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Abstract. - In this paper we apply the unified dynamics of Ghirardi, Rimini and Weber to the 
translational and rotational motion of solids in three dimensions. We show that, in a certain 
approximation, the rotational equations can formally be reduced to the translational ones 
already known. We point out that the rotation of solids as well as their translation are practically 
of classical nature without any observable quantum effects. 

1. Introduction. 

Quantum mechanics teaches us that free microparticles cannot be arbitrarily localized; 
their position uncertainties usually tend to increase with time. It is, however, natural to 
expect that free macroscopic objects (e.g. solids) possess a certain natural localization. 
Without claiming completeness, we mention a few trends [l-61 from the last decades, each 
proposing original formaIisms and/or mechanisms for the quantum localization of macro- 
objects. 

Most recently, Ghirardi, Rimini and Weber (GRW) proposed a theory that utilized some 
of the techniques of the continuous quantum measurement theory of Barchielli et al. [5] and 
they have suggested ungied dynamics for micro- and macro-objects [6]. In the following 
paragraphs, we describe the model for the spatial motion of solids, which we will use 
throughout this discussion. It is mostly the model of ref. [6] with a slight modification which 
we borrowed from ref. [5]. 

The usual unitary evolution of the quantum state p is modified as follows. An elementary 
localization 161 (or measurement 151) process applies, with frequency A ,  to each constituent 
of a given composite object: 

p^ is the density operator, tji denotes the Cartesian coordinate operator of the i-th constituent 
(i = 1,2,  ..., N>. We shall call q2s the selected coordinates. (In the terminology of Barchielli 
et al. [51 q2s are the measured coordinates.) The constant a rules the accuracy of the 
elementary localization. In the localization process (1.1) the coordinates are selected at 
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random according to the normalized probability distribution 

P [ { @ } I  = tr 7'{&1. (1.2) 

In the work of GRW [61 the following finite parameter values were proposed: 

I/* = 10-~  cm , A = 10-l~ s-l. (1.3) 

We follow, however, the original proposal of Barchielli et al. taking the infinite-frequency 
zero-accuracy limit 

a+O, A+m; y = Aa = const = s-l. (1.4) 

Originally, GRW proposed that the elementary localizations occurred at random instants for 
each constituent independently. In eq. (1.1) we can take the current elementary localizations 
at the same time, since, fortunately, the infinite frequency limit (1.4) is insensitive to this 
change. 

In ref. [6] it has been shown that the loose elementary localizations of the constituents 
result in strong localization of the macro-object due to the large number N of constituents in 
it. Localization of solids has been discussed in a single spatial dimension. In this paper we 
are going to derive the GRW equations (in the limit (1.4)) for solids pe forming  
translational and rotational motion in three dimensions. We have to notice that the 
rotational motion will be discussed in a certain approximation suitable for most practical 
cases. Exact equations will be given elsewhere since they need more mathematical 
elaborations. 

2. Localization process for solids. 

In this section we are going to calculate the effect of localization (l.l), (1.2) on the centre- 
of-mass coordinate Q and on the rotation angle 8 of a given solid. 

First we need the geometrical connection between the coordinates ($,e) of the solid and 
the constituent coordinates {q}.  For an ideal classical solid, the Cartesian coordinate qi of 
the i-th constituent can always be written as 

where 

is the centre-of-mass coordinate (for simplicity, assume identical constituents of unit mass). 
The 3 x 3 orthogonal matrix Ro stands for the rotation by angle 181 around the axis parallel to 
the vector 8. The unrotated reference (c.m.s.) coordinates { a }  add up to zero: x ai = 0. We 
introduce the tensor of inertia Z of the solid in the c.m.s. 

E 2 [(qi - Q)2 1 - (qi - Q )  0 (ai - & > I ,  (2.3) 

where the symbol o denotes tensor product. The tensor Z can be expressed through the 
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angle 8 of rotation 

where 

is the tensor of inertia of the unrotated solid. The invariant determinant of tensor I will be 
denoted by 111. 

If 8 is small (i .e.  le( << X )  then, by neglecting terms of the order of @, eq. (2.1) takes the 
form 

(2.6) qi = Q + ai+ 8 X ai. 

This approximation allows one to express the rotation angle by a symmetric expression of 

e = Io1 C x qi . (2.7) 

the constituent coordinates 

After these preparations, let us turn to the quantum case. Equations (2.1M2.4) can 
obviously be applied to the corresponding operators &, 4 and &. Through the whole paper 
we suppose that the quantum uncertainty A8 of the rotation angle is small: A8<<x.  
Furthermore, we perform the calculations of this section in a specially adapted coordinate 
system where the expectation value (8) vanishes; this choice can be taken without loss of 
generality. Then, approximations (2.6) and (2.7) remain valid for operators as well. 

In analogy to eqs. (2.1) and (2.2), we introduce the centre-of-mass coordinate Q and the 
rotation angle 8 for the selected constituent positions { q }  appearing in the localization 
process (l . l) ,  (1.2) 

Q = X qi , (2.8) 

e = r,-l ai x qi , (2.9) 

which now means a certain *average>> rotation fitted to the given set {q}  of the selected 
constituent coordinates. 

Having all necessary ingredients, let us integrate the r.h.s. of eq. (1.1) over the selected 
coordinates { q } ,  while the coordinates (g, 8) of the solid (cf. eqs. (2.8) and (2.9)) are kept 
fixed 

(2. lo) 

According to the GRW theory [61, T(Q,~, represents the localization process for such case 
when no selection (measurement [5 ] )  is made on the constituent coordinates {tj} but on the 
collective coordinates (4, g> of the solid. 

Let us evaluate the r.h.s. of eq. (2.10) in coordinate representation 
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In analogy to eqs. (2.2) and (2.7), we introduce (Q.’, 0‘) as a function of the primed 
(qi - qj)2 can be expressed in terms of (Q, e> and (Q.’, 0.’) coordinates {q.’}.  Then the sum 

(qi - qj)2 = N(Q - Q’)2 + (0 - 0’) I@ - 0’) (2.12) 

and, similarly, the 2nd line of eq. (2.11) will reduce to 

(a~ /X)3 /Z)1 /2exp[ -aN[ (1 /2 ) (Q+Qr)  -g12- 
- a  [(1/2)(e+ er )  - e]IO[(1/2) (e+ 0’) - e]]. (2.13) 

Let us substitute identities (2.12) and (2.13) into the r. h.s. of eq. (2.11) and let us restore 
the operator formalism. The localization process (2.10) of solid will then have the following 
final form: 

For the probability distribution p ( g ,  e)  of the selected position and angle of the solid we have 

p ( ~ ,  - e ) = t r ~ ~ ~ , B , [ i ; l = ( a ~ / X ) ~ I ~ ~ ~ ~  * 

tr { i; exp [ - aN (Q - Q)2 - a (8 - 8) Io (8 - e)]} . (2.15) 

Equations (2.14) and (2.15) represent the main results of this section. By comparing them 
to eqs. (1.1) and (1.2) of the original localization for constituent positions {4}, it is easy to see 
that the accuracy parameter a of the elementary localizations has now got a factor of N .  In a 
similar way, the accuracy parameter of the orientation localization is equal to a\I\ which is 
also proportional to the number N of the constituents in the solid. 

As we shall see in the next section, for solids of nondegenerated form all\ turns out to be 
much greater than unity. Therefore, eq. (2.15) together with the overall assumption A0 << x 
of this section lead to 110 - ell << z. This smallness of deviation between the two angles means 
that, in the same approximation, eqs. (2.14) and (2.15) become covariant against Galilean 
coordinate transformations if Io is replaced by the actual tensor I @ )  of inertia (2.4). 
Consequently, the temporary assumption ( e )  = 0 of this section is not necessary for the 
validity of the final formulae. 

3. Motion of solids in modified quantum mechanics. 

In the case of the ordinary dynamics the translational and the rotational motions of a free 
solid satisfy a separable set of equations. Let the quantum state ,2 be of the form 0 Pr 
where it, ir belong to the translational and, respectively, to the rotational degrees of 
freedom. Then it and ir satisfy the following separate Schrodinger equations: 

(3.1) 

(3.2) 

it = - (i/2 hN) [P , &I, 

ir = - (i/2 i t) [&IC I d $ ,  ;=I. 



L. DI6SI: ON THE MOTION OF SOLIDS IN MODIFIED QUANTUM MECHANICS 289 

Here P ,  i@ denote the momenta canonically conjugated to the coordinates 4 and 4, 
respectively. 

The localization processes (2.14), (2.15) can be factorized as well, into independent 
localizations of the position 4 and of the angle &: 

(3.3) pi+ ( a ~ / x > ~  exp 1- (1/2) a($ - &121 it exp 1- (1/2) a($ - &)‘I 

with probability ( ~ N / x ) ~ ”  tr {A  exp [- aN($ - &)>“I} and, furthermore, 

with probability (d~)~”lIl”>” tr {fir exp [- a(& - @I@)(& - @I}. 
The localization processes (3.3) and (3.4) repeatedly interrupt the unitary evolutions (3.1) 

and (3.2), respectively, at rate A. Taking the infinite frequency limit (1.4), eqs. (3.1M3.4) 
represent the dynamics of the given solid. 

The basic features of the translational equations (3.1) and (3.3) are relatively well known. 
On the one hand, if we do not record the selected coordinate &, then the statistical operator 
obeys to the following master equation: 

,& = - (i12fiN) P2, it1 - (W yN E$, [$, it11 . (3.5) 

From this equation the suppression of the inteflerence between far-away localized states 
follows (cf. ref. 13-63 for details). 

On the other hand, let us make a full selection of the states on the basis of the coordinates 
&. Then it has been conjectured by GRW [61 that there exists a certain stationary regime for 
the selected states. In this regime the wave function becomes spherical symmetric Gaussian 
with the following spreads [6]: 

AQ = m ( h / 2  ym)1’4=10-11cm, 

AP = wh(ym/2h)1/4  =10-16gcms-1. 
(3.6) 

Here the dimension of the constituent mass m has been restored; the fi factor is due to the 
presence of the 3 independent spatial directions. The numeric values correspond to 
N m  = 1 g. The expectation values (0 )  and ( P )  move along classical trajectories apart from 
a certain stochastic spread around them. This anomalous Brownian motion of the centre-of- 
mass is, however, completely unobservable due to its smallness [6]. 

As far as the rotational motion of solids in the GRW theory is concerned, we shall restrict 
ourselves to the case of a rigid sphere of radius R, with uniformly distributed constituents. 
Then the tensor of inertia (2.3) is proportional to the unit tensor: I = (2/5)NR2 1. From here, 
the letter I will denote the scalar factor (2/5)NR2. 

Observe that eqs. (3.2) and (3.4) of the rotation can be obtained from eqs. (3.1) and (3.3)) 
respectively, by the substitutions &+e, P - M ,  N + I .  All that is known about the 
translation of solids in GRW theory can thus be transferred unto the rotation. 

So, for instance, the counterpart of the master equation (3.5) will ensure the suppression 
of the inteflerence between different orientations of the solid: 

ir = - (i/2hO [h2, - (1/4) y1 [ P ,  [ P ,  ,&]I. (3.7) 

From the second term on the r.h.s. we see that the characteristic time of damping the 
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interference between two different orientations 8, 8' is equal to ((114) YIllfl- 8'112)-1 = 
== (yNR211fl - 8'112)-' = This very fast damping assures that the generic 
quantum states of a solid satisfy our basic approximation A8 << 7c taken in sect. 2. 

In the stationary regime the rotational wave function of the solid (Nm = 1 g, R = 1 cm) 
will be a Gaussian function of the rotation angle 8. We obtain the quantum uncertainties of 
the orientation d and of the angular momentum & from eqs. (3.6) with the substitutions 
Q + 8, P + M ,  N + I = (2/5)NR2 yielding 

sl(8 - 

Similarly to the case of translation, the expectation values of the rotational canonical 
coordinates (d), (&) approximately satisfy the classical equations of the symmetric rotator. 
The true trajectories are perturbed by a practically unobservable anomalous Brownian 
motion. 

Needless to say that the quantum uncertainties of the orientation A8 and of the angular 
momentum Ah4 are both unobservable either. 

4. Conclusion. 

In this paper we have shown that the theory of spontaneous wave function localization 
proposed in ref. [6] leads to a certain natural localization of the position and orientation of a 
given free (macroscopic) solid. Technically, the problem of rotation of solids in GRW theory 
has been reduced to the known equations of the translation of solids. One sees that, similarly 
to the translation of solids, the rotation can also be interpreted in classical terms, since the 
GRW theory allows no room for observable quantum effects in the spatial motion of 
macroscopic bodies (at least not for solids). 

* * *  
The author thanks Profs. A. FRENKEL and B. LUKACS for many useful discussions. 
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