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Abstract. The fact that the energy-momentum tensor has nonzero vacuum expectation value in some 
space-times (the so-called back reaction) indicates a nontrivial thermodynamics of such vacua. A consequent 
thermodynamic analysis of the problem in Robertson-Walker space-times shows that, in the generic case, 
the number of the independent extensives is 2, in spite of the fact that the energy density is completely 
determined by the time-evolution of the geometry since the preparation of the vacuum state. The appearance 
of a second independent extensive seems to be in direct connection with the extra entropy term in the 
Generalized Second Law of Bekenstein and Hawking. 

I. Introduction 

It  is well known that the formalisms of  general relativity and quantum field theories are 

not  fully mutually consistent, which fact is a consequence of  the more or less independent 

development of  these theories, some discrepancies may be demonstrated even on a more 

primitive level between Newtonian gravity and quantum mechanics (Didsi and Luk/tcs, 

1986). One can expect that gravity, relativity, and quantization can be unified into a 

single theory, and in such a unified formalism the mentioned discrepancies will vanish. 

Nevertheless, the final unification is obviously not yet at reach, and there are difficulties 

even in guessing the main features of  the future theory. Today there is no common  

opinion even about the general direction in which the unified theory lies; it may be, e.g., 

geometrization of  interactions (Kaluza, 1921), intermediate particles for gravity (as in 

supergravity (van Nieuwenhuizen, 1981)), the existence of  a deeper quantum spacetime 

(Banal, 1985), and so on. This variety of  propositions demonstrates that the problem 
is serious indeed. 

The problem is suggestively illustrated by the Hawking radiation (Hawking, 1974). 

The formalism of  the standard quantum field theory predicts some kind of  radiation in 

the neighbourhood of  a Schwarzschild black hole; then this radiation should be taken 

into account  on the right-hand side of  the Einstein equation, in order to preserve energy 

conservation. But this radiation has no classical (unquantized) limit, so it does not 

possess a c-number energy-momentum tensor. Therefore, the back reaction cannot  be 

Astrophysics and Space Science 122 (1986) 371-386. 
�9 1986 by D. Reidel Publishing Company 



372 L, DIOSI ET AL. 

calculated in a rigorous way in the present theory. A similar radiation is expected in 
expanding universes too. 

In most cases this problem may be disturbing from the viewpoint of principles, but 
it is practically negligible: familiar black holes above 2 solar masses may have a radiation 
of several kilometer wavelength and ca. 10 - 20 erg s - 1 total power; mini black holes are 
neither necessary nor indicated; the analogous radiation of the Universe is hopelessly 
dominated by the 3K blackbody radiation. So in the worst case ambiguous theoretical 
predictions are confronted with impossible observations. Nevertheless, there is at least 

one case when the existence and details of this radiation should be known. In some 
inflationary universe models (constructed for solving the monopole dominance problem) 
after the symmetry breaking GUT phase transition a substantial supercooling is needed, 
which may be stopped at the characteristic temperature of the Hawking radiation, thus 
the present day observables, as the monopole/proton ratio are influenced (Kibble, 1982). 

So, Hawking radiation is an important effect both from theoretical and from practical 
viewpoints. As we have seen, its most direct problem is the incorporation of the back 
reaction. Now, the back reaction problem, when handled in usual general relativity, can 
be formulated as follows: the curvature causes a non-vanishing vacuum expectation 
value of T~ k, which is to be taken as a source term of curvature (Wada and Azuma, 1983). 
But this formulation demonstrates that Hawking radiation leads to a double thermo- 

dynamic peculiarity. 
If the vacuum expectation value of T~k does not vanish, then the vacuum carries, e.g., 

energy. One may think that the Hawking radiation is a manifestation of the (not yet fully 
understood) vacuum of the unified theory. In fact, Bekenstein (1973) and Hawking 
(1975) have shown that this radiation effects the direction of thermodynamic processes. 
A generalized second law has been proposed, with a correction to the entropy 

S = S m a t t e r  -k S b l a c  k hole , (1.1) 

a similar correction has been constructed for de Sitter universes. The extra term reflects 
some properties of the vacuum. Until now no situation violating this generalized second 

law is known. 
On the other hand, T,. k carries direct thermodynamic meaning too. First, its certain 

projections yield the energy density and conductive energy current (Ehlers, 1973) 
standing for an extensive in the local description (de Groot and Mazur, 1962). Second, 
in the axiomatic treatments of thermodynamics the intensive p is taken from (or in 
accord with) continuum mechanics (cf., e.g., Tisza, 1961), and in continuum mechanics 
p is again a projection of T,. k (Ehlers, 1973). Thus, from thermodynamic viewpoint, the 
situation can be summarized in the following way. In a curved space-time the vacuum 
of quantum field theory possesses nonvanishing values of some extensives and inten- 

sives; and in the same time it seems to carry a nontrivial entropy too. So the Hawking 
radiation is not without interest from thermodynamic viewpoint, and, if the vacuum of 
quantum field theory can be identified with the vacuum of thermodynamics (a question 
which will be discussed in this paper), then the thermodynamics of the vacuum is not 
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trivial. By investigating this thermodynamics one may get a deeper insight into the 
meaning of the generalized second law. 

This paper is not intended to derive new phenomena of gravity or quantum field 
theory; its goal is to put the statements of these two theories into a consistent 
thermodynamic framework. This highly phenomenological approach was triggered by 
Press's work (Press, 1983), which demonstrates that a statistical treatment can 
reproduce the main features of a genuine 'quantum gravity' effect. We will restrict 
ourselves to Robertson-Walker geometries where the symmetries are very convenient. 
It would not be purposeful to complicate the discussion with onthologic problems about 
the existence of the radiation. A possible viewpont is that the description at reach is an 
inadequate and incomplete limit of the true (but still unknown) unified theory and then 
presumably some predictions of it (as possibly the existence of the Hawking radiation, 
not necessarily with its all details) survive in the true theory. If not, the whole problem 
vanishes, but there is no indication for such a kindness of nature. 

2. The Vacuum 

One should first define the vacuum. There are at least three possible definitions. 
(1) General relativity: the Riemann tensor can be measured by the Szekeres detector 

(Pirani, 1964) (in principle). So the Ricei tensor on the left-hand side of the Einstein 
equation can be measured. The right-hand side vanishes for vacuum. A state is called 
vacuum, if the corresponding curvature is that of vacuum. 

(2)Quantum field theory: the vacuum is the state on which the effect of the 
annihilation operators is zero. 

(3) Thermodynamics: the only independent extensive of the vacuum is the volume 
V. This can be seen by a Gedanken-experiment: remove everything from a volume and 
surround it by ideal walls isolating all the extensives. Then, operating in this region, the 
only possible freedom in separating a Subsystem is to choose its volume. 

Nevertheless these familiar and obvious propositions for definitions are unsatis- 
factory, and partially inconsistent. Proposition (1) would need a unique choice of the 
cosmologie constant (Csernai and Luk~cs, 1984; Luk~tcs and Martinfis, 1984a). This 
illustrates a more fundamental problem: the true gravitational equation is not necessarily 
known, and the missing terms may imitate an energy-momentum tensor. This possibility 
is even more interesting if the missing terms come from quantum corrections to gravity, 
explicitely containing h and derivatives of gik. 

In connection with proposition (2) observe that the Heisenberg state vectors are 
time-independent. So, in a nonstationary space-time, where the Hamiltonian is generally 
time-dependent, the diagonalizing creation and annihilation operators are also time- 
dependent, and they cannot give 0 on any state vector except for a specific moment 
(Veselov etal., 1984). On the other hand, defining time-independent annihilation 
operators, this definition is not unique, and cannot guarantee the vanishing of T,. k. 

Now, the problem with proposition (3) can be clearly seen too. Remove everything 
from a moderate volume at t = to, and surround it by ideal walls. Nevertheless, there 
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are no walls against curvature and gravity is a long-range effect as it can be seen, e.g., 
from the linearized Einstein equation (Landau and Lifshitz, 1984). It has a structure 
similar to the Maxwell equation for the potential, and can be solved also by retarded 
potential integrals. Therefore, the actual value of the metric at a point is determined by 
the surrounding volume (Di6si et al., 1985), so generally some nontrivial metric will 
appear even in the walled region, generating nontrivial values of some extensives. 

Observe that all the listed difficulties lie in the same direction, and can be eliminated 
in the same way. Let us accept a series of vacua, labelled by a time parameter (Veselov 

etal . ,  1984). Then 10)t 1 stands for a state 

a,1 io),~ : 0 ,  (2.1) 

where at1 is an annihilation operator, element of the set of creation and annihilation 
operators diagonalizing the time-dependent Hamiltonian at t = t 1. The the energy 

density p vanishes at t I (up to renormalization); for later times ( Tik ) is given by the 
metric and its derivatives (together with prehistory terms negligible in the long run, and 
expandable in time derivatives too (Veselov et al., 1984)). Such terms are just expected 
on the right-hand side of the Einstein equation, if some terms are missed in propo- 
sition (1), and within the ideal walls of proposition (3) too. Therefore, a definition of 
vacuum states according Equation (2.1) may be practical, and it may preserve as much 
of the naive notion of vacuum as possible. The set of different vacua is possibly 

surprising, but one cannot help it; each member of the set 10)t, belongs to a naive 
vacuum energy-momentum tensor at a specific moment, and if no preferred time 
moment exists, then one is as good as the other. (Of course, the prehistory terms may 
fade out for asymptotic times (Veselov etal . ,  1984).) We are going to see that a 
consequent thermodynamic formulation of these states are possible indeed. 

It is not a goal of this paper to develop any new treatment from the viewpoint of 
quantum field theory. Following Veselov et al. (1984), one can see that there is a formal 
coordinate dependence in the method, since the Hamiltonian is a component of Tik; this 

is not necessarily a mere formal problem as demonstrated by the particle detection of 
accelerating observers in the empty Minkowski space-time (Unruh, 1976); this means 
that the expectation values calculated by quantizations in different systems generally 
cannot be connected by the transformation of general relativity. Since here we are 
confronted with the most fundamental problem of unifying general relativity and 
quantum field theory, it would not be too promising to discuss this now; a more 
pragmatic approach is to look for a preferred velocity field, then to quantize according 
to it, and finally to transform the so obtained T~k appropriately. This pattern will be 
followed here; fortunately Robertson-Walker universes define a unique velocity field 
through their symmetries (Robertson and Noonan, 1969; Lukfics and M6szAros, 1985). 

3. The Thermodynamic Quantities of the Vacuum 

We have seen that, due to quantum field effects, generally the vacuum expectation value 
of the energy-momentum tensor does not vanish; in usual situations the components 
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of T~. k carry thermodynamic meaning. So it seems that in a general space-time the 
thermodynamics of the vacuum is not trivial. Now we are going to investigate this 
thermodynamics. 

Consider a small spatial volume in a space-time, from which all the matter was 
removed at t = t 1 . Then the state of that small volume is the ground state, or vacuum 
0t, ) .  If the volume considered is small enough, then it is not self-determining for the 

geometry due to the long-range nature of gravitation (Landau and Lifshitz, 1984; Di6si 
et al., 1985); therefore, there the metric is prescribed by the neighbourhood: i.e., for the 
volume considered the geometry is externally given. Here, for the sake of argument, we 
assume that this metric is not stationary. First, let us fix the time to to; we ignore the 
spatial dependence of gik, being the volume small. 

Now separate a subvolume V. Since the vacuum expectation value of T~k is completely 
determined by the given metric, the only free parameter of the separated part is V, and, 
from the same reason, the extensives are additive in a unification of the (fictitiously) 
separated subvolumes (Kirschner, 1969, 1970, 1971). Thus, e.g., 

E(to) = E(to; V) = p(to)V; (3.1) 

E being the energy. Similarly, for the entropy S, which is the proper thermodynamic 
potential when using extensives, 

s(to) = S(to; v ) .  (3.2) 

Since S is extensive too, from the homogeneous linearity required for extensives 

S(to; V) = S(to)V. (3.3) 

In these formulae p and s are the densities of energy and entropy, respectively. 

Now, let the time go by, Equations (3.1)-(3.3) obviously remain valid with a general 
t, but the Gibbs-Duhem relation (Glansdorff and Prigogine, 1971) of thermodynamics 
will not hold, because of the explicit time dependence of S. In order to see this, consider 
a system of n independent extensives X e with a time-dependent potential S(t; Xi). Then 
the change of S can be evaluated in two different ways. First, through its variables, one 
obtains 

dS = gr dXr + S dt ,  (3.4) 

where the Einstein convention is used for summation, and the intensives Yi are defined 
a s  

~S 
r~. - (3.5) 

ox  i 

On the other hand, S is a homogeneous linear function of the extensives; therefore, the 
Euler identity 

S = YrX r (3.6) 
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holds; and, by differentiation, 

dS  =XrdYr + Y~dX ' .  (3.7) 

By comparing Equations (3.4) and (3.7) one obtains 

X r d y ~  = S d t ,  (3.8) 

which is definitely not the Gibbs-Duhem relation X r d Y  r = O. 

Now, remember that we are just manufacturing the proper thermodynamic 
description for our vacuum. Generally, the number of thermodynamically independent 
degrees of freedom is not a trivial, a priori settled question (Landsberg, 1961; Lukfics 
and Martinfis, 1984b); if the Gibbs-Duhem relation does not hold, then it is a signal 
that some necessary degrees of freedom, either obvious or not, are missed. In our case 
the nonvanishing right-hand side of Equation (3.8) is caused by the fact that one variable 
t of S is not an extensive, so it is not a subject of the Euler identity. Therefore, one can 
conclude that the necessary condition for a canonical thermodynamic formalism is to 
express the variable t by means of extensives. 

The energy density Too is expected to depend on t in the generic case. If, however, 
it turns out to be independent of t, then 

E = E ( V )  = poV. (3.9) 

Since E ( X  i) is also a legal thermodynamic potential (Gibbs, 1931), now one can use the 
energy convention, when the only energetic intensive is the pressure p, 

~E 
- P  = - -  = Po; (3.10) 

~V 

so that p + p = 0. This is conform with the balance equation Ttr; r = 0, the dynamic and 
thermodynamic pressure coincide, and the potential (3.9) yields the full thermodynamic 
description of the (almost trivial) situation. On the other hand, if ~ r 0, then one can 

invert the function p(t) as 

t=  t(p) = t (E/V)  ; (3.11) 

and then, substituting into the potential S(t; V) one gets 

S = S(V,  E ) .  (3.12) 

Here both V and E are extensives occurring in the Euler identity (3.6), so the obstacle 
of satisfying the Gibbs-Duhem relation has been removed. 

Equation (3.12) is just the usual form of the potential for a continuum without any 
particle degree of freedom, as, e.g., for black-body radiation; however, note that a formal 
thermal degree of freedom (the variable E) has appeared, which had not been assumed 
at the beginning. If the vacuum state is fixed, one cannot prepare states of different 
energy in a given moment, but the system evolves through them. 
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Now, one can introduce the entropic intensives Yi with the usual notations 

1 ~?S d s  p a S  p 
- - , - - s ; ( 3 . 1 3 )  

T 0E dp T ~ V T 

where T and p stand for the thermodynamic temperature and pressure, respectively. 
Obviously, if this thermodynamic formalism is not fully formal, then the dynamic 

pressure P occurring in the energy-momentum tensor and thermodynamic one p must 
be closely and intimately related to each other. Of course, one can always achieve P = p: 
namely, 

P : P(O : P(t(p))  : P ( p ) ,  (3.14) 

via Equation (3.11), and then the equation 

p(p)  = p(p),  (3 15) 

is an ordinary differential equation for s(p), by using Equations (3.13). So, for any 
function P(p)  there exist entropy functions leading to relation (3.15): namely, 

E ( p ) = s o e x p { f f  P d+ pp(p)}., (3.16) 

where s o is a free constant unaffecting the dynamics. Nevertheless, irreversible processes 
may lead to pressure correction (Ehlers, 1973; Heller et al., 1973; Didsi et al., 1984), 
thus it is still necessary to discuss the validity of fundamental laws of thermodynamics. 
Nevertheless, for simplicity's sake now we are going to restrict ourselves to universe 
solutions with the vacuum expectation value of Tik. 

4 .  V a c u u m  U n i v e r s e s  

The simplest example for the back reaction problem is a pure vacuum universe, as 
discussed, e.g., by Wada and Azuma (1983) and Veselov et al. (1984). Now we have 
obtained a thermodynamic formalism for the vacuum state, this formalism can be 
applied to the problem. 

It is the widespread opinion that the Universe possesses the maximal symmetry. This 
opinion is sometimes formulated as cosmologic principle (Anderson, 1967). However, 
it is not quite clear, which symmetries are possible. The mathematically possible 
maximal symmetry involving ten Killing vectors is inconsistent with observations 
(Robertson and Noonan, 1969), therefore, it is usual to assume maximal spatial 
symmetry with six spatial Killing vectors (Robertson and Noonan, 1969). This leads to 
the Robertson-Walker line elements, which, in coordinates adapted to the symmetries, 
possess the common form 

ds 2 = dt  z - Re(t)  {dx 2 + fZ(x) (dO z + sin20 d~02)}, (4.1) 
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where 

Symmetry SO(4) E(3) SO(3, 1) 

k= +1 0 -1 
f (x)  = sinx x shx 

The existence of the six spatial Killing vectors uniquely defines a cosmological velocity 

field - i.e., a vector field of unit length 

u i=  ~ .  (4.2) 

In the real universe observations, in fact, verify that the peculiar velocities are moderate, 
so this unique vector field is a physical reality. Now, the energy-momentum tensor can 
be decomposed according to any time-like unit vector field (Ehlers, 1973), using this u e 
one gets 

Tik = D u i u  k _~_ qiuk + qkui + p i k ,  Ur qr = u"pi r = 0,  (4.3) 

where qe is the (thermal) energy flux, p is the energy density, andp ;k is the spatial stress. 
These individual projections possess as much physical meaning as the cosmological 
velocity field. The consequence of the spatial symmetries is that 

qr = O, p~k = _ e(g~k _ UeUk) . (4.4) 

The energy-momentum tensor is then represented by two scalar functions: the energy 
density p, and the (dynamic) pressure P. These quantities are to be calculated from the 
detailed theory of the matter filling the Universe, and then the Einstein equations assume 

the form 

8rcG 4~G 
k 2 = - k + - -  pR 2,  R ' -  ( p +  3 P ) R .  (4.5) 

3 3 

The second one of Equations (4.5) can be substituted by the integrability condition of 

the system 

k 
/9 + 3 -- (/9 + P) = 0.  (4.6) 

R 

Thus there are two equations for three quantities: namely, R, p, and P; nevertheless, th e 
third relation is generally provided by the theory of the matter. 

Now, as a simplification, let us complete ignore the matter. Then T~.~ is purely the 
vacuum expectation value, which should be evaluated by field theoretical methods. The 
problem has been extensively studied for de Sitter cases 

k = 0,  R = Roe t/t~ �9 (4.7) 

In particular, Wada and Azuma (1983) have shown that the back reaction then gives 
a correction to the original cosmological constant. Observe that here we choose the 
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specific form of the Einstein equations (4.5) in which there is no cosmological constant 
in the geometric terms; so such a constant, if exists, should be attributed to the 
energy-momentum tensor, which can always be done (Csernai and Lukfics, 1984; 
Lukfics and Martinfis, 1984a). Naturally, the complete vacuum expectation value of T~k 
automatically contains any type of Hawking radiation, if such a radiation occurs indeed 
in the energy-momentum tensor. On the other hand, Gibbons and Hawking (1977) have 
found a characteristic temperature for de Sitter universes to be 

l k  
TH - (4.8) 

2n R 

This temperature defines the equilibrium states of freely moving detectors in de Sitter 
space-times. One possible interpretation of this result is the effect of a radiation on the 
detectors, nevertheless, as Gibbons and Hawking (1977) ephasize, since the temperature 
is the same for any freely moving detector, it may not be described by an energy-momen- 
tum tensor. Let us demonstrate the problem from another viewpoint. Assume a black- 
body radiation of temperature T H as the only real matter field, then 

7C 2 
p = 3 p = ~  r 4 ;  (4.9) 

and the energy-momentum tensor is expressed by R(t), so the two Einstein equations 
(4.5) overdetermine R(t): in fact, the only solution is then R = const., k = 0 (the trivial 
Minkowski space-time). 

Then the problem is not simply to look for an appropriate radiation, Instead of this, 
now we turn to the Einstein equations (4.5) with vacuum expectation values (fulfilling 
Equation (4.6)) on the right-hand side, and look for the proper thermodynamic quan- 
tities s, p, and T (according to Equations (3.13) and (3.16)). By checking the thermo- 
dynamic one can decide if the above formalism is self-consistent or not. 

Consider first the function p(t). Obviously one cannot expect to get the explicit forms 
for p(t) and P(t) by means of a pure field theoretical calculation without recourse to the 
Einstein equation. In the best case, when evaluating the expectation values with a given 
metric (which is represented here by a given scale factor R(t) and by k), the result is of 
form (Wada and Azuma, 1983; Veselov et al., 1984) 

P=P ' R '  ' R '  ' 

where the arguments on the right-hand side are the quantities building up the Riemann 
tensor characterizing the curvature. Now, k/R 2 and R/R can be expressed by p and P 
via the Einstein equations, and then, finally 

p = p(k /R) ,  P = P(k /R) .  (4.11) 

The remaining variable (apart from a constant factor) is just the expression on the 
right-hand side of Equation (4.8) which, henceforth, will be referred to as the Hawking 
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temperature T H independently of the geometry of the space-time. Here the actual form 
of P(TH) is not needed, because Equation (4.6) contains P algebraically, and the results 
of a self-consistent field theoretical calculation have to fulfil Equation (4.6) (Veselov 
et aL, 1984). In this section we do not specialize the form of the function p(R/R).  

Consider first the case k = 0. Then, via Equations (4.5) and (4.11) 

x 2 - a2p(x) = O, (4.12) 

where 

k a 2 = 8Z G - 87r 1 and x - (4.13) 
3 3 M 21 R 

and h = c = 1. An alternative arises: in the generic case Equation (4.12) leads to a 
constant x, whence, via Equation (4.11), p = 0, and, from Equation (4.6), p + P = 0. 
Then we have arrived at the almost trivial subcase E = E ( V )  of Section 3, without any 
thermal degree of freedom. The other possibility is that the quantum field theory yields 
p = x2/a z, when the evolution o fx  remains free. In what follows we do not discuss this 
exceptional case. 

If k # 0, Equation (4.6) expresses P in terms of p(x), p' (x), x, and • (henceforth the 
prime stands for x derivative). On the other hand, • can be obtained by taking the time 
derivative of the first of Equations(4.5). Substituting this expression into 
Equation (3.16) one obtains 

S = S O IX 2 -- a 2 p ( x )  l 3/2 . (4.14) 

Since this formula contains a square root, the sign convention has still to be fixed. 
There is also the question whether the first and second laws of thermodynamics hold 

or not with such pressure and entropy functions. (The third law obviously cannot be 
checked without specifying the function p(x).) Let us first tentatively identify p with P 
(which equality, as it has been seen, holds if the entropy is given by Equation (4.14)). 
Then Equation (4.6) is just the differential form of the first law. Now the evolution of 
p is known, and by calculating the entropy production via Equations (4.6), (3.13), and 
(3.15)-(3.16) one gets 

k 
+ 3 s = 0,  (4.15) 

R 

which can be seen also by substituting the first of Equation (4.5) into Equation (4.14) 
when the result s = s o R -  3 is equivalent with Equation (4.15). Thus the second law is 

also fulfilled. 
Observe now that the Gibbs-Duhem relation holds after introducing E instead of t, 

in the same time, the entropy matrix (Kirschner, 1969, 1970, 1971) 

~32s 
gik - (4.16) 

0x i 0x ~ 
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(where x i stands for extensive densities), which in our case consists of a single element 

d2s/dp 2, does not degenerate (except for the pathologic case P = const.). Thus, we have 

arrived at the necessary and sufficient set ofextensives (cf. Landsberg, 1961). Then one 
can conclude that the presented thermodynamic formalism is consistent indeed with the 
evolution of the model universe. Therefore, one may also consider T defined in 
Equations (3.13) as the temperature of the (quantum field) vacuum. 

Equation (4.14) suggests a convenient interpretation. Assume that there exists a limit 
where a2p ~ X 2 (which is, of course, impossible for k ~ - 1). Then there s = So(2703  T 3, 

which, with an appropriate choice of s o, is the same form as for a black-body radiation 

of Hawking temperature. Nevertheless, the function s(T)  is not a thermodynamic 
potential (as s(p) is); therefore, it does not carry the complete information about the 
system; and s ~ TH 3 is of a limited validity only. Thus, a more systematic discussion is 

needed, which we are going to perform on a simplified model system. 

5. An Explicit Example 

In order to proceed further one needs a specific form for p(x). Now, Wada and Azuma 
(1983) give the vacuum expectation value of T,. k for N independent massive scalar fields 
in a de Sitter universe. If one is contented with massless free limits then 

N h(/~) (5.1) 
p = 64~2 

where/~ stands for the Ricci scalar, which in the particular case is of the form 

and the function h is composed of/~ 2 and ,gln/~ terms. Ignoring the latter (first from 
technical reasons, second, because ln/~terms would need a dimensional constant whose 
unknown value would influence the final result) one gets 

29N (x2 + R')2 (5.3) 
P-- 38407r 2 R ' 

where R'/R can be substituted from the second of Equations (4.5). Since p + P = 0, in 
the particular case one obtains 

29N 
p e.~ C2(x 2 o c aZp)2  and C 2 - - -  (5.4) 

3840~z 2 

In what follows we shall regard this formula as a simplified prediction of quantum field 
theory, although it has been obtained only for massless free scalar fields in a de Sitter 
universe. 

Now, one can see that the third law (Callen, 1960) holds good for such a energy 
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density: namely, 

lim ( d s ~ -  ' = O, (5.5) 
x--,x \ d p /  

where X is a real root of the equation 

s(x) = o,  (5.6) 

as it can be seen by direct calculation. 

Well below Mp1 in Tri Equation (5.4) can be solved as 

p ~" C 2 x  4 . (5.7) 

This formula remains valid as an order of magnitude estimation at x ~ 1/a ~ Mr, l, 

therefore, one may use Equation (5.7) as a simple approximation. We are going to solve 
the Einstein equation (4.5) with a right-hand side according to Equation (5.7), and to 

investigate the behaviour of the solutions. 
The evolution of the scale factor R is governed by the equation 

X 2 - b 2 x  4 = - k R -  2 ; b = C a ,  (5.8) 

which, together with Equation (4.13), is a first-order differential equation. It can be 

solved by quadrature which, however, cannot be performed analytically. The thermal 
history is described by the thermodynamic temperature T defined in Equation (3.13). 
This is the moment when one has to choose some sign convention for the square-root 

in Equation (4.14); this convention is, of course, arbitrary, because it does not affect the 
dynamics. Nevertheless, we proceed as follows. For k = - 1 the first term in the square 
root in Equation (4.14) dominates the second because of the Einstein equation (5.8); 
there are asymptotic states with p/x  2 ~ 0, and there s / T  3 becomes constant. Therefore, 
we arrive at 

s = So x3 x/(1 - b2x2)  3 (5.9) 

(square-roots are taken with positive signs). Therefore, s (x )  is an odd function. On the 
other hand, for k = + 1 the second term dominates the first one; the case s ~ T~ 3 never 

recovers. Therefore, then we choose 

S = S o X 6  / ( 1 - b ~ x 2 ) 3 b  3 , ( 5 . 1 0 )  

which is an even function. Thus, for the temperature one gets 

4C 2 rxr 
T - - -  k =  + 1 ,  

3So ~ -  1(2b2x 2 -  1)'  

4C 2 x 
T - - -  k = - l .  

3s o x / l -  b2x  2 (1 - 2 b 2 x 2 )  ' 

(5.11) 
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Equation (5.8) is quadratic in x2; it has only one positive root ifk = + 1. For k = - 1 
there are two positive roots, but one of them leads to Ts < 0, hence, p + p < 0, which 
violates the energy positivity condition (Hawking and Ellis, 1973). Thus, we regard it 
as a physically impossible solution; and we are left with 

x2 = 1 (1 + k x/1 + 4kb2R- 2) 
2b 2 

(5.12) 

which represents a contracting and expanding solution for both k. For the temperature 

R _ 

one obtains 

4C 2 x /k  , /(1 + 4kb2R-2)+ i 1 
( s g n  (X)) (1 - -  k)/2 

3sob ~/x/(1 + 4 k b 2 R - a ) -  k ~/1 + 4kbZR -2 

(5.13) 

Since the evolution equation cannot be analytically solved, we are looking for 
asymptotic solutions tbr large and small values of R. Let us start with k = + 1. Consider 
a contracting solution at R ~> b ~ 2el. Then x is approximately constant according to 
Equation (5.12), so that 

R ~- R o e -(t-'~ and T/R ~_ const = 4C2/3So b2 . (5.14) 

On the other hand, well below b one gets a diverging Hawking temperature, together 
with 

1 
R ~_-- ( t -  tl) 2 and T/R ~2C2/3So b2. (5.15) 

4b 

Therefore, the solution formally turns back at R = 0; the other branch is just the 
expanding one. The temperature is almost proportional to R, therefore, it moves 
inversely with the entropy density, S ~ the specific heat is negative, and the solution is 
unstable thermodynamically (Kirschner, 1969, 1970, 1971). This seems to indicate 
unstability against inhomogeneities (Luk/tcs and Csernai, 1984). Another strange 
feature is the opposite motion of T and TH. 

Nevertheless, this solution is not too significant physically: namely, ignoring such 
number constants as, e.g., C, which cannot be too far from unity in any state either R 
is below Planck length or T is above Planck temperature. 

For k = - 1 the global behaviour is completely different. Consider an expanding 
solution. There cannot be states below R = 2b because of the square-roots. Then 
R/R = x -- 1/x/2 b; so the Universe, thereafter, expands exponentially with charac- 
teristic time in the order of tpl. The temperature starts from positive infinity, and 
decreases as 

4c2bj(  )1 
T_~ - - 1 (5.16) 

35 o 
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When R >> b, one obtains a uniform expansion 

R = R o + t ,  

with a temperature 

4C 2 1 4C 2 8rcC 2 
T -  - x -  T H . 

3s o R 3s o 3s o 

Hence, one can fix the free constant s o by requiring that 

lim (T/TIa) = 1. 
R ~ c x 3  

(5.17) 

(5.18) 

(5.19) 

Nevertheless, this choice leads to an 'effective' equation of state 

P : 7~oo 7zaNT4, (5.20) 

while for a true black-body radiation of massless spin 0 particles the number factor 

would be ~ (Barrow, 1983). This difference again indicates that p is not the energy 
density of a real radiation. 

The contracting solution is just the time-reflection of the expanding one; it ceases to 
exist at R = 2b. Observe that, choosing again a positive so, T is negative for contraction. 

This indicates a possibility for an intimate connection between the direction of the 

evolution of the Universe and the statistical laws, which kind of connection was 
discussed by Penrose (1977). For k = + 1, T does not change its sign at the turning 

back. 
Obviously the k = - 1 universes are geodetically incomplete; they appear or vanish 

at finite size and expansion rate. However, note that this radius is in the order of the 

Planck length; it is not evident that the known 'classical' general relativity would be valid 

below 2p1. One may guess, for example, that without the full theory a point and a cell 

of Planck size cannot be clearly distinguished, in which case the starting point of the 

Universe is simply the moment when we can recognize it first time by means of classical 

tools. Note that T = oo in this initial state; this suggests that from thermodynamic 
viewpoint it is, in fact, a natural initial state, representing a 'singularity' or realization 
of all degrees of freedom as fully as possible without the unified theory. 

6. Conclusions 

In this paper we have defined the notion of vacuum in such a way that it keep the 
maximal possible content of independent definitions in general relativity, quantum field 

theory, and thermodynamics. The so-defined vacuum states depend on the time of their 
preparation, at a generic time moment the vacuum expectation value of the energy- 
momentum tensor does not vanish (e.g., the Hawking radiation is incorporated into it) 
and then nontrivial values of thermodynamic quantities belong to this state. On the other 
hand, pioneering works by Bekenstein and Hawking about generalization of the second 
law of thermodynamics of gravitating systems suggest special features of the thermo- 
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dynamics when both general relativity and quantum field theory are taken into account. 
Since Press's statistical treatment has demonstrated the possibility of a phenomenologi- 

cal treatment of such systems, it is worthwhile to look for the proper thermodynamic 
description of this problem. (By this term we mean a formalism for the quantities of 

canonical thermodynamics itself, not the analogous treatment &black-hole characteris- 
tics and de Sitter horizon areas, sometimes referred to also as thermodynamics. Note 
that, e.g., the potential function of black-hole 'thermodynamics' is not even homo- 
geneous linear in its variables.) Here we wanted to give this proper formalism, from 
technical reasons only for a simplified model, which was a vacuum universe. 

First we have determined the number of independent thermodynamic extensives 
according to Landsberg's criteria that the Gibbs-Duhem relation already hold but the 
entropy matrix still be nondegenerate; the result is that such a set, in fact, exists in the 
generic case, when it consists of two extensives, e.g., of  the volume and energy. The 
second degree of freedom was not expected from any 'naive' definition of the vacuum; 
it corresponds to the nontrivial evolution of a quantum field in a time-dependent 
geometry. 

Then we have constructed a thermodynamic potential for this vacuum, if the 
independent variables are V and E, it must be the entropy S. The so constructed entropy 
function obeys the first and second laws of thermodynamics, while the validity of the 
third law depends on the details of quantum field theory, however, an explicit example 
has been shown when it holds in the usual form too. Thus, one may conclude that a 

consequent thermodynamic description of the vacuum of quantum field theories in 
curved space-times is, in fact, possible. Then one obtains a proper thermodynamic 
temperature of the vacuum, which may or may not coincide with the Hawking 
temperature felt by detectors immersed into the investigated space-time. From thermo- 
dynamic viewpoint the detector does not belong to the vacuum; the direct meaning of 
our thermodynamic temperature should be clarified in models containing material 
degree of freedom too. 

By use of a simplified quantum field treatment, closed (k = + 1) and an open 
(k = - 1) model was discussed. The closed model did not possess a Friedmannian 
regime. As in the results of Veselov et al. (1984), the open subcase seemed to be more 
realistic, tending to an expanding Minkowski solution. In this latter case the temperature 
scale could be chosen in such a way that Hawking and thermodynamic temperatures 
asymptotically approach each other. Nevertheless, even then the explicit form of the 
thermodynamic potential differs from that of a free radiation field. 

In this vacuum model the evolution of the Universe is still reversible, so the 'geometric' 
entropy does not offer an 'arrow of time'. This property may change in the presence of 
material degrees of freedom. 
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