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RESTORATION OF 2x° INCLUSIVE DISTRIBUTION FROM OBSERVED 2y DATA
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Here a formula is derived to restore the 2a° effective mass distribution from the observed 2y one. The method is applied on
bubble chamber events of moderate statistics, as a preliminary survey, and gives an exponential asymptotics in the relative rapidity.

1. Introduction

As it is well known, the two-particle rapidity distributions give a deeper insight into the dynamics of the strong
interactions [1]. For charged secondaries a quite satisfactory amount of such data is available. However, the
situation is far worse for neutral secondaries, as n°, due to obvious difficulties in detection. Nevertheless, heavy-
liquid bubble chamber experiments can offer at least inclusive many-particle distributions of substantial statis-
tics [2]. So, the task is to restore the n° momentum distribution from the observed y distribution. As several
works [3-6] have shown, the 1n° inclusive spectrum can be uniquely restored from the 1y inclusive one. Here
we show how to obtain a similar connection between two-particle inclusive spectra. Namely, we give the rela-
tionship between the two-particle effective mass distributions, because the relevant rapidity type variable of the
2n° system is 2 arch (M2,/m?2), as demonstrated later.

2. Connection between two-particle inclusive y and n° distributions

Consider the kinematics of the decay n°—7yy. A single =° of four-momentum p yields the inclusive distribution
(2n)~'6(4) (p—k,—k,), where ki, k, are the four-momenta of the y’s. Hence one directly obtains the two-
photon inclusive distribution as

k)= 2 [ 190189 (p—ky o) (dp/E)

1
25 [ [ 190,060k~ 4m2)o (ks — 4m2) (dp/E) a9 1E7) @1

where p, p’ are the four-momenta of the pions; /{?, f {2 stand for the first- and second-order inclusive distri-
butions of the pions while f{*’ denotes the two-7y inclusive distribution, and m, is the n° rest mass.

The maximalist’s goal would be a formula for /{*’(p, p’) by inverting eq. (2.1). However, here we will be
contented with a more modest aim, namely to generate the 2n° effective mass distribution from that of the 2y
pairs. Let us first introduce the normalized inclusive distributions p of the 2y and 2 effective mass squares M2

1

py(M7) = O Jf‘yz’(kl, ky)O (M2, — (ki +k2)?) (dk,/ ki) (dky/ks) (2.2)
Y
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Pr(M7) =

757 | £ 02 )5(ME— (40 V) 0P/ EY (@' 1) 23)
where F ¥ = (n,(n,—1))> (@=v or n) is the second factorial moment of the multiplicity distributions, re-
spectively, Now substituting eq. (2.1) into (2.2) one obtains that the RHS contains the n° distribution only in
the (2.3) combination:

F
py(M7)=({nyy /FPYS(MZ,—m n)+‘;(2) f T(M3y; M)p(M2)dM2, (2.4)
where
T(MZ,;p,p'y=T(M;,, Mz,)
(2 )2J5(pk1 1m2)o(p ks — im0 (M3, — (ki +ky)?) (dk,/ k) (dky/k,) (2.5)

[Observe that Tis a Lorenz scalar, therefore its p, p’ dependence must occur only through the 2x° effective mass
square M2 = (p+p')2.] Thus, by eqs. (2.4), (2.5), we have obtained a direct relation between the 2y and the
2n° effective mass inclusive distributions.

The kernel (2.5), after a straightforward and moderate computation, yields

T(M3; M3 )AM =AY X2V, 2y < —Yin,
XYr—2pyy —Yuu<Zpy<Yar,
X0, Yie<zy, (2.6)
where, for convenience, we have introduced the shorthand notations z,, and Y,
=In(MZ,/mi) —oo<z,<+0, Yp=2arch(M./2m,;) 0<Yn<+oo. (2.7a,b)
Then, substituting the form (2.6) of the kernel into eq. (2.4), one obtains
F$p,(M2) = (nyy (M3 —m?)

o I1zyy |
FAFD [ p(M2) (Vo 2) Vet AF D0 =2) | pu(ME) 2V Y, (2.8)
Zyy 0

where 6 is the step-function. There are corresponding M2, values below and above the n%-peak fulfilling the
relation

py(MZ, )+py(m,[/M) const. forallM;’;y;ém,Z[. (2.9)

Therefore it is enough to restrict ourselves to M2, > m2. There, eq. (2.8) can be inverted by repeated differen-
tiations as

Pr(M) =3 (F{®/F2)(d/dzy )P, (M7) |oyym vir -

This is the cental result of the present paper. Eliminating the shorthand notations (2.7), this formula can be
written into the final form

pr(M7) =3 (FP /F DY (M d/AMZ, )2 py (M7,) | styy= (Munt /T /2 -

[The double sign in eg. (2.11) corresponds to the two halves of the p,(MZ,) distribution, separated by the n°
peak, c.f. eq. (2.9).]
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3. Application

Although eq. (2.11) is our final result we must note that this form is not too appropriate for direct use.
Namely, it contains derivatives of a histogram which is an incorrectly defined numerical problem. For one-
particle inclusive distributions this instability was circumvented [ 7] by special regularization methods [8], see
also in ref. [6]. Let us postpone the problem for a moment.

The application of our formula on high statistics data will be the object of a subsequent paper. Here we want
only to demonstrate how it works. Fig. 1 displays the M2, inclusive distribution taken from 2000 propane cham-
ber events in 40 GeV n——p collisions [2]. While the symmetry (2.9) cannot be observed on the data, for this
the responsibility can be relegated to an expected artefact, namely the excess of low energy photons originating
partly from misinterpretation of low energy tertiaries, partly from unnoticed energy loss of e*e~ pairs. the
M2, > m? part of the measured distribution is more reliable, and contains the full information due to the sym-
metry (2.9).

Now, the upper part of the distribution should be put into eq. (2.11) in order to obtain the 2n° effective mass
distribution. However, as mentioned above, the required numerical differentiation is an awkward procedure.
Nevertheless, as will be immediately shown, in the present case one can avoid this difficulty. Namely, fig. 2
displays the same distribution on a double logarithmic plot, and demonstrates that it is consistent with a power
law:

py(M%)=const..z.f, B=1.4410.07, z,>0. (3.1)

Then the differentiation in eqgs. (2.10), (2.11) can be analytically performed, and the 2 n° effective mass distri-
bution obtains the form

(M2 )const. (M, + /M2, —4m2) 24, (3.2)

Now, consider the defining equation (2.7b) of Y., and evaluate it in the limit AZ,. >> m.. There, for negligible
transversal momenta,
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Fig. 1. Inclusive 2y effective mass distribution for x~—p at 40 Fig. 2. As in fig. 1, but on doubly logarithmic scales for the better
GeV/c from the experiment of ref. [2]. For the details of the display of the tail. Observe the shoulder at the n° mass (instead
high-mass tail used in our evaluation, see fig. 2. of the theoretical d-shaped peak). The tail is indeed conform with

a decreasing exponential (best fitting: continuous line ).
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Yeem |y =121, (3.3)

where y, stands for the individual rapidities of the £%s. Now observe that /) (¥,.) =F *p.(M2,)dM2./dY,,
is the inclusive distribution of the “relative rapidity” (3.3). Thus in the above limit eq. (3.2) yields the follow-
ing asymptotical result for £ {2 (|¥, —¥2 | ):

FAUyi—y21)~exp[— (B=D Iy =111, (3.4)
with f—1=~1 [cf. eq. (3.1)].

4. Conclusion

Here a rigorous relation has been constructed between the observable 2y and theoretically relevant 2x° inclu-
sive distributions. A preliminary calculation has demonstrated the exponential asymptotic behaviour of the 2n°
relative rapidity distribution. Since experimental two-particle rapidity distributions are regarded as standard
additional tests on production mechanisms [9], it seems worthwhile and promising to utilize this method for
extending such tests to neutral secondaries. The needed M., inclusive distributions of high statistics are already
appearing in the literature (cf. e.g. refs. [10,117).
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