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A new quantum-stochastic differential calculus is derived for representing a continuous quantum measurement of the position 
operator. A closed nonlinear quantum-stochastic differential equation is given for the quantum state of the observed particle. A 
possible physical realization of a continuous position measurement is constructed. 

1. Introduction 

In 1982 Barchielli, Lanz and Prosperi suggested a 
theory of continuous quantum measurements [ 1 ] 
including observables of continuous spectra such as, 
e.g. the coordinate operator. Various equivalent for- 
malisms were elaborated: path integrals [ 11, char- 
acteristic functionals [ 21, quantum-stochastic 
differential equations (QSDEs) [ 3,4]. Very re- 
cently, Ghirardi, Rimini and Weber proposed the 
appealing unification of microscopic and macro- 
scopic dynamics [ 5 ] in the frame of a similar theory 
to that of continuous quantum measurements. 

In this paper we suggest a simple quantum-sto- 
chastic formulation, a la It& for a continuous quan- 
tum measurement [ 11. It shows a very close 
relationship to the Stratonovitch calculus used by 
Gisin for discrete observables [ 61. In section 2, we 
outline the principles of continuous observation and 
present the proper nonlinear It6 equations (which 
differ from the It8 equations of ref. [ 41). The de- 
rivation of our equations is postponed to section 3; 
in section 4 we propose a possible physical model to 
which our formalism can presumably be applied. 

2. Continuous position measurement, It6 equations 

In order to reduce the amount of technical work 
we single out the simplest example and we consider 
the continuous measurement of the position 4 of a 

free particle of mass m moving in one dimension. 
Let the state vector w satisfy the free Schrodinger 

equation; then the density operator b= w+ obeys 
the following equation: 

P= - (i/2m) [h*,Pl , (2.1) 

jj is the momentum operator canonically conjugated 
to the coordinate 8. Now, refs. [ 1,5] introduce in- 
stantaneous stochastic changes, too: 

B- [P(q) 1 -‘~,[A 

=[P(q)]-‘mexp[-+c-u(o-4)*] 

xpexp[ -@(B-4)*] (2.2) 

called measurement (or localization) processes which 
repeatedly occur at equidistant moments [ 1 ] sepa- 
rated by At. In the above equation (Y denotes the ac- 
curacy parameter of measurement. The measured 
coordinate 4 is selected at random with the proba- 
bility distribution 

P(q) =Tr 7’,-[b] 

= J/nTr{pexp[ -a(B-@*I} . (2.3) 

Eqs. (2.1)-( 2.3) prescribe a certain joint stochastic 
process for B = VW+ and q. Barchielli et al. define the 
continuous measurement of the position 4 by taking 
the following limit, 

At, a-0, (Y/At= y=const , (2.4) 

of the above stochastic process. (Here we have to 
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note that Ghirardi et al. [ 51 suggest Jinite values for 
a! and At, without requiring the limit (2.4). Never- 

theless, they also notice that most physical charac- 
teristics of their theory depend only on the ratio 
y=a/At.) 

Observe that, while b is a function of time t, the 

other stochastic variable 4 only makes sense for the 
instants of the measurement processes (2.2). Let us 
extend the definition of 4 for all time: one can, e.g., 
identify g, by a proper continuous zig-zag function 
of time. We introduce then a new variable & instead 

of 4: 

$, = j 41, dt' . (2.5) 
0 

In the next section we shall prove that fi and 0 fol- 

low a gaussian process. They obey a couple of sto- 
chastic differential equations [7]; one is for the /j- 
valued quantum-stochastic process: 

d~=(-i[B2/2m,~l-ar[8, [4,bll) dt 

+{4- (B),BI dt, 

the other is for the measured coordinate: 

(2.6) 

d&=(4) dt+y-’ dr. (2.7) 

Here < is a Wiener process. The It8 differential [ 71 
dr satisfies the following algebra: 

(dO,,=O > 

drdl=fydt, 

(do”=0 if 1t=3,4, . . . . (2.8) 

Throughout our paper ( ) stands for the quantum 
expectation values while = ( ) St denotes stochastic 

means. 
It is important to see that the QSDE (2.6) pre- 

serves the pure state property /?z WV+ =b2. In fact, 
it is enough to prove that @* = dp provided fi’=b at 
a given moment. We therefore substitute the QSDE 
(2.6) into the r.h.s. of the identity @‘= {@, p} + 
@&Using the It8 algebra (2.8) and the assump- 
tion b’=p, we arrive at the identity @‘=@. 

One may notice that the so-called measured co- 
ordinate 4 is not a good representative of the particle 
trajectory. From eqs.(2.5) and (2.7) one can for- 
mally get 

4=(8>+r-‘t, (2.9) 
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which means that 4 is charged by a stationary white- 
noise making the graph gt an awkward fractal [ 81 
instead of a trajectory. This problem has already been 

emphasized in refs. [ 1,5] as well. 
It is thus better to represent the trajectory by (9) 

instead of g. Consequently, our proposal is to con- 
centrate on the nonlinear quantum-stochastic differ- 

ential equation (QSDE) (2.6) (together with the It8 
algebra (2.8) ). This QSDE, in itself, will account for 

all the physical behaviour of the particle affected by 
the continuous coordinate measurement [ 11. 

3. Verification of ita equations 

In the present section we are going to derive the 
stochastic differential equations (2.6), (2.7) start- 
ing from eqs. (2.1)-(2.4) of continuous position 
measurement [ 11. 

First we need the notion of stochastic mean for the 
measurement process (2.2): 

(...)Bt= j- . ..P(q) dq. (3.1) 

We introduce the change of our stochastic vari- 
ables p and & taken for one cycle of duration At: 

A/% =L$+*t -/% 

=-i[h2/2m,~,lAt+[P,(~,,)l-‘T,,[BIl 

-Bt+o[(W21 > (3.2) 

A&, =&A, -Q,=q,At+O[ (At)2] , (3.3) 

where we used eqs.(2.1),(2.2) and eq.(2.5), 
respectively. 

The continuous measurement process (2.1)-( 2.4) 
is a gaussian process with Itch equations (2.6)-( 2.8) 
if, in the limit (2.4), the moments of A/? and A@ (cf. 
eqs.( 3.2), (3.3) ) satisfy the same algebra as the cor- 
responding It8 differentials @, de (cf. eqs.(2.6), 
(2.7)). Consequently, we have to prove the follow- 
ing asymptotics: 

(llAt)(~>,,~(lldt)(~),, 

=-i[fi2/2m,Bl-~r[4, [ci,Pll, (3.4a) 

(llAt)<AQ>,,+ (Ildt)<d@,,=(8> > (3.4b) 
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(l/AO(4=‘@),,+(lldt) dp@W and (3.8): 

=frI8-(9>,B)~{8-(8>,B} > (3.4c) 

(l/At)(AQA&)st+(l/dt) dQd&=1/2y, (3.4d) 

(l/At)(AQ),,-r(l/At)(q),,At-tO, 

(llAt)<AQ&)st+(l/dt) de@ 

=HB- (B>,P) > 

( 1 /At) (higher than 2nd powers 

(3.4e) 

of@ and/or AQjSt+O. (3.4f) 

The stochastic means on the l.h.s.‘s must be taken at 
time t (i.e. at the beginning of the interval At). The 
expressions on the very right have been calculated by 
using the stochastic differential equations (2.6), 
(2.7) and the It6 algebra (2.8). To prove the above 
asymptotical relations, we are going to evaluate the 
1.h.s. terms in turn. 

-t{Q,B} * (3.9) 

As for the first one, eq. (3.4a) is known from pre- 
vious works. Its proof is easy because the probability 
distribution P( 4) cancels from ( @)st. Thus, we re- 
fer the reader to the literature [ 1,5] where the fol- 
lowing master equation has been proved: 

$ (P>st = -i]B2/2m, O>stl -b44, [4 (B>stl I . 

Recalling that (4) = 0, eqs. (3.9) have provided the 
proof of eqs. (3.4b)-( 3.4e). We shall not give a sys- 
tematic proof of eq. (3.4f). The reader may convince 
himself that the increasing powers of At (or, equiv- 
alently, of a) will not further be compensated by the 
higher moments of q, and expressions like 

(l/A0((AQ)3)st, (l/At)<(A&)*~)st, 
( 1 /At) ( WC%@@&)~~ etc. will tend to zero. Be- 
sides, this is a genuine feature of gaussian process. 

So we have presented a proof of the It6 equations 
(2.6), (2.7) for the continuous position measure- 
ment (2.1)-(2.4) of a free particle. 

(3.4d) 

Its special case, i.e. when (p)st = I& =B at time t, 
yields just eq. (3.4a). 

4. Possible physical model 

To prove eqs. (3.4b)-( 3.4f) we need the form of 
the distribution P( 4). In what follows we exploit 
translational invariance and choose a special coor- 
dinate system where (8) =O for the given state B at 
time t; this choice makes our calculations simpler 
without loss of generality. Then eq.(2.3) yields the 
following asymptotical expansion: 

P(@=Jorlnexp(-(r@2)[1+O(a!)+O(~292)]. 
(3.6) 

In this approximation, eq. (3.1) yields 

(4)51=0(a) > (3.7a) 

(q2)st=l/2a+o(l), (3.7b) 

and, by virtue of eq.(3.2), we obtain 

~=cr~{(B,B)+O(a)+O(a2q2). (3.8) 

We remind the reader that we have supposed (4) = 0. 

We try to construct a physical model whose state 
would follow the quantum-stochastic process de- 
scribed by the QSDE (2.6 ). Let us suppose that our 
test particle is not free but immersed in a parallel 
stream of light particles (e.g. of photons). We con- 
sider the quantum motion of the probe only in the 
transversal plane. This model has been stimulated by 
a similar discussion given recently by Joos and Zeh 
[ 9 1. (Meanwhile, a more formal treatment has been 
given by Caves and Milbum [ 10 1. ) 

Let us evaluate each 1.h.s. term of eqs. (3.4b)- 
(3.4e) in turn, with the help of eqs.(3.3), (3.7ab) 

At the beginning, let us start the probe with a given 
pure quantum state /? = VV +. It obeys the free Schrii- 
dinger equation (2.1) until the first collision with a 
photon occurs. Then the quantum state of the probe 
bears an instantaneous random change. It is very 
crucial to realize that this change (collapse) may be 
identified if we detect the scatteredphoton. The set of 
possible collapses depends on the photon measuring 
apparatus. If, e.g., we observe the scattered photon 
through an optical lens, we can detect the current po- 
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sition of the probe. The non-unitary localization pro- 
cess (2.2) may, at least qualitatively, represent the 
collapse of the quantum state where 1 /& is the res- 
olution of the optical device in the transverse plane. 
The operator 0 stands for the transverse coordinate; 
the probability distribution of the measured trans- 
verse position 4 of the probe is given by (2.3). 

The (optimal) resolution l/G and the repeti- 
tion frequency 1 /At of single measurements depend 
on the wave number k of photons, on the intensity 
I of their stream and on the total cross section (T of 
photon scattering on the probe: 

l/J&x l/k, l/At=al. (4.1) 

Now, provided the current wave function of the 
probe is such that (1) its transverse width is much 
smaller than the resolution l/J& (2) its relative 
change during At in between collisions is small and 
(3) we consider the probe properties on time scales 
larger than At, then we can exploit the property of 
the limit (2.4). Hence, one may expect that the 
QSDE (2.6) will account for the change of the 
probe’s quantum state b and, furthermore, the ob- 
served position 4 is governed by the stochastic dif- 
ferential equation (2.7). 

It would be interesting to see experimentally the 
fractal nature of the observed “trajectory”. We should 
remember that this fractality as well as the validity 
of eqs. (2.6), (2.7) break down at time scales equal 
or less than At. 

Finally, we briefly discuss the alternative contin- 
uous measurement on the very same system. Let us 
remove the lens from our measuring apparatus and 
observe thus the momentum of the scattered photon. 
Then the quantum state acquires the unitary change 

p-+exp(i Api)fi exp( -i Api) (4.2) 

instead of the collapse (2.2); here Ap is the mea- 
sured (transverse) momentum transfer whose prob- 
ability distribution depends on the differential cross 
section of the collision. We note without proof that, 
in the limit (2.4), the following QSDE fulfrls for the 
quantum state of the probe: 

G=(-i[P2/2m,Pl-ir[4, [4,Pll)dt 

-i[d,Pl dt. (4.3) 

This QSDE is linear and it corresponds to a unitary 
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evolution of the probe state in the effective white- 
noise potential diof the photon “heat bath”, cf. refs. 
[11,12]. 

Note that both QSDEs (2.6) and (4.3) yield the 
same master equation ( 3.5 ) since the observation of 
the scattered photon does not make any change to 
the statistical operator (b), of the probe. The gen- 
eral pure state QSDE (i.e. preserving@p2) for the 
same system has the following stochastic term: 

cosP{~-(B>,~}dr-isinp[9,pldr, (4.4) 

with arbitrary real @. In principle, this would cor- 
respond to the simultaneous unsharp measurement 
of the position and the momentum transfer of the 
probe. (We mention the non-gauss& pure state sto- 
chastic process [ 13 ] which could probably be con- 
nected with some even more sophisticated 
measurement of the scattered photon. ) 

5. Concluding remarks 

The formal extension of the It6 equations (2.6)- 
( 2.8 ) for the continuous measurement of several (not 
necessarily commuting) operators seems to be 
straightforward. It would, nevertheless, be desirable 
to recapitulate the proof starting, e.g., from the 
mathematical representation of continuous mea- 
surements presented in refs. [ 3,4 1. 

In a forthcoming paper we shall analyze the so- 
lution of the QSDE (2.6) and we shall show that it 
possesses a unique stationarily localized solution 
suitable to represent classical trajectories. 
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