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Inspired by a construction of Wigner we calculate the quantum relativistic limitations of measuring the metric tensor of a
certain space-time. Qur suggestion is that the result is an estimate for fluctuations of g,, whose rigorous determination will be a

subject of a future relativistic quantum gravity.

Although various attempts for systematic quanti-
zation of the space-time geometry (‘“‘gravitation”)
have appeared, none of them is considered fully con-
sistent or final. Still, even without a consistent quan-
tization method one can estimate the obligatory
quantum unsharpness. The method goes back to the
early trick of Landau and Peierls [1], originally ap-
plied to the electromagnetic field. In their gedank-
enexperiment a quantum particle was placed into a
classical electromagnetic field, in order to test the
field strength, and, due to quantum uncertainties of
the probe coordinates and momenta, the classical
field strength turned out to be tested with a certain
uncertainty. Later Bohr and Rosenfeld [2] showed
that, by optimal preparation of the probe, this un-
certainty coincides with the quantum unsharpness of
the field strength in the standard quantization of the
electromagnetic field.

This success has encouraged transplantation of the
above method to test quantum fluctuations (what-
ever they are) of the space-time geometry. For some
50 years, various gedankenexperiments [3-10] were
elaborated where quantum particles may test the lo-
cal curvature, the Christoffels or, alternatively, the
geodesics. It seems that different works suggest dif-
ferent unsharpness for the space-time. Remind that
in our case, unlike quantum electrodynamics, still no
final criteria are within reach to verify a specific es-
timation. Consequently, our work is not intended to
suggest an exclusive solution to the problem. We

confine ourselves to find the minimal uncertainties
of geodesics. Here we essentially append Wigner’s
original thoughts [ 3,4] by a gedankenexperiment [6—
8] proposed first in 1966 and do not aim to resolve
discrepancies among the great number of other works
mentioned above.

Obviously, the ultimate object of measurement is
the space-time geometry. It is better to avoid con-
structions exploiting rigid rods, etc. Fortunately, the
measurement can be performed purely via time mea-
surements on time-like geodesics and Wigner elab-
orated such a construction {3,4]. There we need a
net of time-like geodesics as tight as possible. How-
ever, these geodesics are realized by real bodies
(clocks) subject to quantum physics. Therefore, for
a length s=cT a geodesic will develop a space-like
uncertainty at least [4,8,10]

Ax= (hs/Mc)V? (1)

where M is the mass of the body. Then geodesics be-
come time-like world tubes rather than sharp world
lines. Next, Wigner imposed a plausible condition
on the expected accuracy of measuring s:

As~ Ax, (2)

i.e. space-like and time-like accuracies are identical.
(Another possible argument by ref. [8]: cutting a
world tube is regarded to be a causal process.) Even
here we mention that this restriction of cutting seems
too strict; we will return to this condition later.
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Now the net is to be tightened as far as possible,
but the clocks travelling along the geodesics have
some size R which is a limit for the tightening. For
R> Ax the net is unnecessarily thin. So a suitable
condition is

R~ Ax. (3)

A smaller R is not convenient, either, as we shall see
later.

Here the original construction stops but we must
continue as far as our goal is considered. Namely, by
increasing the mass M of the clock the accuracy of
measuring the metric increases without limit. How-
ever, the masses distort the space-time just under
measurement. This distortion leads to a further de-
viation in measuring the length s, giving the esti-
mation [8]

As' = (GM/Rc?)s . (4)

Now one sees that a small distortion 4s’ needs large
R, cf. our remark after the condition (3). One in-
tends to measure the structure of the space-time so
the quantum uncertainty (2) and the distortion (4)
are both limitations. The first one decreases by tak-
ing a larger mass M while the second increases. There
is an optimum at [8]

Asx As . (5)

Egs. (1)-(5) build up a closed system of condi-
tions to derive minimum uncertainties. We are not
yet ready, however. First, ref. [8] did not choose this
way. It adopted conditions (1), (2) of Wigner, ap-
pended them by the new conditions (4), (5) but
condition (3) was replaced by the less strong one
R <s. (The extension of the clock could be much
larger than the width of the world tube and it is lim-
ited only by causality.) Hence ref. [8] concluded in
an absolute limitation on defining the length of an
individual geodesic as

(AS)2%A4/352/3, (6)

where A is the Planck length. (See also refs. [6,7].)

Now, note that by taking literally this construction
the optimal mass of the clock would be about #c3s/
G'? which is enormously large. This follows from the
large size ( R~ s) of the clock. Such a clock may mea-
sure quite well the length of an individual geodesic,

332

PHYSICS LETTERS A

18 December 1989

it is hardly optimal for constructing a tight net.
Therefore for our goal we suggest to retain the orig-
inal condition (3).

The system (1)—(5) is closed and would lead to
an absolute limitation (viz. (As)?x.s) in measur-
ing the distances in a net so also for space-time met-
ric. However, we have reasons to revise condition
(2) as promised. No doubt, condition (2) is clearly
obligatory for a simple “cutting” process. Still it does
not seem to be an absolute limitation for more so-
phisticated ones. Ad absurdum, condition (2) would
only allow the preparation of light-like hypersurfaces
and the realization of space-like surfaces (believed
possible in measurements) would be prohibited.
Having made this general remark, we propose to pass
this “causality” limitation. Even then there remains
a quantum one: the localization of a free body along
its world line can never be determined better than its
Compton wavelength. Hence in the optimal case

As=h/Mc . (7)

Our proposed system of conditions is thus (1)—(5)
but with (7) instead of (2). Egs. (3)-(5) and (7)
lead to the absolute limit

(As)’~A%s/R (8)

via the optimal mass (AR/GT)'/% Recalling that we
aim at a tight net of geodesics, R is to be regarded
rather as the cell size of the net.

Formally condition (1) restricts the validity of eq.
(8) by limiting the length s. However, the squared
accuracy (As)? of measuring s is proportional to s
hence successive independent measurements possess
uncorrelated inaccuracies. Consequently, eq. (8) re-
mains valid for a world line of any (large) length s
since one can measure its length by successive mea-
surements on shorter periods (cf. also ref. [10]).

The content of eq. (8) is an inevitable (and, if the
present conditions are correct, ultimate ) uncertainty
of measured lengths of time-like geodesics. Via Wig-
ner’s construction, this uncertainty propagates into
the space-time geometry which therefore cannot be
sharply measured, so there is no possibility to con-
sider it sharp.

Now we are in the position to calculate the un-
certainty of the metric tensor g,,. Here it is done in
the simplest case when the gravitation is weak and
the geometry is nearly static. Then the metric tensor
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is Minkowskian except for goo=1—2®/c? where @
is the Newton potential (| ®| < c?). For simplicity
we assume the background to be just the Minkowski
metric and thus @=0 in average. The uncertainty
Ag,s of the metric is contained in &:

Agoox P/c?. (9

Since it seems hardly possible that large relative
velocities in the net of geodesics could improve the
accuracy, we have chosen a net with vanishing rel-
ative velocities. For a period T, a clock measures a
proper time about

J‘./I—Z(QD)R/CZcdtz[l—(tp)R,T/cz]s, (10)

where (@)g, (D)gr denote the Newton potential
averaged over the volume of the clock and, respec-
tively, over the volume and the time T as well. From
eq. (10) the uncertainty of the length s is ~ (D) g 75/
¢? and this has to coincide with As of eq. (8). As a
result, one obtains the unsharpness (9) of the metric
by

(®)rr~/AG/RT . (11)

It is true that the uncertainty decreases with increas-
ing R or T; but then the measured quantity is less
and less the local metric.

Following e.g. ref. [8] or ref. [10], one may con-
sider @ as a stochastic variable whose fluctuations
yield just the measurement accuracy (11). In ref.
[10] it has been proved that the proper correlation
function of @ is of the form

(D(r, )D(0,0) > =const X AGr—'(t) . (12)

Two appealing features are to be noticed here.
First, ¢ has been cancelled in eq. (12) (as well as in
eq. (11)) thus the non-relativistic Newton potential
possesses even a non-relativistic quantum fluctua-
tion. The existence of a genuine non-relativistic un-
sharpness has been predicted for the Newtonian
gravity [10]. (This would not happen with the al-
ternative conditions.) Second, the correlation func-
tion is of white noise type because of (As)?~s im-
plying statistical independence of fluctuations of @
at different times.

Alternatively, had we chosen eq. (6) instead of eq.
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(8) (As)? would be not proportional to s therefore
uncertainties along a given world line would have to
be statistically correlated. Then, obviously, @ would
not be a white noise. In refs. [7] and [8] the fol-
lowing correlation function has been derived:

{D(r, 1)P(0,0)> =const X (AG)*3c?r—!
X [sgn(ry) |ry |72 4sgn(ro)|r_ | 712],  (13)

where r,. =r+ct and r_ =r—ct. (Note that refs. [7,8]
give the correlation (13) for the Fourier coefficients
of y= —2®/c2)

As demonstrated e.g. in refs. [6-8,10,11], sto-
chastic fluctuations of g, offer some natural mech-
anism for spontaneous reduction of wavefunctions.
Comparing the correlation functions (12) and (13)
one can expect technical and quantitative differ-
ences between the corresponding reduction mecha-
nisms as well.

If one cannot find a very sophisticated way to cir-
cumvent our accepted ‘“‘quantum relativistic> limi-
tations of measuring lengths of geodesic world tubes
(1), (3)=(5), (7), then eq. (8) gives the final un-
sharpness in determining the distances in a space-
time net drawn to measure the space-time geometry.
(Note that even then one individual geodesic can be
measured with higher accuracy, but that is not enough
to determine g,;.) If one represents the correspond-
ing unsharpness of the geometry by properly ad-
justed stochastic fluctuations of the metric tensor,
then, in the weak field approximation, it turns out
that the fluctuations of the non-relativistic Newton
potential are of white noise type and remain non-re-
lativistic. Both characteristics are rather attractive.

The authors would like to thank Dr. A. Frenkel for
illuminating discussion.
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