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A simple nonlinear quantum Langevin equation is introduced as phenomenological equation for quantum brownian motion.
Easy calculations yield a unique localized wave function in the stationary regime. The given example may encourage more general
use of nonlinear quantum Langevin equations for damped quantum systems, e.g. in measurement theory, in heavy ion physics,

etc.

1. Introduction

The classical Langevin equation reflects the ob-
vious fact that the equation of motion of a brownian
particle must contain a stochastic term representing
the interaction with the reservoir. This feature of the
equation of motion will survive for quantum brown-
ian motion as well: the quantum state vector y of the
massive brownian particle satisfies the free Schro-
dinger equation except for the instants of random col-
lisions with the lighter particles of the reservoir.

Following our previous paper [1], we introduce
the nonlinear quantum Langevin equation (QLE) for
the pure state operator f=yw* of the brownian
particle:

dp=(—i[p*/2m, p1—4v14, [4,51]) dt

4, p are the canonical coordinate and momentum op-
erators, respectively, m is the mass of the particle.
The constant y characterizes the strength of inter-
action with the reservoir.

This equation is a so-called stochastic differential
equation a la Itd (see Arnold’s excellent review [2]),
where £ is a c-number Wiener process whose Itd dif
ferential d¢ obeys the following algebra:

(d$>«=0, d{d¢=4yde,
(d&)"=0, if n=3,4,... (1.2)

Throughout our paper { ) and ¢ ), denote quan-
tum and stochastic averages, respectively; p stands
for the current pure quantum state while the usual
density operator will consequently be denoted by
Pos-

It is crucial to see that eq. (1.1) retains the pure
state property p=yw* =52 Assuming p=p> holds
for a given moment we are going to prove that
dp=dp>. Let us substitute eq. (1.1) into the r.h.s. of
the identity dp2=djj+pdp+dpdp:

dp*=(—i/2m){, (*,p1}dt —47{p, (4,14, 511} dt

(1.3)

The last term on the r.h.s. comes from the specific
Itd correction dpdp= ({G— (4>, p}d&)> cf. egs.
(1.2). Now recall the assumption p=p52. The r.h.s.
of eq. (1.3) becomes then identical to the r.h.s. of
eq. (1.1) which, in turn, proves p2=4.

The main goal of the present paper is to show that
the QLE (1.1) leads to a unique localized shape of
the wave function.

2. Incidental remarks on the master equation

It is well known that, as far as one considers only
observables belonging purely to the brownian par-
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ticle (but not to the reservoir), the knowledge of the
density operator {p), provides full information.
From eqs. (1.1) and (1.2) we see that the density
operator fulfils the following linear master equqtion

[3]:
9 Bya=—ilp?/2m, (BYs]
dt st — £ st

=704, 14, <P>«]]. (2.1)

Hence, concerning the reduced dynamics of the
brownian particle, the QLE (1.1) is physically
equivalent to the master equation (2.1).

The QLE offers a certain pure state representation
(see, e.g., ref. [4]) of the quantum brownian mo-
tion. It is intimately connected to quantum mea-
surements optionally performed on the reservoir
particles as we have clarified in our former paper [1].
The QLE (1.1) is equivalent to the equations of con-
tinuous position measurement theory [5-7].

Although the use of QLE (1.1) might seem to be
redundant as compared to the master equation (2.1),
it nevertheless helps us to recognize the physical
characteristics of the quantum brownian motion
which are not seen explicitly from eq. (2.1). Such
feature is wave function localization which qualita-
tively follows [8,9] from eq. (2.1).

3. Stationary solution of the quantum Langevin
equation

In this section we are going to show that the QLE
(1.1) leads to a unique localized shape of the wave
function in the stationary regime. The quantum ex-
pectation values of the position and momentum will
move along a certain random path in the phase space.

In this section we use state vector formalism.
Bearing in mind that p=y*, we write the following
QLE for the state vector:

dy={[—i(?/2m)+4ir(4—<§>)*] dt
+(§—<g>) ddy. (3.1)

Sometimes it is more convenient to use the expo-
nential form:

y+dy=exp{[-i(#>/2m) —4y(4d—<{§>)*] dt
+(§—<§>) dS}y . (3.2)
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Exploiting the rules of the It6 algebra (1.2) for &, one
can verify that eq. (3.1), as well as eq. (3.2), leads
to the QLE (1.1).

Obviously, nobody expects a stationary solution of
the above QLE itself. On physical grounds, however,
we do expect it in the co-moving system of the par-
ticle. Therefore we are going to transform the QLE
(3.2) into the co-moving system.

For each moment, let us transform the current state
vector y as follows:

F=exp(—i{p)>§) exp(i{q>p)y. (3.3)

The new vector 7 corresponds to the state viewed
from the co-moving system of the particle. The state
¥ satisfies the identities

¥*rqu=0, y*py=0, (3.4)

for all times.
If we perform the transformation (3.3) on both
sides of the QLE (3.2) we obtain

g+dy=exp[ —i({f) +d{p))q]
X exp[i({§)+d{§>)p]
xexp{[—i(p?/2m) —4y(4—<§>)*] dt
+(§—<4>)dcy, (3.5)

where d{p)=tr(pdp) and, similarly, d{g4)=
tr(§dp).If we take dg from, e.g., eq. (1.1) we get the
following results:

d(p> ={{p—<P>,4—<3>}) d¢=2Rd¢,
d(gy=m='(p) dt+2{(§—<§>)*)> &
=m~1{p) dt+202d¢&, (3.6)

with obvious shorthand notations R and ¢2

Let us choose a special coordinate system where
{Ppy=1{§)> =0 at the given instant ¢ when y is con-
sidered. In this frame y coincides with yfor the given
moment ¢ (but dy#dyw, of course). Using the equal-
ity =y and substituting egs. (3.6) into eq. (3.5)
one gets

7+ dy=exp( —2iR§ d¢&) exp(2io?p d&)

Xexp{[—i(p*/2m)—4yg*] dt+4dSy. (3.7)

This is already a closed QLE for ¥ since R and o7 can
be calculated in the state i as well (cf. egs. (3.6)):
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R=4y*{p, @)W, o*=W*§*y. (3.8) d¢p) =d¢,
Let us observe the following important point. All d{g>=(1/m){p> dt+202 d&. (3.13)

’s are always invariant under galilean transforma-
tions of the frame. Hence the validity of egs. (3.7)
and (3.8) will be independent of the special frame
where (p)> = (4> =0 has been required. These equa-
tions are valid in arbitrary inertial frames.

What is left is to write the product of the three ex-
ponential factors in eq. (3.7) into a more conveni-
ent form. Up to irrelevant phase factors one obtains

g+dy=exp{[—i(p*/2m)—4y(§*—0c*)] dt
+(§—2iR§+2ic%p) A& . (3.9)

This is the wanted QLE in the co-moving system of
the observed particle. Remember that R and o2 are
W-dependent quantities, cf. eq. (3.8).

Let us find the stationary solutions of the above
QLE. They must be of the form . exp( —iEt) where
¥, is the time-independent part and E is a real num-
ber. Substituting this ansatz into the QLE (3.9) yields
two equations for the stationary solution ¥.,,:

[(§*/2m) —3iy(§*—0?) 1Yo =EV.s (3.10a)
[(1=2iR)§+2ic%p]¥., =0. (3.10b)

Surprisingly, it is very easy to solve this set of non-
linear equations. If one introduces the wave function
¥..(q) eq. (3.10b) turns into the corresponding or-
dinary differential equation yielding solutions

¥..(q) =constxXexp[ — (1-2iR)(¢q/20)*]

with arbitrary real R and o. Then, if we substitute
this solution into the frictional Schridinger equation
[4] (3.10a) we find the wunigue solution E=
4/ }y/m while for R and o we obtain the following
stationary values:

R,=4}, o2 =1//2ym. (3.11)

Therefore the stationary solution of the QLE (3.9)
takes the following unique form:

Voo (q) = (2m0%,) 14
X exp[—(1-1)(g/205)] .

As expected, this solution is localized. Applying the
stationary values (3.11) of R and o2 to the classical
stochastic differential equation (3.6) we get

(3.12)

These equations govern the stationary random walk
of the wave packet (3.12) through the phase space
spanned by the quantum expectation values {p) and
{§) viewed from the laboratory system.

The stationary solution (3.12) was first derived in
ref. [10]. The same paper presented the following
Fokker-Planck equation for the phase space distri-
bution p(<{§>, (B, t) of quantum expectation val-
ues in the stationary regime:

g __pop
at -~ madgq
1/(1 92 2y 92 a2

+1 (e “\/; s )
(Here we used the shorthand notations p, g instead
of (P>, {¢)>.) This equation is equivalent to our
stochastic differential equations (3.13) recalling that
& obeys the Itd algebra (1.2).

One would obviously expect that, for t=oco0, each
solution of the QLE (3.9) tends to the single sta-
tionary one (3.12). Although we are still unable to
prove the global stability of the solution (3.12), we
conjecture its local stability. If 7 is close to ., i.e.
W=, + 6 is assumed where 8§ is smail and or-

thogonal to ¥, then, via the QLE (3.9), not too
lengthy calculations lead to the result

(3.14)

d s an
a<l15w||2>st=—2ya;2ISW*qV/Ist (3.15)

in the lowest non-vanishing order of §i7.

4. Conclusion

A simple nonlinear quantum Langevin equation
has been introduced to describe the evolution of the
quantum state of a brownian particle. This phenom-
enological equation yields analytical localized solu-
tions of gaussian shape in the stationary regime. The
stability of this shape needs further investigations.
Nonlinear QLEs to be new alternative tools to for-
mulate quantum damping in more complicated sys-
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tems too, including fields as measurement theory,
heavy ion physics etc.
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