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It is sho~n that in open quantum systems the so-called Xeno paradox is not valid. The equations of ideal

continuous measurement for Markovian open systems are elaborated and applied to Pauli's simple open
system, the actual energy level of which is sho~n to be monitorable by a continuous nondemolition mea-

surement.

I. INTRODUCTION

In a series of original papers quoted in Ref. 1, Barchielli
and co-workers proposed a theory of continuous measure-
ment for quantum-mechanical systems (see especially Refs.
2 and 3). The theory reviewed in Ref. 1 was applied to the
problem of gravity-wave detection. The author pays a great
deal of attention to the continuous observation of the so-
called open quantum systems~ and it is on this that we wish
to comment.

Let us recall the main stages of creating the theory of
continuous measurement, especially of that for open sys-
tems.

In 1977 Misra and Sudarshan' pointed out that for con-
ventional Hamiltonians the exact transition rates between
orthogonal states vanish. This fact, called the quantum-
mechanical Zeno paradox, makes nonsense of any possible
concept of continuous observation based on the standard
theory of ideal measurements. It was subsequently shown
that Zeno's paradox is an extreme case of the "watchdog ef-
fect" The back reaction of the measuring apparatus on
the measured system increases with the strength of the cou-
pling between the apparatus and the system, and this back
reaction will overcome the original dynamics of the system
when the measurement becomes ideal. Generally, the Xeno
paradox does not arise if the precision of the continuous
measurement is below the ideal quantum-mechanical limit
dictated by the Heisenberg uncertainty,

Fortunately, such a generalization of the ideal measure-
ment had already been developed by, for example, the
measurement phenomenology based on operations. If this
formalism is applied to usua1 Hamiltonian quantum sys-
tems, a reasonable model of continuous observation can be
built. During such observation, a given Hamiltonian quan-
tum system becomes a type of Markovian open system. It
was obviously this fact that suggested an ab initio open
quantum system be chosen and that its continuous observa-
tion be considered. In Ref. 1 (originally in Ref. 3) the
operation-based continuous measurement formalism was
indeed successfully extended to open quantum systems.

Nevertheless, we ~ould like to return to the problem of
the Xeno paradox. In Refs. 1, 2, and 3 we meet the state-
ment that one needs operation-based measurements to

avoid the Zeno paradox since this would veto the standard
theory of ideal measurements. Though this statement is
true for Hamiltonian systems it is no longer true for open
quantum systems. It is well known4 that an open quantum
system possesses genuinely nonvanishing exact transition
rates and this feature disproves Zeno's paradox.

Consequently, it is possible to consider the ideal continu-
ous observation of a given open quantum system; i.e., to
obtain a reasonable model there is no need to generalize the
standard measurement phenomenology of von Neumann. 6

Section II will be devoted to the general equations of the
ideal continuous measurement in Markovian open quantum
systems. In Sec. III we apply these results to Pauli's open
system and show an example for ideal continuous observa-
tion of the nondemolition type.

II. IDEAL CONTINUOUS MEASUREMENT
IN OPEN QUANTUM SYSTEMS

As it is generally used, 4 the density operator p(t) of a
given Markovian open quantum system satisfies the master
equation

p(t) = L [p(t) I (2.1)

for all time t. The right-hand side (RHS) is iinear in p(t)
and, to preserve the Hermiticity and the normalization of
p(t), the evolution operator L must be Hermitian and trace-
less:

L'[pj=L[pf .
trL [p] =0

(2.2)

(2.3)

trP„= 1

P„P~=5 P„; nm=1, 2, . . . ,N

(2.4b)

(2.4c)

X p„=x; (2.4d)

for all density operators p. From the positivity of the densi-
ty operator p(t) some further conditions for L follow.

Given a complete orthogonal system of pure states [P„;
n 1, 2, . . . ,N[, N~oo,

(2.4a)

33 3785 1986 The American Physical Society



the transition rates

= tr(P L [P„]) (num) (2.5)

must be non-negative. 4 %e introduce the full decay rate for
the state P„by

w„= X w„= tr(—P„L[P„]) (2.6)

Let us now define the ideal continuous measurement of a
given time-dependent observable A (r) on a certain Marko-
vian open system.

In this paper we shall assume that the measurements are
complete; i.e., the Hermitian operator A (r) has a nondegen-
erate discrete spectrum for all t, Without restricting the
generality of our work we can suppose that

First we derive the stochastic process which characterizes
the measured value n(t) of A (r) (2.7) and also the mea-
sured state p(t) of the system.

Let e still be finite and denote the measured value n(r )
of A ( t ) by n for each n in turn. According to the stand-
ard measurement theory the measured value n may be
some positive integer, cf. Eq. (2.7). The measured state
p(r) of the system is then collapsed6 onto the corresponding
pure eigenstate of the observable:

(2.8)

after each measurement. In between the measurements,
the measured state p(t) obeys the continuous master equa-
tion (2.1) of the system:

(2.9)

A(r) = X nP„(r)
n 1

(2.7) therefore the collapsed pure states (2.8) become mixed
when the next measurement is due to take place:

where {P„(r);n=1,2, . . . ,N} forms a complete orthogonal
system of pure states. It is also assumed that the operator
A(t) and, consequently, the projectors {P„(t)}are smooth
functions of time r. Let us recall that the P„(r)'s are
uniquely given by the diagonalization (2.7) of A (r), up to
the freedom in the labeling of the terms.

Consider now the series of moments t = t = a~ with
~ & 0 and 0. running over all integers; then perform an ideal
measurement4 of the quantity A (t ), for each a in turn. In
the usual way, '' the continuous measurement of A (r) is
defined as the ~ +0 limit of the above procedure with re-
peated observations. %'e show that this definition yields a
reasonable result for open quantum systems.

p(r +t —0) =p(r )+~L[p(r )1+O(~')
=P„(t )+eL[P„(t )]+-O(e') . (2.10)

It is well known that the outcome of a quantum measure-
ment6 is always of a statistical nature. In our case the
probability of a given outcome n at t = t is

(2.1 1)

for arbitrary o, .
Then, applying Eq. (2.10) we can express the probability

distribution of n +i as the function of the previously ob-
served n, viz. ,

co„- (n )=tr[P~ (r +&)p(t +&
—0)]=tr[P-„(t +~)P„(t )] +intr{ „P-(t +t)L[P„(t )]}+O(~') (2.12)

At this point, because of the smooth time dependence of A(t), we can replace P„(r +&) by-its expansion"a+1
P-„(t )+~P-„(t,)+O(a2). Thus, Eq. (2.12) has the form

cu„- (n ) =tr[ „P(t )P„(t )]+etr{P„(r)P„(r )+P„- (r )L[P„„(r)]}+O(e') (2.13)

The first term on the RHS yields 5-„-„.The term con-8 +(If
taining P will vanish since the identity tr(P„P ) =0. In
view of this the probability distribution of the measured
value n +~ of 2 (r +t) depends on n explicitly, viz. ,

cu„- (F7 )=
no+ i

cw-„„(t )+O(e') if n +ten"e "a+i
1 —ew„-(r )+O(~') if n t=n

t A

(2.14)

where the transition rates ~ were introduced according to
the notations (2.5) and (2.6). One can see that the series
(n ) of the measured values is governed by a certain Mar-
kovian stochastic process with the transition matrix given by
the formula (2.14) up to e2 terms

%e now take the ~ +0 limit of the above measure-
ment procedure.

From Eqs. (2.8) and (2.9) we see that when e goes to
zero, the measured state p(t) tends —at least weakly —to a
certain pure state of the form

w„(r) =tr{P (r)L[P„(r)]} (2.16)

Equations (2.15) and (2.16) are the main goal of this pa-
per. It follows from these that if at a given moment ti we
observed the open system in the nth eigenstate of the ob-
servable A (r~) then for a period r~

~ r ~ r2 the measured
state will be equal to the (time-dependent) nth eigenstate,
i.e. ,

p(r) = P„(r), r&
~ r ~ r2, (2.17)

with the probability
r r

~f2 r t2
exp — w„( r) dt = exp J tr {P„(r) L [P„(r) ]}dr

r

(2.18)
but p(t) can decay into some other eigenstate P (r) with

I

for all t. At the same time, the measured label function
n(t) will obey the continuous analogue of the discrete sto-
chastic process (2.14). Namely, the transition rate from a
given integer value, say n of n(t), to another m, will be
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p(t) =(p(t)) „„=(P„-„&(t))„„. (2.1 9)

The RHS takes diagonal form according to the distribution
cu„( t) of the probabihties of n (t) = n at time t, n

-1,2, . . . ,%:

the transition rate (2.16).
Qualitatively speaking, the measuring apparatus captures

the state p(t) of the system in a certain time-dependent
eigenstate of the observed quantity A (t). The dynamics of
the open system may, ho~ever, overcome the constraining
effect of the measurement and the measured state p(t) will

jump stochastically to another eigenstate with given transi-
tion rates.

Conversely, if the system is Hamiltonian, then L [.1
= —i[H, .1, and thus the transition rates (2.16) vanish.
The state p(t) will then be captured forever in a given
eigenstate of the observable operator. This is just the Zeno
paradox which, as we can see now, is connected with Hamil-
tonian quantum systems.

And finally, let us derive the evolution equation for the
density operator p(t) of the continually observed open sys-
tem.

We have shown that the measured quantum state p(t) of
the system is always a pure state (2.15) governed by the
continuous stochastic process with transition rates (2.16).
Obviously, the density operator p(t) must be expressed by
the stochastic mean of the measured state p(t):

Consider the constant Hamiltonian 0with a discrete non-
degenerate spectrum:

(3.1)

where [P„=~n) ( n~; n =1,2, . . .j forms a complete
orthogonal system of pure states. It will be useful to intro-
duce the matrix notation p = (n~p~m) for the density
operator p.

The following master equation'0 may then be used for the
diagonal elements of p.

p„,(t)= X p (t)w „—p„„(t)w„ (3.2)

(3.3)

where w„=g -,w„- and [w„~; n, m=1, 2, . . . ;
n&m[ are given constant positive transition rates calculated
from the detailed dynamics of the system and its environ-
ment.

In the simplest cases, the off-diagonal elements of p are
neglected. (In particular, they are killed by equations of
type p„= —p„ /r„with r ) 0, for all pairs of num. )
Therefore, it is usual to suppose that p is always diagonal in
the stationary basis:

p(t)- X p„(t)&„(t), (2.20)

p. ( t) = X p ( t) w - „(t)—p„( t) w„( t) (2.21)

where p„(t) ~0 for all n and gn, p„(t) =1.
We present the evolution equation for p(t) (2.20) in

terms of a master equation for the probabilities p„(t). It is
trivial to show that they obey a Pauli-type master equation
with transition rates (2.16):

%'e now propose to measure continuously the value of
Hamiltonian H (3.1) on the open system defined by Eqs.
(3.2) and (3.3). Observe that [H, p(t)] =—0; therefore, such
measurement does not affect the density operator. A
second observer would not be able to discover any change
in the given open system when the apparatus measuring 0
is s~itched on or off. In view of this, surely such a mea-
surement is of nondemolition type. "

In order to be consistent with Sec, II we redefine the ob-
servable A (t), similarly to Eq. (2.7):

Thus, Eqs. (2.20) and (2.21) yield the deterministic evo-
lution equation for the expected state p(t) of the open sys-
tem during the continuous observation of the quantity
A (t), while the pure state p(t), actually measured in a
given continuous observation process, satisfies the stochas-
tic evolution rule (2.15) and (2.16). For better understand-
ing let us consider an analogy with classical mechanics: The
density distribution of a Brownian particle obeys the dif-
fusion equation which is deterministic; the individual path
of the particle is governed, however, by the Wiener stochas-
tic process.

It is worthwhile to stress that the ideal continuous mea-
surement process explained in our paper represents a dif-
ferent point of view with respect to the theory of Barchielli
and co-workers' ' as well as to other works (see, e.g. , Ref.
9). The ideal measurement process contains instantaneous
collapses of the quantum state awhile the quoted theories
work with a kind of "continuous collapse. "

III. NONDEMOLITION CONTINUOUS MEASUREMENT
IN PAULI'S OPEN SYSTEM

Let us apply the results of Sec. II to the simple open
quantum system of Pauli. 'o

Here the observable 3 is, of course, time independent,
since

~ n) 's are the stationary states of Hamiltonian H.
According to Eq. (2.15) the measured pure state of

Pauli's open system will have the form

p(t) = In(&)) (n(t) I (3.5)

where the measured value n(t) of the observable A obeys
thc stationary continuous stochastic process with Markovian
transition rates w„, cf. Eq. (2.16). In other words, the
observed state of the system behaves as follows: The sys-
tem remains in a given stationary state ~n) for an average
lifetime I/w„and jumps into another stationary state ~m)
(man) with constant transition rate w„-, the coefficient
of the master equation (3.2) of the Pauli system.

Invoking now Eq. (2.19) we can define the density opera-
tor p(t) of the observed Pauli system by the stochastic
mean of the pure state (3.5). We can already see at first
glance that the evolution equations (2.20) and (2.21) for the
observed system are identical with the master equation (3.2)
for the density operator (3.3) of the free system. This fact
is in linc with previously stated nondemolitioness of the
measurement.
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Therefore, since continuous observation of operator 3
(3.4) [or, equivalently, that of the Hami ltonian (3.1)]
causes no change to the system (except for information
gained on it), we are led to a delicate point: Namely, we
can claim that the pure state ~tt (t)), evolving stochastically
as dictated by the Markovian process above, yields an alter-
native representation for the Pauli open system. This pure
state representation' is exactly equivalent with the density
operator formahsms (3.2) and (3.3) commonly used. The
equivalence is a genuine mathematical fact independent of
whether the pure state ~ n (t) ) was really measured or not.

IV. CONCLUSION AND OUTLOOK

we measure quantities with a continuous spectrum as in

Refs. 1-3. Nevertheless, we wish to emphasize that the
quantum-mechanical Xeno paradox does not veto the con-
cept of ideal continuous measurement for open quantum
systems.

%'e derived the appropriate equations in Sec. II and ap-

plied them to the simple open system of Pauli. Moreover,
we showed an example of ideal nondemolition continuous
observation leading to the pure state representation of the
Pauli open system. Another example was given earlier for a

particle affected by white-noise potential. " Here we guess
that nondemolition ideal continuous measurement should
exist for any given open quantum system.

This paper was devoted to the problem of continuous
measurement in open quantum systems. References 1-3
exploit the operation theory of quantum measurements.
Operations may be the most suitable tool, especially when
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