q( V', x') in it:

H'( V,x) =— lim
(x"—x')

v' v V —V'

lim f,P( V', x'
~

V,x)d "x' .
v' v V —V' (4.7)

((x ' —x')(x —x")) =—g'"(x),
V

(4.8)

where g' (x) is the inverse of the matrix g;k(x) [see defini-
tion (2.4)].

Now using the balance equation

Vx+( V —V)x'= Vx (4.9)

we can eliminate x' from the expression (4.6), and we ob-
tain instead

IG'"(Vx)= lim: (x' —x')(x"—xk)lv-o V V —V

As a consequence of the balance equations, the expression
(4.7) is zero [see constraints (2.2)].

As for the expression (4.6), one should know the corre-
lation of the extensive densities x" of the subsystem
Q( V', x') L:Q( V,x). Here, we encounter the problem that
in (4.6) V'~ V and thus Q( V', x') cannot be a small sub-
system of Q( V,x). Nevertheless, we can easily circumvent
this difficulty by using the complementary system
Q( V,x) =Q(V,x)XQ( V'x') which is already a small sub-
system. It is well-known that the correlation of the exten-
sive densities x ' in such a small subsystem is given as '

V" & V'( V. (4.4)

Equations (4.2) and (4.4) show that the process of con-
tinuously diminishing the volume of a homogeneous
equilibrium system can be considered as a continuous
Markovian stochastic process. " The role of stochastic
variable is played by the state coordinate x of the actual

gik(x) (4.10)

This is the only nonzero coefficient function in the
Fokker-Planck-Kolmogorov equation (4.5):
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, P(V', x'
i

V,x)

2
(r', x'

~
r,x)=, k

g'"(x')P(r', x'
~
r,x), (4.12)

and the appropriate initial condition (4.2) is

P(r,x'
i r,x)=5'"'(x' —x) . (4.13)

At this point, we note that the distribution pt (x
~

xo)
defined in Sec. II obviously corresponds to the transition
probability P( Vx

~
ao,xo) and, as a result, p(r, x

~

xo) of
Sec. II is equal to P(r,x

~
O,xo) in variable r. Therefore

Eqs. (4.12) and (4.13) yield the evolution equations (2.7)

a2 g'"(x')P(V', x'
~

V,x) . (4.11)
ax 'ax' v'

In the variable r= 1/V the same equation takes the fol-
lowing form:

and (2.8) which were introduced in a formal way in Sec.
II, and also the covariant form (3.3)—(3.5) and (3.8) of the
evolution equation gains its stochastic foundation. Note
that without the constraints (2.2) the drift coefficients H'
of the Fokker-Planck-Kolmogorov equation would remain
undefined.

V. CONCLUSION

We have derived a covariant system of equations for
the fluctuations of thermodynamic characteristics. For
small fluctuations they reproduce the usual Gaussian dis-
tribution. In addition, the balance equations for the ex-
tensive parameters hold automatically. Because of the co-
variance, our equations can be directly used in arbitrary
variables. Our fluctuation formulas represent a modified
version of Ruppeiner's equations. It is interesting to note
that, although the formulation is covariant, the equations
have their simplest form in extensive coordinates.
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