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In this paper we propose a master equation which contains a damping term universally violating the quantum mechanics of
massive systems. From this equation follows that the quantum mechanical superposition principle breaks down if the states have
radically different mass distributions. The damping of the coherence appears on a reasonable scale of masses and distances.

1. Introduction

Classical theories of gravitation [1,2] attribute
sharply given functions to the gravitational field (or
to the metric of the space-time) and therefore they
do not apply to the microworld where measurable
quantities must usually spread due to quantum
effects. Conversely, the extension of the quantum
theory to the macroworld also leads to contradic-
tions, the best example of which was presented by
Schrédinger in his cat paradox [3].

Thus, both theories, i.e. that of gravitation and of
quantization, must be changed when we wish to
extend their fields of application or even to unify
them.

So far, most of the works [4] have attempted to
cure the classival gravitation theory by applying
some, more or less standard, quantization procedure
to it. In our paper the opposite task is concerned. We
impose a certain gravitational modification on the
ordinary quantum mechanics in order to eliminate
the illnesses of the macroscopic quantum theory as,
e.g. the cat paradox is. The Schrodinger equation
would then be substituted by the proper and unique
master equation which shall be derived from gravi-
tational considerations.
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2. Indeterminacy of the gravitational field

We shall confine ourselves to the newtonian limit
of general relativity; the metric tensor g, has the fol-
lowing non-zero components:

8oa =C*+2¢, for a=0,
for a=12,3, (1)

=1,

¢ denotes the velocity of light, ¢ stands for the new-
tonian gravitational potential, | ¢|<c? is assumed.

As we mentioned above, the metric must possess a
certain spread in a universal theory because of quan-
tum effects. If a given quantum gravity theory were
derived by the quantization of the classical field then
these fluctuations would come from the non-vanish-
ing commutators of canonical pairs of field opera-
tors. We, however, do not quantize the classical
gravitational field; nevertheless, we shall propose a
measure for its fluctuations.

Our method goes back to a famous paper [5] by
Bohr and Rosenfeld. They investigated the princi-

- ples of measuring the classical electromagnetic field

by apparatuses obeying the quantum mechanics. For
the optimal sensitivy of such measurements they were
able to obtain a value just corresponding to the vac-
uum fluctuations of the quantized electromagnetic
field.

Recently, Didsi and Lukdcs [6] estimated the
measurability of the newtonian gravitational accel-
eration field
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g(r’[):-v¢(r9t)’ (2)

depending on coordinate r and on time ¢. They con-
sidered a probe of a given mass and extension. The
gravitational acceleration of the probe was observed
in a Bohr-Rosenfeld gedankenexperiment. On one
hand, the probe satisfies the Schrodinger equation
with the proper gravitational term and, on the other,
its back reaction onto the gravitational field must be
taken into the account. The optimal precision 8g of
the measurement is then universally bounded by

(88)* 2hG/VT, (3)

where G is the newtonian constant of gravity. A tilde
denotes, here and after, averaging like

g(r,)= VLT JJ g(r, tyd3r dr, (4)
lr—rl<R
10—t <T/2
over a given volume V=3xR?> and time 7 as well *'.
Just at a similar level of accuracy and care (besides,
it is mostly accepted; see, e.g. refs. [7,8]) Unruh [9]
proposed a formally relativistic gedankenexperi-
ment where a given massive and extended clock was
thought to measure a given time interval. Unruh’s
bound on the maximal precision of such a measure-
ment was represented by the following limit on the
covariance between the zero-zero components of the
metric g and the Einstein tensor G,

88000 GO 2 AG/Ic VT . (5)

In the newtonian limit (1), the Lh.s. of the above
inequality will be equal to —c~*(8¢ A8¢); this co-
variance can be rewritten in the explicitly symmetric
form ¢ —*(8V ¢ 8V@) thus, applying eq. (2), Unruh’s
eq. (5) will coincide with the bound (3) proposed
via intrinsic nonrelativistic arguments by Diési and
Lukdcs.

Of course, the bound (3) might be irrelevant if,

' An outline of arguments of ref. [6] follows. Let 81, 8x denote
the quantum uncertainties of the velocity and the position,
respectively, of the probe. The average acceleration of the probe
measures the value of g (4) with an error (88), ~8v/T; the
field of the probe yields another uncertainty
(88)>~ (GM/R>)8x. By the choice 8x~ R (here not explained)
and via Heisenberg relation 8xdv~#A/M, we obtain
(88) ~H/MRT and (8&),~ GM/R?. By varying M, the simul-
taneous minimization of (38),, (82), results in eq. (3).

378

PHYSICS LETTERS A

16 March 1987

€.g. our measuring apparatuses were oversimplified.
Nevertheless, in this paper we assume that the rela-
tion (3) represents an absolute indeterminacy of the
gravitational field.

3. Universal gravitational white noise

We shall require that the gravitational field pos-
sesses universal fluctuations with spread equal, up to
a constant factor of O(1), to the indeterminacy rep-
resented by the r.h.s. of formula (3):

C[Vg(r, D1 —[<Vo(r, 1)) ]

—const X AG/ VT, (6)

where the symbols ¢ > stand for the expectation
values the operational meaning of which is a delicate
question .

Remind that we refuse to quantize the gravita-
tional potential but, nevertheless, we accept the need
of universal fluctuations for it. Actually, we are going
to assume the gravitational potential ¢(r, ¢t) to be a
c-number stochastic variable [6,10]. Thus symbols
¢ > have to be specified as stochastic average of the
quantity enclosed.

We are going to derive the probability distribution
of the potential ¢. Obviously, the mean {¢(r, 1))
should be identified by the classical newtonian
potential originating from the actual mass densities.
For simplicity, however, we neglect the mean gravi-
tational field and take

<o(r, 1) =0, (7)

but we do not claim anyhow that the inclusion of the
mean field would be a trivial task, cf. ref. [9].

In ref. [6] we showed that eq. (6) determines the
correlation function of ¢(r, ¢) almost uniquely:

Cp(r,0)oh(r', 1)y =hG|r—r'| "'o(t~t'),  (8)

where also eq. (7) has been meant, of course. The
numeric factor on the r.h.s. of eq. (1) was set equal
to 4.

The distribution of the potential ¢(r, ¢) will be
completely specified by the moments (7) and (8) if
we assume the distribution is gaussian. Then, in other
words, ¢(r, t) is called a gaussian white noise.

Our treatment is nonrelativistic, therefore formu-
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lae like (3), (6) or (8) are not valid for too short
distances either in space or time. For example, ideal
point-like massive objects are beyond our scope.

4. Master equation with gravitational damping term

Let us now turn to the effect of the stochastic white
noise ¢ on the quantum state y of a given system.
Formally, the state vector satisfies the Schrodinger
equation

ihé/(t)=(ﬁo+j¢(r, Hjtr) d3r)w(t) : (9)

where H, is the nongravitational part of the hamil-
tonian, f(r) stands for the operator of the local mass
density of the system.

Since the total hamiltonian is stochastic the state
vector ¥(t) becomes also a stochastic variable gov-
erned by the proper stochastic process. It is well
known, however, that the physical relevant quantity
is the density operator

A= w(v' (1), (10)

and it obeys a certain deterministic equation, of
course.

Actually, for gaussian white noise (7), (8), egs. (9)
and (10) lead to the following master equation:

b(t)= "2 1Ho, 5()]

3 3,

5 | S o, e pom. an

The technics of deriving such markovian master
equations is discussed in many places, see e.g. in refs.
[11,12].

The above master equation is our central result.
The second (damping) term on its r.h.s. represents a
universal violation of ordinary quantum mechanics.

5. The nature of violation
Let X stand for the coordinates (both classical and

spin ones) of the dynamical system in question.
Given a configuration X the corresponding mass
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density at point r will be denoted by f(r|X). It is
worthwhile to introduce the motion of characteristic
time 74(X, X') of damping by

[ta(X, X))}

G [[Huprirwrer

2 [r—r'|

for a given couple of configurations X and X",

Observe that Ty=0c if Xand X" coincide; the larger
the difference between the mass distribution repre-
sented by the configurations X and X', the shorter
the characteristic time 74(X, X’) of damping.

Introducing the coordinate eigenstates | X for our
quantum system and by using the obvious relation
Ar|X)6(X = X)=(X'|f(r)| X>, one can rewrite
the master equation (11) as follows:

(XNPNXy = (—i/h) (X| [Ho, H(D] 1 XD

—[7a(X, X)) KXIA(DN XS (13)

We try to cast into words how violation of the
quantum mechanics works. Due to the second term
on the r.h.s. of eq. (13) the off-diagonal terms
(X|p1X'> of the density operator will tend to be
damped according to the characteristic time (12).
Consequently, the interference between states, say
|X> and | X’> will be destroyed if the difference
between the corresponding mass distributions f{r| X)
and f(r| X’) is essential.

6. The scale of violation

Our last task is to estimate the critical scale where
the gravitational breakdown of the quantum
mechanics is to take place. As the simplest choice we
consider the dynamical system consisting of a single
rigid spherical ball of homogeneously distributed
mass m and of radius R. The ball is assumed to be
free and we investigate its translational motion.
Therefore the configuration X of the system is rep-
resented by the ¢.m. coordinate x, solely.

Then the mass distribution function of the ball is
frlx)=mV~'6(R—|r—x|) where V=%nR> and 8
is the step function. The characteristic time (12) of
damping turns out to be
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ta(x x)=A[U(|x—x"])-U0)] ", (14)

here U stands for the gravitational pair potential
between homogeneous spheres of mass m and of
radius R:

d3zd3z
Uin= -Gm* jf lz—7 +r|

~—(Gm*/R)(%8—-1ir*/R*), r<R,
~—Gm?/r, r>R. (15)

Using expression (14), the master equation (13)
takes the following form for the density operator g of
the free ball:

d Lo ih ) .
a {x|plx' )= 3 (A—4")<{x|plx">

1
— 7 [Ux=x"1) = U(0)] <xlplx"> - (16)

For the special case |x—x’ |<<R, this equation has
recently been analysed by Joos and Zeh [13], cf. also
ref. [14].

Let us define the coherent width / of a given state
p as follows: / is the characteristic distance |x—x|
above which the off-diagonals {x|p|x’> become
negligibly small.

A crude estimation of the characteristic time of the
kinetic changes of g coming from the first term on
ther.h.s. ofeq. (15) yields m/?/f. Note that the kinetic
term usually increases the coherent width / of the state
while the damping term tends to decrease it. The two
effects become balanced when / equals a critical value
I+, satisfying

mlczzrn/h ~ Td(lcril)

=AU - U(0)] " . (17)

If the coherent width / of the actual quantum state
is much smaller than the critical value /;, then the
standard quantum kinetics dominates and damping
is not effective. On the other hand, if />>/_;, then the
coherence of the state will heavily be destroyed by
the gravitational damping term in the master equa-
tion (13).

By means of the asymptotic expansions given on
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Table 1
Critical coherence width versus particle radius.

leen (cm) R (cm)
10° 10710
1 10 -8
10 ¢ 10-°
10°° 1o
10’ 10-°

1071 1

the very right of eq. (15), we can evaluate relation

(17). We obtain

L~ (R2/Gm>)4R¥4 | if Rm*>h?/G, (18a)

~(h*/Gm*)'?RY> | if Rmi<h?/G. (18b)

Similar estimations for critical coherence width
were obtained in refs. [15,16].

Let us apply this result to the proton (m~ 10" g
R~ 107"3cm), the typical form of massive matter in
the microworld. Eq. (18b) yields /., ~ 10 cm and
one can thus conclude that the coherence of the
guantum states would be violated only for hugely
large wave packets. So atomic systems are unaffected
by damping.

Looking for violations we obviously need massive
objects much more massive than some atom is. We
have to regard objects which are big enough to have
a large mass but are still small so that they had no
internal excitation in effect. Let us choose a small
rigid grain of normal (1 g cm~2) density and assume
for the extension R>>10~'2 ¢cm. Then we can apply
eq. (18a) resulting in

lerig ~107 12 R732 (em) | (19)

see table 1.

Hence considering e.g. a typical colloid grain
(R ~ 103 cm) the critical coherent width /_,;, will be
of the order of the extension R of the grain. For larger
objects the critical scale /., becomes even smaller,
i.e. it gets microscopic. Therefore any wave packets
of macroscopic extension will be destroyed by the
proposed gravitational mechanism.
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7. Conclusion

In section 4 we have proposed a universal quan-
tum mechanical equation with a given gravitational
damping term violating the ordinary quantum
mechanics.

Markovian master equations, like ours is, were
proposed recently by Ellis et al. [17] as a possible
model for the violation of the quantum mechanics.
The authors took Hawking’s gravitational indeter-
minacy [ 18] as the theoretical implication for their
work. Since Hawking indeterminacy was indicated
on Planck scale ref. [ 18] looked for violations of the
quantum mechanics in the microworld, first of all; as
e.g. in long base line neutron interferometry.

From our master equation it follows that the vio-
lations act against high quantum fluctuations of the
mass density and this would coincide well with our
trivial macroscopic experiences. Then the break-
down of the quantum mechanics would be expected
for massive systems rather than in the microworld
and we should elaborate experimental tests in that
direction [15].
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