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Assuming the existences of two different correlation scales in a diluted gas, the second one leads to
pressure and energy corrections, which are of van der Waals type in the simplest case. The direct
connection between the correlation scales and the metric of the thermodynamic state space is

discussed here.

I. INTRODUCTION

Ten years ago Weinhold, in a series of papers, demon-
strated that there is a Riemannian geometry behind equilib-
rium thermodynamics'; according to his own words, ther-
modynamics is geometry.? The basic idea of such a
geometrization is the use of the second derivatives of the
proper thermodynamic potential (i.e., for example, of ener-
gy or entropy when extensive variables are used) as a metric
tensor for the thermodynamic state space; such a nondegen-
erate metric tensor must exist because the definiteness of the
derivative matrix is just the condition for thermodynamic
stability. Then the thermodynamic relations obtain simple
geometric meaning,

Now, if thermodynamics is indeed a geometry, then the
particularities of the equations of state must possess some
geometrical meaning too. This connection can be ap-
proached in two ways. First, choosing a particular form for
the thermodynamic potential one can calculate the metric
tensor, and can recognize the geometric consequences of
some properties of the potential. This way was chosen, e.g.,
by Salamon et al.> who have shown that (using the energy as
potential) the length of a trajectory in the state space mea-
sures the change of the flow velocity of a gas when moving
from one state to another. The second possibility is a some-
what inverse way, chosen by, e.g., Ruppeiner.* General rela-
tivity has demonstrated that in some cases the Riemannian
curvature possesses genuine and direct physical meaning;
Einstein’s equation® expresses the hypothesis that some
components of the curvature tensor are directly governed by
matter content and interactions, and then there is a way to
build up the metric from some supposed characteristics of
matter. Ruppeiner started with the observation that (when
using entropy as potential) the curvature vanishes for an
ideal Boltzmann gas®; therefore the curvature must be equal
to some characteristics of interparticle interactions. Hence,
by assuming some version of an Einstein-type equation, one
may hope to be able to construct thermodynamic potentials
for different types of matter.

The problem is that neither sides of such an equation are
uniquely determined beyond reasonable doubt by funda-
mental principles, therefore no well-founded constructive
method is proposed yet. Thus here we choose a restricted
goal to establish a connection between characteristic interac-
tion ranges (or particle sizes) and the metric tensor via cor-
relation volumes. By this way one gets some new insight into
the physical meaning of the convenient and useful, but heu-
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ristic van der Waals equation of state.

In this paper we concentrate on systems near to ideal
Boltzmann gases, i.e., when the entropy function has the
form

s=Son+inlne—jnlnn+n, |y<n, (1.1

where € and 7 are the energy and particle densities, respec-
tively. Here s, is a free constant; since ideal Boltzmann gases
do not obey the Third Law, its value could be fixed by a
roundabout way through Fermi gases, but for our purposes
8o is immaterial.

Ii. THE VAN DER WAALS EQUATION

Using the extensive densities € and n as variables, the
van der Waals equation of state is as follows:

(2.1)

p(en) = —an?,

ne—n

pisthe pressure, T'stands for the temperature, while nyand a
are constants; they represent volume exclusion (by, e.g.,
hard cores of particles) and long-range interactions, respec-
tively. The usual interpretation of the first term on the right-
hand side is that there is a pressure increase due to effective
decrease of the gas volume when the particles are not point
like.

Equation (2.1) is a differential equation for the entropy
function s = s(€,n); supplemented by an energy equation as
ideal as possible:

e=3nT —an?, (2.2)
one obtains
2v3/2¢,
s=s0n+nln(6+ann())n5/(zn° n) . (2.3)
The metric tensor defined as
3% a2 24
8 = — ot (p'=e, p'=n) (2.4)

is rather complicated, except for the special case a =0,
which will be henceforth discussed here; then
2 2
ds? = in(ldcs - la’n) - ——no-—zdnz. 2.5)
2 € n n(ny,—n)

This metric possesses a single Killing symmetry, as shown by
direct calculation, representing a temperature shift (cf. the
Appendix).
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In the limit (1.1) one obtains

n2
7= ——+0[(n/ng)*]. (2.6)

no

Iil. CORRELATION VOLUMES

It is known that the metric tensor (2.4) is intimately
connected to the probability function of fluctuations®’;
when the fluctuating subsystem of volume ¥ is sufficiently
large, one gets :

(o' =P (0" —p") = (1/ Vg™, (3.1)
With decreasing volume this 1/¥ rule breaks down some-
where, thus indicating that the fluctuations of neighboring
subsystems are not independent below V.2 Thus ¥, can be
regarded as a correlation volume of the system, which must,
in turn, be directly connected to the ranges of interactions
establishing spatial correlations in the system. ¥, is a solu-
tion of an eigenvalue equation®

(M" — V,g")p, =0, (3.2)
where, in extensive coordinates, M * is defined as
M*=g* g* (3.3)

(the comma stands for partial derivative); for general co-
ordinates M * is rather complicated® and will not be used
here. In the generic case there are as many different correla-
tion volumes as the number of independent extensive densi-
ties; these volumes may represent different correlation
mechanisms.

Consider a gas of one particle component with the en-
tropy density (1.1). Then there are two correlation volumes

v.=21114o0m/ml
3n

Vo = (X°@sux + 3§05y, + 20) [1 + O(/m) ],
P = Thxxs y=¢€/n. (3.4)

The first correlation volume represents the indivisibility of
the point particles,® thus only ¥, is connected to the interac-
tions.

By using the first-order approximation (2.6) for the van
der Waals equation of state the result is

Vo= -4 [1+4+0(n/ny)].

ny
Since in the heuristic derivation of the van der Waals equa-
tion of state n, is proportional to the inverse volume of parti-
cles, one may conclude that — ¥V, is the volume excluded
for other particles.

Now we take the inverse way, assuming first something
for the (second) correlation volume, and then calculating
the corresponding entropy function. In this paper we choose
the simplest assumption

Vo, =kV, (3.6)
where k= + 1, and ¥, is a constant. Observe that we are
performing a first-order approximation near to ideal gases,
which is physically the » — 0 limit; therefore the neglection
of the x = n dependence in V, is not a serious oversimplifi-
cation. This argument does not tell anything about the y~ T
dependence; nevertheless Eq. (3.4) is of fourth order for 7,

x=n,

(3.5)
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therefore one cannot hope a transparent formula for the gen-
eric case. With the assumption (3.6) the solution of Eq.
(3.4) can be formally written as

n=H(x,y) + 1 kVpx?, (3.7)

where H(x, y) is the general solution of the homogeneous
equation

x*H,ex +3V°H, ., +2H,,, =0.
Now we are going to discuss the solutions.

(3.8)

IV. SOLUTIONS WITH TAYLOR EXPANSION

In this section we impose three restrictions on the sys-
tem, neither of them seems to be too serious or aphysical.
Namely (1) The deviation from the ideal gas entropy, 7,
possess a Taylor expansion atx = 0. (2) The system show an
ideal gas behavior when x — 0. (3) The system remain near
to ideal gas state if x is moderate and y — oo (i.e. for diluted
high temperature states). From condition (1),

n= rgoa,(y)x’. 4.1)

According to condition (2) we require

lim s/n) 1,

n—0 (8/n),
im 2/D)
n—0 (p/nT),

where

1, (4.2)

ay,=a;=0. (4.3)

Now, substituting the form (4.1) into Eqgs. (3.6)—(3.8), one
obtains after a lengthy but straightforward calculation:

7 =x2[ %kVo + i y[4, sin(@, Iny)
r=0

+ B, cos(w, In y) ] ]x’,

o, =467 —6i + 11. (4.4)

Now, observe that this solution generally violates condition
(3); in fact, with such an entropy function

21— Lwpx_xpya
T 7 Vo xyrgo( +7)

X [4, sin(w, Iny) + B, cos(w, Iny) ]x" (4.5)
so at fixed small values of x there is an oscillation of growing
amplitude and shrinking period with increasing tempera-
ture. Imposing then condition (3),

A, =B, =0 (4.6)

The remaining term in 7 is equivalent to the first-order ap-
proximation (2.6) of the van der Waals gasif k = — 1.

V. INEVITABILITY OF PRESSURE CORRECTION

The previous section demonstrated that the assumption
of a temperature-independent second correlation volume
may be enough to result in van der Waals-type corrections in
the equation of state. However, a temperature-independent
coherence volume may remind us of a rigid sphere, usual in
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the derivation of the van der Waals equation, and our condi-
tion (1), although mathematically decent, restricts the solu-
tions in a physically unclear way. Now here we are going to
show that the existence of a second correlation volume (of
any kind of temperature dependence) inevitably leads to
pressure corrections.

Assume that
7#0,
p=paq=nT. (5.1)

Hence, invoking the entropy function (1.1): = x7,,; after
integration we get

7=0()x (5.2)
and then, via Eq. (3.4),
v, =0, (5.3)

Thus, indeed, ¥V, is the source of the pressure correction.

VI. DIMENSIONAL CONSIDERATIONS

Here very general but only qualitative discussions are
performed, based on dimensional analysis. Our starting as-
sumptions were that the dimensionless deviation in the en-
tropy 7/n is small and that it is caused by a correlation vol-
ume. Then observe that

lim ¥V, =

if 7 starts with a power lower than quadratic in n, then ¥V,
diverges in the limit # — 0. Therefore we write

7(n,€) = n 2V Ad(n,€). 6.1
Here A is dimensionless, and ¥, can be chosen in such a way
that A be of order of unity (at least in the considered domain

of variables). Now, a dimensionless function must depend
on dimensionless arguments, i.e.,

A=A(nVy=x, (e/nT,) =x*], (6.2)
where T, is a constant of energy dimension, characterizing,
e.g., the energy dependence of interactions. Now, calculat-
ing the pressure and temperature from the entropy function
(1.1) and (6.1), one obtains

P _ 1—x'(4 +x'4,)).
nT

At low densities and temperatures one expects that A is ei-
ther a slowly varying function (when the first term domi-
nates in the bracket) or it is a power function (when the two
terms are in the same order of magnitude). Thus, in both

cases, being A ~ 1,

(2)-() A2)-(2) - o

For the correlation volume Eqs. (3.4) and (6.1) yield
Vc2

(6.3)

= 4A + 8x1/1,1 + 14(x1)2l,11 + 8(xl)3/1,111
V]

+2(x")* A 1111 +§ ()2 24,5, + 454,45,
+ (x")4,112]). (6.5)

Again, using the previous argumentation, ¥V, ~ V;; the fac-
tors of order of unity here and in Eq. (6.4) depend on the
(here completely undefined) form of A (x',x?).

5083

Again an intimate connection and proportionality has
been found among pressure and entropy corrections and the
correlation volume. This indicates that it would be hopeful
to investigate this connection on more complicated, realistic
cases. The van der Waals gas is the simplest possible model
system realizing this connection by A = const~1 (in first-
order approximation ); when nothing else is known about the
interactions than the existence and order of magnitude of a
second correlation volume, this model gas is the most ob-
vious candidate according to the principle of Occam’s razor.

VIi. CONCLUSIONS

In this paper we have displayed some new aspects of the
geometric meaning of the metric tensor of the thermody-
namic state space introduced by Weinhold. We have demon-
strated that the metric can, indeed, be built up from informa-
tions about the interactions in the matter. Our particular
results are partly model dependent; they can be summarized
as follows.

(1) In a dilute gas of almost ideal Boltzmann behavior
the appearance of a correlation volume (established by inter-
actions correlating the fluctuations in nearby space points)
leads to corrections in the pressure and entropy, proportion-
al to that correlation volume.

(2) These corrections resemble the analogous ones in
van der Waals gases (when the role of the correlation vol-
ume is played by the volume occupation parameter).

While these results may be not very surprising, observe
that we did not assume short-range repulsion between parti-
cles, so the pressure corrections have been produced by a
more subtle mechanism.
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APPENDIX: THE KILLING SYMMETRY

The Killing symmetry is a shift along a Killing vector
field K ‘ during which the metric remains unchanged, i.e., so
that

L8 =0,

XK

where the symbol .# stands for the Lie derivative.>’ An
equivalent form is

girK ”k + ger ”i + 8ix :rKr =0. (A2)
Using the metric (2.5) one obtains the following three equa-
tions:
2neK <, —26K",, —eK" —2nK* =0,

(A1)

nKe, —eK", —eK¥,,
2 nzé e’]
—_——t+— |k + K*=0,
[ 3 n(ng—n)? n
1 4 ny 2]
—-2—K,, —_— 4t |K",
€ + 3 n(ng—n)* n

2 —
_[1 l’lo("o 3n) (A3)

7 3 n¥(ng—n)?
One can directly see that these equations hold with

]K"=0.
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K= (4€,0); A4 =const (A4)

and, integrating Egs. (A3) step by step, the result is that the
form (A4) is the general solution.

Therefore the symmetry transformation connects
points in which the density is the same while the energy
densities are proportional. Via Eq. (2.2) one sees that the
temperatures are proportional too; note that, duetoa =0,
now the system does not contain any phase transition which
could lead to a critical temperature.
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