Mapping the van der Waals state space
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We show that the metric structures of the thermodynamic state space enables us to uniquely
decide if two thermodynamic states belong to the same phase or not, even in the presence of a
critical point. While the method cannot classify one state in itself into a definite phase,
coherent regions can be identified in the state space. The construction is demonstrated on the

van der Waals gas.

I. INTRODUCTION

Most thermodynamic systems may exist in more than
one phase. In a microscopic sense this means different possi-
ble patterns for the particles, leading to different behaviors
under external influence. It was a great convenience to refer
a particular state as belonging to one and only one of these
phases, because then some general features would have been
specified in a single word.

However, serious problems arise if one wants to do this.
According to common opinion, no phase transition happens
above the critical temperature, so there are not different
phases. It is worthwhile to cite a statement from the standard
literature."

“At pressures higher than the critical pressure, the lig-
uid can be heated from a low temperature to a high one
without any discontinuity in the process. Ebulliation does
not occur as at lower pressures, and no other event makes a
change from the liquid phase to the vapor phase. The distinc-
tion between the two phases is therefore arbitrary.” Apply-
ing this mutatis mutandis to temperatures, one can conclude
that the two phases are distinguishable only below 7. and
above this there is not physical difference.

While this statement is true, it has serious consequences
for distinguishing the phases even below 7. To see this, let
us follow Landau and Lifshic. They say (in our own transla-
tion; Chap. 83); “When a critical point exists, a continuous
transition can be realized between any two states of the mat-
ter, during which phase separation does not happen in any
point; this can be done by changing the state of the matter
along a curve circumventing the critical point without cross-
ing the phase equilibrium curve. In this sense, the existence
of a critical point questions the notion of different phases,
and one cannot always tell which states belong to the first
and second phase, respectively. In the strict sense, two
phases can be mentioned only when they coexist in contact,
i.e., on the phase equilibrium curve.” (On that curve a ther-
modynamic measurement shows that the intensives are ho-
mogeneous in the system, but the extensive densities are not;
the disjoint regions of different densities are the different
phases.> When the intensives differ too, from the difference
of densities alone one cannot conclude to differences of
phases. )

So (i) the proper way to compare conjectured different
phases is to move one to the other in the state space; if during
this or at the end a phase separation is inevitable, we may say
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that they belonged to different phases indeed. However, (ii)
since there is no phase distinction above 7, , the result is not
unique. As Ref. 2 emphasizes, one may choose different
paths for the translation with and without a phase transition
on the path. Maybe a circumventing path seems unnatural
between low temperature states, but in any case, ifone wants
to speak about distinguishable phases, or anything related to
phases, some principle must single out a path for the con-
struction.

A popular prescription is the use of isotherms. This ac-
cepted, phases (or at least regions related to phases) can only
be defined by isotherms if we introduce the critical isotherm
as a borderline, above which the states can be called, e.g.,
gaseous (being permanent gas in the usual sense,*) and then
one can uniquely classify the states into these three regions,
however, three problems arise. First, the different boundar-
ies of the regions are highly different for physical meaning. A
serious structural change happens when crossing the phase
boundary (manifested in bubble or droplet formation),
while nothing observable happens crossing the critical iso-
therm. Second, generally, i.e., when the states to be com-
pared are of different temperatures, one cannot choose an
isothermal path. Finally, the choice of isotherms is uninter-
pretable from the viewpoint of the Riemannian structure of
state space, introduced by Weinhold.® There is no preferred
coordinate system in a Riemannian space, and obviously iso-
therms are the coordinate lines only if 7'is one of the coordi-
nates. If one takes seriously the Riemannian structure, and
wants to exploit its advantages, they must not attribute phys-
ical meaning to special coordinates.

However, the Riemannian structure does yield some-
thing preferred, namely such paths between any pairs of
thermodynamic states, the shortest ones called geodesics.
Here we show that the comparison of states can be based on
geodesics instead of isotherms, so one can indeed uniquely
decide if there is phase boundary between any two states or
not. By collecting all the points mutually geodesically con-
nected, one again obtains some regions which inherit certain
properties of the liquid, vapor, and gas regions of the nonin-
variant classification. In this paper, we demonstrate this
construction using a van der Waals system; then a fourth
region appears too, near the critical point.

. THE METRIC

Riemannian structure of the thermodynamic state space
is defined by the second derivatives of a thermodynamic po-
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tential density as a metric tensor. With extensive densities as
coordinates, one can use either energy® or entropy® density
as the potential and these two descriptions are thermody-
namically (but no metrically) equivalent. Here we turn to
the second possibility, because then the meaning of the dis-
tance, measured in units of average fluctuations,’ is very
transparent. When some extensives are substituted by inten-
sives, the potential is a Massieu function. For a van der
Waals gas, the variables (here and henceforth) are the di-
mensionless density x and dimensionless temperature y de-
fined as

(2.1)

where the parameters n, and a are defined via the equations
of state

x=n/ng, y=T/an},

p=nn,T/(ny,—n) —an?,

€= (3/2)nT — an’. 2.2)
The physical state space is
y>0, 0O<x«l. 2.3

Using the dimensionless variables of Eq. (2.1), the equation
of state (2.2), in the way described in Refs. 6 and 7, leads to
the line element

ds? = [x7'(1 = x) 72 =2e’]dx* + (3/2)xdz*, (2.4)
where we have introduced a new variable

z= —In(p). (2.5)
For comparison, the line element of the ideal gas is

ds* = x'dx* + (3/2)xd2>. (2.6)

The formulas suggest that for diluted hot states, the van der
Waals metric goes to that of the ideal gas. However, this is
not exactly true for the Riemannian curvature. For the nec-
essary Riemann geometry formulas, see Ref. 8.

It is worthwhile to consider first the invariant curvature
and symmetries. For an ideal gas, the curvature vanishes and
the space has three independent Killing vectors

K = [x"3%in(gz),(2/3)"%x " Y%co0s(gz) ], 2.7
K& = [x'%cos(gz), — (2/3)'%x~%in(gz)], (2.8)
Ki = (0,), (2.9)
g=(3/8)'?

with an E(2) commutation. On the other hand, the line ele-
ment (2.4) leads to the scalar curvature

R=(1/3)[4x(1 —x)%* + (1 —x)?>(3x* — 6x — 1)¢&
—3(1 —=x)I1x[1 =2x(1 —x)%*] 2, (2.10)

which is the only algebraical curvature invariant™’ in two
dimensions and, since the Riemann tensor has only one inde-
pendent component, it completely describes the invariant
curvature. There is a line singularity in the curvature at

e *=2x(1—x)? (2.11)

and it is the only curvature singularity. There g, = 0 [cf.
Eq. (2.4)]. Hence, at this line, the density fluctuations are
infinite, therefore this curvature singularity is just the line of
thermodynamical instability. Therefore the real physical
manifold of stable states is the region

t8,9
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0<x<l, y>2x(1—x)>2

The meaning of the boundaries is as follows: Line x = 0 is
the vanishing particle number density. In this direction, the
space is not complete. The problems here are connected with
the fact that there it is possible to get complete vacuum by
fluctuations in a given subvolume of a very dilute gas. The
problem could be eliminated by using quantum statistics in-
cluding antiparticles, but it is better not to do this here; for
some more discussion, see Chap. 5.

Line x = 1 is the maximum possible density of the van
der Waals gas. According to line element (2.4), this line is in
the infinity. The lower boundary is the singularity, which
can be reached; world lines may end on a singularity without
making the space extendible. Finally, the manifold is ex-
tended to infinity upwards (at high temperatures).

The singularities of g, at x = 0 and x = 1 are only coor-
dinate singularities. In the conjectured ideal gas limit x -0,
z— — o, R— — 1, 50 indeed this asymptotic region is not
flat, thus the ideal gas geometry has not been recovered. (By
restoring the correct dimensions, the asymptotic curvature
is — 1/n,.) In the limit x— 1, the curvature vanishes, but
this limit is obviously not an ideal gas.

By direct calculation, one can show that the Killing
equation

Ky + Ky =0

5 (2.12)
has no solution, therefore, there are no symmetries for the
van der Waals gas (there is one symmetry when the attrac-
tion is neglected'®). However, one can hope that some sym-
metries are recovered approximately in some asymptotic re-

gions, where
K. + K, =0y —0. (2.13)

The quantities Q,, should go to 0 in some definite sense. Al-
though for this the general criteria are still unknown, in a
true space of ( + + ) signature Q,,Q "/K ?-0 is sufficient.
The K ~2 factor scales out the effect of the freedom in the
normalization® of the Killing field.

By applying the above definition of asymptotic symme-
try, we can evaluate if and where the ideal gas symmetries
(2.7)~(2.9) are approximate for a van der Waals gas. The
results are K; of Eq. (2.9) generates an approximate symme-
try in the region

xV2(1 - x)% <. (2.14)
Nevertheless, for K, and K, being asymptotic symmetries,
the further condition

x<1 (2.15)

is also needed. In addition, observe that in our dimensionless
coordinates the invariants are dimensionless. Requiring Q %/
K ?tobeatmost 0.01, curves A and F of Fig. 1 are obtained as
lower boundaries for the approximate symmetries. The only
domain where all three ideal gas symmetries at least approxi-
mately hold is the hot dilute left-hand side of curve F. Still,
even there R does not go to O, therefore, there exist better
approximate Killing vectors with SO(2,1) group structure.
(Note that K is an approximate symmetry anyway for high
temperature.)
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FIG. 1. Domains of approximate validity of the ideal gas symmetries in the
van der Waals state space (above the respective curves). Details in the text.

Ill. GEODESIC STRUCTURE

Consider two points separated by a finite distance. Then
various curves can be followed bewteen them. For the whole
curve the length s is

2
5(1,2) =f V8. (dx’/dl) (dx*/dl)dI, (3.1)
1
where / is any monotonous parameter along the curve. The
curves of extreme length are called geodesics® and they are
determined by the endpoints. In a curved space, therefore,
geodesics play the role of straight lines. In affine parametri-
zation / = 5, Eq. (3.1) reduces to an identity

8. x'x =1 (3.2)

where the prime denotes the derivative with respect to the
affine parameter. The extremum condition for s(1,2) yields
the form

x" 4+ T x"x" =0, (3.3)
which needs two initial conditions.

Now, our starting problem was that the phase boundary
was not able to separate the state space into two parts, be-
cause it did not exist at high temperatures. However, unsta-
ble states behind the singularity are not parts of the mani-
fold. So the singularity line may be (and, as will be shown,
is) concave in the sense that it does not contain all the chords
of its boundary point pairs. Then some states are geodesical-
ly disconnected.

Now, by this means one could define disconnected
states which may remind us of states separated by phase
transition. We are going to show that indeed that the lack of
geodesic connection can be physically interpreted in this
way. Namely, when there is no geodesic connection, it means
that the minimal curve would like to cross the singularity.
Since the thermodynamic meaning of the singularity is the
borderline of thermodynamic stability of states, such a path
(if realized at all) would mean inevitable phase separation®
at the border of the manifold. Then there is no natural path

between the initial and final states without phase transition.
Therefore, here we accept the following:

Definition. Points I and 2 do not belong to the same phase
if they are geodesically disconnected on the manifold. Here
we used a criterion conform to common sense. A finite line is
considered to be befween two points if the shortest connect-
ing path crosses it.

At the end of this section, we demonstrate that:

(1) our above definition is operative;

(ii) the results are nontrivial even for initial and final states
of the same temperature;

(iii) it can be used even if there are problems with the usual
“isothermal” criterion.

Item 1 is easy to demonstrate. A geodesic (line of ex-
treme length) of fixed endpoints can be calculated by vari-
ational methods. Now we turn to item 2. Consider, e.g., two
states at y = 0.8. In our dimensionless units y., = 8/27, we
are well above any transition. Still, the geodesic has a tenden-
cy to incline. This phenomenon is displayed in Fig. 2. First
the densities at the endpoints are 0.1 and 0.9 (curve a); ob-
serve the serious inclination. Shifting the densities to 0.05
and 0.95, the points cease to be geodesically connected, but
during the variation there is a tendency to obtain “minimal”
paths similar to curve b. The explanation is simple. Qur task
is to span a given density gap with the minimal number of
average fluctuations. Now, at the singularity, the average
density fluctuations is infinite. Therefore, it is profitable to
go down first to the neighborhood of the critical point, thus
increasing the possible horizontal steps. Of course, then later
one has to go up again, therefore, this way is not a real gain if
yand y, are too high. The inclination is increasing when one
has to abridge bigger and bigger density gaps.

Finally, item 3 can be demonstrated by choosing the
following endpoints:

x; =005 py,=0.10; x,=029, p,=0.34.
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FIG. 2. Some characteristic geodesics in the van der Waals state space. Note
the tendency of inclination for “horizontal” curves and the opposite for
“vertical” ones. Details in the text.
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Now, here the initial temperature is below critical, while the
final one is above. So, a thumb rule “no phase transition
above T, could not help us in any way even if accepted.
Consequently now, in order to see if a phase transition exists
or not between the two states, one must uniquely define the
path, and the geodesic path is an operative definition. For
clear demonstration, the endpoints have been so chosen that
the straight line connecting them on the (n,T) plane crosses
the instability, maybe suggesting a phase transition. How-
ever, the above points are geodesically connected, as curve ¢
in Fig. 2 demonstrates.

By summarizing the results of this section, an invariant
and purely thermodynamic definition has been given for two
states belonging (or not belonging) to the same phase.

Still we cannot assign a particular phase to a given state
(remaining in accordance with Landau’s remark?). It seems
that here the question itself is wrong in the given context.
However, as will be shown in the next section, by invariant
thermodynamic means in the state space one can construct
regions, which are coherent units, inheriting the essential
characteristics of phases.

IV. REGIONS

States on the phase boundary can be classified into
phases.? Now, one could look for the maximal domain of the
state space, which is coherent for geodesic connection and
contains the, say, vapor part of the phase boundary. This
domain would be called Vapor region. If this construction
could be realized, then this region, defined by invariant ther-
modynamic expressions, would be just what is expected for
the vapor “part” of the phase diagram: the maximal domain
whose points are connected with every states recently creat-
ed in evaporation, without a subsequent second phase transi-
tion. (Obviously, by the spirit of the construction, metasta-
ble states between the phase boundary and singularity are
ignored; anyway, there stationary initial and final states are
not expected, and this metastable domain could be similarly
classified later.)

However, this idea can be realized only in a restricted
sense. Namely, even the vapor part of the phase boundary is
not geodesically connected as a whole unit (shown later).
Then one has to choose a preference: which section of the
vapor side of the phase boundary is the more substantial.
Our physical argument is that the region must contain at
least the asymptotically cold (and therefore dilute) phase
equilibrium states as such ones most different from liquid
states {par excellence vapor).

So we are now looking for the maximal coherent region
of the state space, which contains the asymptotic vapor

‘states and whose points are all mutually connected on the
shortest lines (similarly for the liquid points). Then this
maximal region is a whole coherent unit without referring
any coordinate system and, since some part of it cannot be
regarded as anything else than vapor, this is the Vapor region
of the space defined by invariant means.

The direct way of constructing this region would be to
take a sufficiently dense cluster of points and then to check
geodesic connections. Here a more rapid way is followed.
First the region is looked for, whose points are all geodesical-

ly connected with asymptotic vapor (or liquid) point, and
then the mutual connectivities of the boundary points are
checked. Obviously, if these points are mutually connected,
interior points are too.

First we consider a general two-phase system with mini-
mal complication, i.e., here we assume that the envelope of
all geodesics starting from the asymptotic vapor (liquid)
point and going to infinity does exist and is convex. If so,
then there are only two different possible region structures.
Take a point on one of the phase boundaries at low tempera-
ture and set geodesics going in every directions thence. Some
of them will end on the singularity; collect those which will
not and construct their envelopes. Then go down in tempera-
ture with the starting point along the phase boundary
(asymptotic states of the phase); if the limit of the envelopes
exists (assumed here), then it is the boundary of the region
whose points are all geodesically connected with the asymp-
totic state. If this limiting envelope is convex (again assumed
here), then this is a coherent region whose boundaries are
the envelope and the boundaries of the manifold.

Now, there are two envelopes, so obviously two possibil-
ities for their general shapes: they may or may not cross each
other. If not, the state space separates into three regions.
Two of them lie above the envelopes, are coherent units, and
are geodesically connected with the asymptotic parts of the
corresponding phases. Therefore, we call them Vapor and
Liquid, respectively. The third region is not necessarily a
coherent unit, defined here purely negatively, as the set of
points geodesically disconnected with the asymptotic parts
of any of the distinguishable phases. Since this region con-
tains the vicinity of the critical point, it may be called Criti-
cal. In addition, this region is critical for distinction as well,
since states in the neighborhood of the critical point are not
expected to show clear characteristics of either a familiar
vapor or such a liquid, and this ambiguity is reflected in the
existence of an intermediate region (which may be even larg-
er than the domain of critical behaviors as, e.g., opales-
cence).

The other possibility is when the two envelopes cross
each other. Then Vapor is the coherent region whose points
are disconnected with the asymptotic liguid states, but con-
nected with the asymptotic vapor ones, Liquid is vice versa,
Critical is the same as in the previous case, and Gas is again a
coherent region whose points are geodesically connected
with the asymptotic states of both regions, so being above the
transition.

Our remaining task is to see if such a construction can be
made for a van der Waals system; if so, which case is realized
and where are the boundaries of the regions.

V. THE CALCULATION

Now we are starting to realize the above construction
for the van der Waals system. First, very dilute and cold
vapor and very dense and cold liquid states are to be chosen
on the phase boundary. For these, we take

x, =001, y, =0.16;
x,=0.98, y,=0.019.
The corresponding envelopes of geodesics avoiding the sin-
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gularity (so remaining on the manifold up to arbitrarily high
temperatures) are displayed in Fig. 3. The envelopes cross
each other, thus four regions have been obtained.

Before discussing the shapes and locations of the re-
gions, first we should have to verify that these envelopes
approximate those of the asymptotic construction. How-
ever, there are problems of both numerical technique and
principles. When going to y = 0 on the phase boundary, the
surviving geodesics start more and more vertically, and var-
ious terms in the second-order geodesic equation start to
diverge. Furthermore, the x € 1 part of the phase boundary is
almost vertical, so only the very close neighborhood of x = 0
would be really low in temperature. In addition, ideal gas
geodesics have the tendency to become horizontal after tra-
versing some fundamental section in y. So there is a part of
the phase boundary, very cold nevertheless well above the
singularity (which is possible only for x<€1), where one
might expect complications. Here we do not investigate this
question from two reasons. First, ideal gas geodesics may
possess strange shapes, but this phenomenon is clearly inde-
pendent of any phase transition, so we do not have anything
to do with it in the present context. Second, it is well-known
that the ideal gas equation of state is aphysical for very low
temperatures (e.g., violating Third Law). The same is true
for a very dilute cold van der Waals gas. This trouble should
and can be healed by using, e.g., quantum statistics; then at
higher temperatures and moderate densities, the equation of
state is practically unchanged, but the asymptotic dilute re-
gion is different.!! Since here we deal with a classical phe-
nomenological equation, this (very complicated) way will
not be followed, however, strange features of the cold dilute
states do not have to be taken literally.

So here we do not prove the exact asymptoticity of our
envelopes; however, two checks have been made. For vapor,
some geodesics have been calculated from the starting point
(0.001, 0.123). They, except of course for the very begin-

1.5

[
(-]

temperature y

o
o

0.0
0.0 0.5 1.0
density x
—~ — V: vapor; C: eritical; L: liguid; G: gas
S: singularity, B: phase boundary

FIG. 3. The region structure for van der Waals gas. Very asymptotic cold
vapor states have not been explicitly investigated, because there Third Law
is violated.
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ning, run among the geodesics from (0.01, 0.16) in the
neighborhood of the envelope. For liquid, we took a starting
point /ess asymptotic namely (0.90, 0.09). These geodesics,
at higher temperatures, seem to be roughly shifted left by
0.08, which is just the difference of the starting points in x.
Therefore, in the domain of initial values investigated, the
shapes of the envelopes seem to be stable.

Now we are in the position to define the regions of the
state space. For display, cf. Fig. 3. Still, the (»,T) coordi-
nates, though advantageous for drawing geodesics, are not
the most familiar ones for phase diagrams. So we transform
this diagram to the usual one in (p,v) coordinates on Fig. 4,
where p is the (dimensionless) pressure from Eq. (2.2) and
v=1/x. Here we have been forced to use logarithmic scale on
the p axis, because the crossing of envelopes is located high
above critical pressure. We will return to this point in the
Conclusion.

Still we have to verify that the Vapor, Liquid, and Gas
regions are coherent (i.e., the points of any of these three
regions are mutually geodesically connected). In order to
see this, we checked the convexity of the above-defined
boundaries (which is sufficient condition). At all investigat-
ed point pairs, the boundaries turned out to be convex; some
examples for demonstration are given on Fig. 5.

It is interesting that geodesics moving in the neighbor-
hood of the instability show a gravitational lens type recon-
verging (cf. Fig. 6), caused by the repulsive property of the
singularity. This is the reason for the envelopes not being
geodesics.

VI. CONCLUSIONS

We have investigated systems possessing more than one
phase and a critical point, for which there are serious prob-
lems when classifying states into phases, and have demon-
strated that some classification can be done by means of the
metric thermodynamics of Weinhold and Ruppeiner in a

1003
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“
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TTTT LB S I O B |
0.0 ‘ 1.0 2.0 3.0

specific volume v/v,
V: vapor; C: critical; L: liquid; G: gas
S: singularity, B: phase boundary

FIG. 4. As Fig. 3, but on the (p,v) diagram. Pressure scale is logarithmic.
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FIG. 5. Chords of the left (vapor) and right (liquid) region boundaries of
van der Waals gas, respectively, demonstrating the convexity of the boun-
daries.

natural way. By this, one can uniquely decide if there is a
phase transition between two given states. However, even
then one cannot assign a definite phase to one given state.
Still, a more modest aim can be achieved, namely we can
recognize coherent regions in the state space, inheriting the
fundamental characteristics of phases. For van der Waals
gas, three coherent regions have been found, call Vapor, Lig-
vid, and Gas; the remaining part of the state space seems to
be the region of the attraction of the critical point.

The resulted region structure, while qualitatively not
unreasonable, possesses three strange quantitative features,
more or less interconnected. First, the left boundary of the
Liquid region does not approach the neighborhood of the

3.0

»
=)

temperature y

1.0

0.0 0.5 1.0
density x
dashed lines: geodesics
S: singularity, B: phase boundary

FIG. 6. “Gravitational lens effect” in the neighborhood of the critical point.
Due to the repulsion at the upper part of the singularity, the geodesics cross
each other in two points.
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critical density; the border is rather vertical. This is not a
numerical error as shown in the Appendix. Second, the Gas
region is rather rudimentary and again does not extend be-
low approximately the double of critical density, rather
strangely for a permanent gas. Again, this is connected with
the vertical nature of the Liquid envelope. Third, the Critical
region (whose internal structure has not been investigated
here) extends too high (up to approximately three times
critical temperature). These strange features lead to the par-
ticular shape of Fig. 4. There the Critical region in pressure
extends one and half orders of magnitude above the critical
pressure, and this peak is located at approximately double
the critical density. So, the intermediate (Critical) region is
rather extended.

However, our guess is that these particularities are not
characteristic for real systems, which are here approximated
by the van der Waals gas; they seem to be the consequence of
a particular approximation. Namely, the existence of a high
minimal gas density directly comes from the fact that a// van
der Waals liquid geodesics turn back to high densities. Now,
this is caused solely by the high density behavior of the sys-
tem, where the van der Waals equation of state is not the
general approximation for real “gases.” So here we could
only demonstrate how an invariant classifying method
works. Our conjecture is that a realistic high density equa-
tion of state could be selected according to the more conven-
tional shape of the resulted regions. This question would
deserve further investigation.
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APPENDIX: THE GEODESIC EQUATION

Here we start from Egs. (3.2) and (3.3). Equation
(3.3) gives the second derivatives of x and z on a geodesic,
but Eq. (3.2) is a first integral. The remaining equations can
be evaluated by writing

z=2z(x) (Al)
and then we get
** = —{z* + (2/3)¢/x — (1 — x)’z*
X1 =2x(1 —x)%] 4 (1 = 3x)/[2x(1 — x)?]
+ 2xz*e* + 3xz%?/4}, (A2)
where
z*=dz/dx.

This is the equation for geodesic paths.

Now, from direct calculation, one learns that, starting
fromz«< — 1and 1 — x <1, the geodesics tend to be vertical
at moderate x — s and z — 5. We must check if this is a nu-
merical error or not. Accepting first the phenomenon, one
may conclude that for |z*|> 1, the leading term of the right-
hand side of Eq. (A2) is the last one. Thus, there

(A3)

Z*¥* o~ — (3/4)(1 — x)%x[1 — 2x(1 — x)%*] ~12*3.
(A4)
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Now, the prefactor of the new right-hand side is moder-
ate and negative, so

**~ — Cz%, (AS)
but this rough approximation can be integrated as

2* T2 CHX — Xy ) = (d2/dX) = [C(X — X300 ] 2,

(A6)
xmin < 1’
whence
222 + (2/C) (x — X ) V2 (AT

3067

This is just the shape obtained in numerical calculation; x,;,
depends on the initial point and slope, but for (1 — x;) €1,
its absolute minimum seems to be ~0.70.

Similar geodesics can be analytically obtained from the
restricted van der Waals system'°

z =2, +3/8 arctany (3x/2Q7) — 1 + Q [1 — (2/3)Q?] ™2

XIn[yT =2/ 0% +Vx — (2/H Q% )/ [NT = 2/ 0% — yx — (2/3)27],

where @ is a constant of integration. Now, at
xp = (2/3)Q% (A12)

dz/dx diverges, but z does not. Since x — (2/3)Q? must not
become negative (cf. the square roots), beyond (x,,z,, ) the
path continues with x> Xx,, i.e., turns back. Therefore,
asymptotic liquid geodesics cannot extend below critical
density for a van der Waals system.
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